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A CENTRAL LIMIT THEOREM UNDER METRIC ENTROPY
WITH L, BRACKETING!

BY MINA OSSIANDER
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Let (S, p) be a metric space, (V,”", n) be a probability space, and
f: S X V - R be a real-valued function on S X V which has mean zero and
is Lipschitz in L,(p) with respect to p. Let V be a random variable defined
on (V,7", ), and let {V;: i > 1} be a sequence of independent copies of V.
The limiting behavior of the process S,(s) = n~/2X2 | f(s,V;) is studied
under an integrability condition on the metric entropy with bracketing in
Ly(p). This metric entropy condition is analogous to one which implies the
continuity of the limiting Gaussian process. A tightness result is derived
which, in conjunction with the results of Andersen and Dobri¢ (1987), shows
that a central limit theorem holds for the S,-process. This result generalizes
those of Dudley (1978), Dudley (1981) and Jain and Marcus (1975).

1. Introduction. In this paper, a central limit theorem is given for random
functions with finite second moments. A metric entropy condition is assumed
which is analogous to one which implies the continuity of the limiting Gaussian
process. This central limit theorem generalizes those of Dudley (1978), Dudley
(1981) and Jain and Marcus (1975).

Let (S, p) be a metric space, (V, 7", n) be a probability space, and f: S X V —
R be a real-valued function on S X V which has mean zero and is Lipschitz in
L,(p) with respect to p. Let V be a random variable (r.v.) defined on (V, 7", p)
and let {V;: i > 1} be a sequence of independent copies of V. We study the
limiting behavior of the process

(1.1) S,(s) =n"12 Zn: f(s,V.), f(;rs €S,

i=1

under certain metric entropy integrability conditions. In particular, we derive a
tightness result which, in conjunction with the results of Andersen and Dobrié
(1987) shows that a central limit theorem holds for the S,-process. This result, in
conjunction with the results of Dudley and Philipp (1983), also gives an invari-
ance principle and a law of the iterated logarithm.

Processes of this type have been studied by numerous authors, frequently
under the name empirical processes. [To see the sense in which this is the case,
let P(-)=n"'X"8 v(+) denote the empirical measure and identify f(s, -) with
f(-). Then S,(s) = n~Y2(f, dP, is an empirical process indexed by the family of
functions {f,: s € S}.] For a recent review of limit theorems for empirical
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898 M. OSSIANDER

processes see Giné and Zinn (1984). A key central limit theorem for an important
family of uniformly bounded functions is due to Dudley (1978). Under a metric
entropy condition analogous to that needed for the continuity of Gaussian
measures he shows that a central limit theorem holds for the centered set-
indexed empirical measure. In Dudley (1981) a central limit theorem is derived
for families of functions which are uniformly bounded in L, for some p > 2.
However, the metric entropy condition assumed depends on p and is stronger
than that needed for the continuity of the limiting Gaussian process. (See
Section 2 below.) This second result of Dudley’s parallels those of Pyke (1983)
and Bass and Pyke (1984) for set-indexed partial-sum processes composed of
random masses attached to fixed lattice points. Jain and Marcus (1975) prove a
central limit theorem for families of functions taking values in C(S) under the
same metric entropy condition as that needed for the continuity of the limiting
Gaussian processes. However (using our notation), they also assume the rather
stringent condition

| f(s, V) —f(¢t,V)| < g(V)p(s,t), fors,te S,

where g: V — R is a measurable function with Eg%(V) < 0.

A goal of this paper is to unify these seemingly disparate results. [For
example, the classical central limit theorem is a corollary of Jain and Marcus
(1975), but not of Dudley (1978) or Dudley (1981).] We prove a central limit
theorem for the process { f(s, V): s € S} assuming only finite second moments
and the metric entropy integrability condition

(1.2) /O (H"(4,8, )" du < o,

where HB(-, S, p) denotes the metric entropy with bracketing of f with respect
to p in L,. Condition (1.2) is analogous to the metric entropy condition needed
for the continuity of the limiting Gaussian process.

The relationship between laws of the iterated logarithm and the central limit
theorem for r.v.’s taking values in a real separable Banach space with norm || - ||
has been studied by many authors, cf. Kuelbs and Zinn (1983). Pisier (1975,/1976)
proves that, in this framework, if X is a mean zero r.v. with E||X||2 < co which
satisfies the central limit theorem, then X also satisfies the compact law of the
iterated logarithm. These results cannot be applied directly in our general
framework since we make only the minimal assumption that f(-, V) € B(S), the
bounded real-valued functions on S, which, together with the sup-norm, || - ||,
forms a nonseparable Banach space. [If f(-, V) € C(S) with S totally bounded,
these results immediately give a functional law of the iterated logarithm since
(C(S), || - I) form a separable Banach space.] However, under condition (1.2), S is
totally bounded and the limiting Gaussian processes have support in C(S). Thus
Pisier’s result together with the invariance principles of Dudley and Philipp
(1983) can be used to derive a functional law of the iterated logarithm.

In Section 2 the notation and assumptions used throughout are introduced. In
particular, metric entropy is defined and related results on the continuity of
Gaussian processes are discussed.
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The central limit theorem and two important probability bounds are pre-
sented in Section 3. These include a tightness criterion and an exponential
. probability bound. The methods used to prove the central tightness result follow
those used by Bass (1985) in the context of partial-sum processes. Throughout,
only conditions on the second moment are required.
The final results of this paper are presented in Section 4. We show that the
invariance principles of Dudley and Philipp (1983) hold in our general setting.
These results are used to derive a Strassen-type law of the iterated logarithm.

2. Notation and assumptions. Let (S, p) denote a separable pseudo-metric
space and let % denote its Borel o-field. Let (V, 7", ) be a probability space. Let
f: S X V — R be a function which is measurable-#X ¥~ and suppose

(2.1) Ef(s,V) =0, forallse S,

(2.2) Ef?(s,V) < o0, forallseS,

and

(2.3) (E(f(s,V) = {(£,V))’)"* < o(s, t), foralls, teS.

That is, each f(s,-) is in Ly(p) and the L,-distance between the members of
F={f(s,): s €8S} is dominated by p, or, in other words, f(s, ‘) is Lipschitz
with respect to p in Ly(p). We also assume that the process { f(s, V): s € 8} is
separable. That is, we assume there is a countable dense set D, C S and a
measurable set N € V with p(N) = 0 such that for any open set G C S and any
closed set F C R,

[f(s,V) € Fforallse Gn D]\ [f(s,V) € Fforalls€ G] c N.

Let {V: i > 1} be a sequence of i.i.d. copies of V, and define the partial-sum
process

n
(2.4) S,(s)=n"Y%2Y f(s,V;), forsesS.
i=1
The space in which f and, consequently, S, take values is discussed below.

We now assume that f(s,:) can be bounded above and below by simple
functions (in S) which are themselves close in Lo(p). For § > 0, let S(8) denote a
finite 8-net for S with respect to the metric p. Suppose that for each § > 0, there
exist f;* and f5, measurable real-valued functions on S(8) X V, such that for
each s € S there is some s® € §(8) satisfying

(2.5) p(s,s?) <8,

with

(2.6) f{(s%,V) <f(s,V) < f(s%,V) as.
and

(2.7) (E(#4(s%, V) - 1(s*, V))) " < 5.
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DEFINITION 2.1. When (2.5), (2.6) and (2.7) above hold we say that f,* and f{
are, respectively, upper and lower §-approximations to f in Ly(p).

The definition of metric entropy is as follows.

DEFINITION 2.2. For 6 > 0, let
28) (8,8, p) = min{card S(8): S(8) is a 8-net for S
) with respect to the metric p}
and define the metric entropy of S with respect to p,
(2.9) H($,8,p) =In»(8,8,p).

Notice that from equation (2.3), for all § > 0 and each s € S, there exists
some s® € §(8) such that

(E(f(s,V) = £(s2,V))

Let o represent the pseudo-metric defined on S by the L,-distance,

(2.10) o(s, t) = (E(f(s,V) - {(2,V))"),

and consider the mean zero Gaussian process {Z(s): s € S} with covariance
function

(2.11) Cov(Z(s), Z(t)) = Cov( f(s,V), f(t,V)), fors,te 8.

A criterion for the a.s. continuity of Z in terms of metric entropy is given by
Dudley (1967), namely that if

(2.12) /0 (H(w,8,0))"?du < oo,

)1/2 <$.

then there exists a continuous version of Z.
In order to calculate the necessary probability bounds a definition of a
stronger form of metric entropy proves useful.

DEFINITION 2.3. Let
(2.13) »5(8, S, p) = min{card S(8): (2.5), (2.6) and (2.7) are satisfied }
and define the metric entropy with bracketing of f with respect to p to be
(2.14) HE(8,8,p) =Inv5(8,8,p).

The term “bracketing” stems from the condition imposed by (2.6); f must
now be “bracketed” between the “step” functions f“ and fy defined on $(8) X V.
For the special case S = &/, a family of sets, when the indicator function of the
set s is identified with s, the metric entropy with bracketing of the family of
indicator functions can be seen to be the same as the metric entropy with
inclusion of /. [Henceforth S(§) and S5(8) will be understood to represent
those 8-nets for S which have cardinality »(8, S, p) and »5(8, S, p), respectively.]
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Taking o to be the metric defined by (2.10), we will see in Section 3 that the
condition analogous to (2.12),

(2.15) [(HE(u,8,0))"" du < oo,

plays a central role in the estimation of probability bounds on the partial-sum
process {S,(s): s € S} defined by (2.4) above.

It is frequently more difficult to calculate the metric entropy with bracketing,
HBE, of a function f than to calculate the ordinary metric entropy, H, of f.
Below we show that, when the local oscillation of f is bounded in L,, H2 can be
bounded in terms of H.

From separability, we may assume that, for each &6 > 0, S(§)  S. Let
{Bs(s): s € S(8)} be a collection of §-neighborhoods of the members of S(8)
which covers S. Suppose that for each s € S(§) ’

1/2
(2.16) B* s [1(s,V) - f(t,V)|2) < &(5),

for some strictly increasing continuous function g: [0, o0) — [0, o0). (E * denotes
upper expectation.)

LEmMMA 2.1. If (2.16) holds, then for u > 0,
(2.17) H%(u,S,0) < H(g (u/2),8,p).

Proor. Fix & > 0, let {By(s): s € S} be as above, and define

fs = inf{¢ meas: S(§) X Vo R: Y(s,:) > sup f(¢ -)as.forallse S(S)},
te By(s)

fi= sup{\[z meas: S(8) X V- R: ¢(s,-) < igf( )f(t, -)as.forall s € S(S)}.
t€ By(s

Since S(8) C S, for each s € S(§)
f(s, ) < f(t,-) <fs“(s,*), forall t € By(s).

By Minkowski’s inequality, the definition of upper expectation, and (2.16) for
s € S(9) ‘

(E(fs,V) = £, V)))

< (E(f4(s,V) — (s, V)))”" + (E(1(s,V) - (s, V))")

L\ /2
sz(E* sup lf(s,V)—f(t,V)I)

te By(s)
< 2g(8).
Setting 8 = g7 (u/2), the result follows. O
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COROLLARY 2.1. If (2.16) holds, then for § > 0
218)  [(H(w,8,0))"* du <2 [ ?(H(u,S, )" dg(u).
0 0

Proor. By Lemma 2.1,

1/2
'C((HB(u,S, 0))*du < /OS(H(g‘l(u/2),S, p)) du.
Using the change of variables v = g7 (u/2), the result follows. O

Occasionally in the definition of metric entropy with bracketing, the stipula-
tion that the upper and lower §-approximations to f be within § in L, is
replaced with the stipulation that they be close in L, for some 0 < a < 2; that
is, condition (2.7) is replaced with

(2.19) (B 4%, V) - (% V[) " <.

DEFINITION 2.4. For 0 < a < 2, let
v2(8,8, p) = min{card S(5): (2.5), (2.6) and (2.19) are satisfied }
and define the metric entropy with bracketing of f in L, to be
(2.20) HE(8,S,p) =Inp2(8,8,p).

Henceforth let S (8) represent the 8-net with cardinality »2(8, S, p). From the
Cauchy-Schwarz inequality we see that H5(8,S, p) < HE(S,S, p) for each a €
(0,2). In certain cases, conditions on the integrability of H2 imply that the
integrability condition (2.15) holds.

LeMMA 2.2.  If sup,cglf(s, V)| < Ya.s. withY € L(p) for somep > 2 and
(2.21) fl(Hf(u,S, p))uPE=/Ap=a) < o
0

then (2.15) holds.

Proor. This result is an easy consequence of Holder’s inequality. Fix a €
(0,2) and for 6 > 0, let u; and l; represent, respectively, upper and lower
d-approximations to f in L,. We can assume |u;| and |/;| are both bounded by Y.
For s € S (9),

E(uy(s, V) - Iys,V))*
< E((2y)p(2—a)/(p—a)( us(s, V) _ ls(S, V))a(p—Z)/(p-a))
< 2p(2—a)/(p—a)(Eyp)(2—a)/(p-a)(E(u8(s’ V) — I(s, V))a)(p—2)/(p—a)

< 2P@-a)/(p-a) Eyp)(2-a)/(p—“)3a(p—2)/(p—a).
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Thus, letting ¢, = 2P~ /AP~ EYP)E-2/2p~a),
HB(cp8°‘(”_2)/2("'“),S, p) < HE(§,8, p),

SO
[ (HP(u,8,0))"* du
0

_ (P = 2) ciae oo n gy ap-a) 1/2
~ 2Azp-a) ~I;) R 5. 0)

% x—P@=a/Ap=2) gy
< c,a(p —2) f(s/cp)z“""’/"""z’( HB(x,S, p))l/‘b’x—p(z-a)/z(p—a)dx, O
2(p—-1) % *

In particular when f is bounded a.s. by a constant (so f € L), this demon-
strates that HZ(u,S, p)/u?>" can replace H?(x,S, p) in condition (2.15). Al-
though this result has been stated for metric entropy with bracketing, it is clear
the analogous result holds for the usual metric entropy as well.

For a function ¢: S — R, let

(222) lplls = sup [@(s)]

seS
denote the sup of |p| on S. Whenever unambiguous we write || - || instead of
(2.23) lols= sup  |o(s) — o(2)]

s, tES: p(s, t)<d

denote the sup of |p(s) — ¢(t)| over the pairs (s, ¢) in the set of diameter §
about the diagonal of the space S X S. It is well known that B(S) is complete in
the sup-norm, so that (B(S), || - |) form a Banach space. Throughout this paper
we make the natural assumption that, with probability one, f(-, V) € B(S).

3. Weak convergence and probability bounds. In this section we give a
central limit theorem for the S,-process as well as the statement and proof of two
important probability bounds. The method of proof of the probability bounds
utilizes a chaining argument adapted from that of Bass (1985), who studied
set-indexed partial-sum processes made up of random masses attached to fixed
lattice points. This method allows us to prove a tightness result and an exponen-
tial probability bound using only the first and second moments of the random
process { f(s,*): s € S}.

We begin by defining convergence in law. Let L(S) c B(S).

DEFINITION 3.1. A sequence of L(S)-valued r.v.’s {Y,: n > 1} converges in law
to a L(S)-valued rv. Y (Y, » ,Y)if

Eg(Y) = lim E*g(Y,) Vg€ C(L(S), - lls)
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where C(L(S), | - ||g) is the set of all bounded continuous functions from ( L(S),
|l - llg) into R. Here E* denotes upper expectation.

This definition is due to Hoffman-Jergensen (1985).
Again let {Z(s): s € S} be the mean zero Gaussian process with

Cov(Z(s), Z(t)) = Cov(f(s,V), f(¢t,V)).

THEOREM 3.1 (Central limit theorem). If the metric entropy integrability
condition

(3.1) fl(HB(u,S, ) du < oo
0
holds, then S, - , Z.

ProoF. The proof is immediate, using the following finite-dimensional con-
vergence theorem (Theorem 3.2), tightness theorem (Theorem 3.3) and Theorem
5.5 of Andersen and Dobri¢ (1987). O

THEOREM 3.2 (Finite-dimensional convergence). The finite dimensional dis-
tributions of {S,(s): s € S} converge weakly to those of {Z(s): s € S}.

Proor. The finite-dimensional convergence of the S,-process is an im-
mediate consequence of the classical central limit theorem. O

THEOREM 3.3 (Tightness). If the metric entropy integrability condition (3.1)
holds, then for all 1, € > 0, there exists 8§ > 0 such that for all n sufficiently
large,

(3:2) P*(|IS,lls > m) <ce,

where P* denotes outer probability.

Dudley (1981) shows the above tightness condition holds under more stringent
conditions. He assumes that the family of functions #= {f(s,:): s € 8} is
dominated by Y € L,(p) for some p > 2 and that

HP(8,8,p) < c8"

for some y € (0,1 — 2/p). Setting a = 1 in Lemma 2.2 we see that Theorem 3.1
implies the result of Dudley (1981).

We begin with a well-known symmetrization lemma. See, for example, Pollard
(1982) for a proof.

LEMMA 3.1 (Symmetrization). Let {V/: i > 1} be an independent copy of
{(Vi: 121}, and let {S]: n > 1} denote the partial-sum processes constructed
from it. Then for all 0 < § < ¢ <y,

(3.3) P*(|IS,lls > m) < €*(e* = 82) ' P*(|IS, — S;lls > 1 — ¢).
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This result allows us to bound the tail probabilities of the S,-process with
those of the symmetric (S, — S])-process. After renormalizing (by dividing by
V2) we see the covariance function of the symmetrized process is exactly that of
the original partial-sum process. Thus we can replace, throughout the remainder
of the paper, f(-,V;) with ¢;f(-,V;) for i > 1, where {¢;: i > 1} is a sequence of
iid. symmetric Bernoulli r.v.’s (P(¢; = 1) = P(g;, = —1) = }), independent of
the sequence {V;: i > 1}.

The initial step in the proof of a tightness result for a partial-sum or empirical
process usually involves a truncation of the original process. Thus we begin the
proof of our tightness theorem with the proof of a probability bound for a
truncated form of the S,-process. Using the same methods an exponential
probability bound can be derived for a (different) truncated form of the S,-pro-
cess.

Let {¢,: n > 1} represent some increasing sequence with ¢, > 1 and ¢, =
o(n'/?)as n - oo. For a > 0, let

a ifa<ux,
Y(a,x)={ x if-a<x<a,
—a ifx< —a.

Foreach 8 >0, n>1and s €S, let

(34) £9(s, ) = ¥(0n %07, f(s, )

and

(3.5) SO(s) = n2 Y. 6,105, V).
i=1

PropoSITION 3.1. Take ¢, =1 for all n > 1. If condition (3.1) above holds,
then for all v,8 > 0 and each 0 < 8(3/32(H5(S, S, p) + 7%))/?

36) P(180 > K ['(#2(,8,0))" du + 8)) <3 T exp(-sLk),
0 k>0
where K is a fixed constant and Lx = Inx forx > e, Lx = 1 forx < e.

THEOREM 3.4 (Exponential probability bound). Take {@,: n = 1} to be any
nondecreasing sequence with ¢, > 1 and ¢, = o(n*’?) as n - . If condition
(3.1) above holds, then for all n,e > 0, and & € (0,1], there exist constants
¢, 0 > 0, depending on 1, € and 8, such that

(3.7) P*(IIS)15 > ne,) < cexp{ —n’p2/8(2 + ¢)}.

ProoF OF THEOREM 3.3. Fix 1,¢ > 0 and ¢, = 1 for all n. Notice that, for
any 6 > 0,

o<V X (1645 V)| +] s V)])
s€S(%)
with probability one. Thus the family of r.v.’s {f(s,V): s € 8} is uniformly
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bounded by a positive r.v. Y € Ly(p). Thus for 8 > 0,
IS, = Sl < =2 X | (-, Vi) = 10, V)|
i=1

n
<n7V2 XA EC VD Ly, vons o

=1
n
< n'/? Z Y;l[Y,->0n‘/2]’
i=1

where {Y;: i > 1} is a sequence of independent copies of Y. Thus

P(|IS, = Sl > n/4) < P{n"2 ¥ Yi1yy, . gy > 1/4

i=1
< P(Y; > 0n'/? forsome 1 < i < n)
<nP(Y>0n'/?) =0(1) asn - .
Since
IS5 < 11S$ll5 + 2118, — S|,
it remains to show
(3.8) P*(IISl5 > m/2) < e/2.

Choose 7" so that 3%, jexp{—(n’)’Lk} < e/2. Now choose & sufficiently
small to have

K(fs(HB(u,S, 0))"? du + 811’) <1/2.
0
Thus (3.8) holds for 8 < 8(3/32(H5(8, S, p) + (7")2))V2 O

PROOF OF PROPOSITION 3.1. The following setup is common to the proof of
both Proposition 3.1 and Theorem 3.3, so temporarily let ¢, represent any
nondecreasing sequence with ¢, = 1 and ¢, = o(n'/2).

Fix 7,8 > 0. For k>0, let 8, =A38* and v, =X, ,H?($,S8, p), where
A €(0,1] and B € (0,1) are constants with values to be specified later. Let
{a,: k > 0} be a strictly decreasing sequence with lim,_, _a, = 0. The values of
a,, will be specified later. The intervals I, == [a,,,, a,) partition the interval
(0, a,). Also define I, = [a,_ ,, ).

This proof relies heavily upon a special stratification of the truncated process
S{?. The strata will be determined by the magnitude of the difference of the
upper and lower 8, approximations to the individual f®’s. Fix 0 < a,/2.
Construct a nested sequence of upper and lower & x-approximations to f{%) in L,
in the following manner. For s € S, let

u(s,) = A (5% ),

Jj<k

(39) (s, ) =V F(s%,),

Jj=<k
un, k(s’ ') = \P(0n1/2‘pn—1, uk(s’ '))y
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and

(3.10) L i(s,) = ¥(0n /%71, 1(s, ).

Notice that l,, and u,, only depend on S through the k +'1 values

s%, ..., 5%, Since sup, ¢ g|f,{9(s, )| < ayn'/?/2¢, as., we can assume

sup u, (s, )| V|l i(s,")| < aon'?/2¢, as.,
seS

as well as
(3°11) sup Iun,k(s’ ') - ln,k(s’ ')' = aOnl/z/‘pn a.s.

sES
Notice that for each & > 0,
(312) ln,k(s’ ')S fn(o)(s’ ) S Uy, k(sy ) a.s.,
(3'13) Osun,k+1(s’ ) - ln,k+1(s’ ) < un,k(s’ ) - ln,k(s’ )
and

1/2 n1/2

(3.14) (BQas(s,V) = b i(s,V))) " < (E(#2(s*, V) = 1(s%,v))))

<9,.

We can now construct the sets with which we partition S{¥). Choose %, so
that

(3.15) ne%a, ., < ‘[)%(HB(u, S, 40))1/2 du + 08, < ne,%a, .
ForO0 <k <k, let

(3.16) A, 1((8) = [(un,4(s, ) = 1, (5, ))@u/n2 € 1]
and

(3.17) A, (s) = [(un, #(8,°) = Lo 4(s, ) @/n? € L]

Denote the related disjoint events by

k-1
Bn,k(s) = An,k(s)\ U An,j(s)

(3.18) -
= A, i(s) \ U 4, ,(s),
j=0
where U;_loffn’ ;(8) is understood to be the null set. Let
ky c
Bn,k,,+l(s) = U Bn,k(s))
k=0

I
o
CF
3
s:b'
;e
—_
w

p—
S ————
o
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The collection of sets {B, ,(s): 0 < k < k, + 1} partitions the sample space. For
k>1,let

k-1

Cn,k(s) = ( U A'n,j(s))

i—0

;N

L=J:B,,,,~(s))

J

(5.19) -

ky+1

U Bn,j(s)'
Jj=k

Since C, x(s) C A~,°t’ x-1(8), we have, on the set C, ,(s),

Iln,k(s’ ) - ln,k—l(s’ )| < un,k—l(s’ ) - ln,k—l(s’ )
(3.20)

< a e, 'n'/? as.

Notice that, using Chebyshev’s inequality,
P(An, k(s)) < E(un,k(s’ V) - ln,k(s’ V))Z‘Pf/a/zﬁ 1n

2,2 2
< 8kq)n/ak+1n'

We now stratify S{’)(s) using the partition {B, \(s): 0<k<k,+1)
constructed above. Within each stratum, we compare each 1% to its lower
d,-approximation, I, ,. For0 <k <k, + 1, let

(3.21)

Sn,k(s) =n"'2 leifn(o)(s, ‘/i)an,,,(s)(‘,i)
i=
and
LPu(s) =n"172 zleiln, #(8, Vi)lB,,'k(s)(Vi)'
i=

Then, since 0 < a,/2,
(3.22) SO(s)= X 8, (s).

k<k,+1

For k <k,

180, 4(8) = LOW) [ < 272 L (£(5, Vi) = Lo, 45, V)15, (Vi)

i=1

< n—1/2 Z (un’k(s, K) - ln, k(s’ ‘,i))]‘An,k(s)(‘/i)

i=1

(3.23)

= R3(s).
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Likewise, we have

Isn,k,,+1(s) - LSLI,)k,.-Fl(s)'

(3.24) <n”'? Z (un, k,,+1(s: V) - ln,kn+1(s: ‘/i))an‘an(s)(‘/i)

i=1
(r:)k +1(8)-
On the set B, , . (s), we have by (3.18)

(un,k,,+1(s’ ) - ln,kn+1(s’ '))/n1/2 < al«:,,+1‘pn_1

< (f:o(HB(u,S, ‘o))l/2 du + nﬁo)(p,,/n.

Thus
(325) R (e) < [ [U(Hw8,0)" du+ 8o

Now, on the individual B, ,(s)’s, we compare each lower §,-approximation,
1, » to the lower §,-approximation, /, ,. Let

LOG) =172 5 el s, V).
i-1
For k< k,+1,let
Lg)’)k(s) = n_1/2 Z Eiln,o(ss V;)an'k(s)(‘/i)
i=1

so that
(3.26) LO(s) = Y Lﬁ?}k(s).

k<k,+1
Notice that
LYy(s) = LYo(s) =
andforl <k<k,+1,
k

ln,k(s’ ) - ln,o(ss ) = Z (ln,j(s7 ) - ln,j—l(s’ ))

J=1
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Thus, recalling (3.19),

ko+1
Y (LO4(s) = LO4(s))
k=0
k,+1 n k
XY e X (L8, V) = b yi(8, VO, (V)
=1 i=1 j=1
(3.27) kn+1 n
Y 072 Y el (8, V) = Ly, ;s V))Le, (Vi)
Jj=1 i=1
ko1
Z R(2)

We now compare S to L® defined above. Combining (3.23), (3.24) and
(3.27), we see that, for each s € S, when 6 < a,,

1S57(s) = LY(s)| =| X (Snu(s) = Lk(s))

k<k,+1

< X |Sui(s) L)+ X (LOWs) = LO(s))

k<k,+1 k<k,+1

< X RYUs)+ X |RPu(s)]

k<k,+1 1<k<k,+1
Thus,

1SPll5 < ILY)|5 + 2|ISP — LO)|
(3.28) SILOIs+2 Y RO +2 Y RO,
k<k,+1 1<k<k,+1

Then, recalling (3.25), when 7, {(n(: 0 <k <k,} and (n®: 1 <k <k, + 1} are
constants which satisfy

()
(329) me+ L P+ X P <c[(HXu,S,0))"" du+n,
k<k, l<k<k,+1 Y

for ¢ some positive constant, we have

PH{181s > (c + ) [*(7(w,8, )" du + 1t

330 < P(ILQlIs > new.) + X P(IRP I > 70e,)
( ) k<k,

+ X P(IR?u > 1Pg,)-

l1<k<k,+1

[The values of the constants 7y, {7): 0 <k <k,}, and {(n?: 1 <k <k, + 1}
will be specified later.]
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The individual terms of equation (3.28) above are now bounded in probability
using both Bernstein’s inequality [cf. Bennett (1962)] and the upper bound,
exp{y,}, on the cardinality of U%_,S(8)).

For k < k,, R{,(s) is a sum of iid. nonnegative r.v.’s, each bounded by
a,p, . Hence

ER(r:,)k(s) = nl/ZE(un, k(s’ V) - ln, k(s’ V))IA"';,(S)(V)

< 0Bty (5, V) = 1, (5, V) P(A, ()
< 879,/ Api1
using (3.14), (3.20) and Holder’s inequality. Likewise,
Var R 4(s;) < a,9, 'ERG)(s) < 83a,/ay.,.
Thus by Bernstein’s inequality, for each s € S, when 1’ > 267/a,,,,
P(R()(s) > 1w,) < P(RY4(s) = ERQ) () > 109,/2)
< exp{ —n"%2/8(82a,a;1, + am/6)}
< exp{ - 311(,:)<p,2,/16ak} .

H;:nce, since R{)’, depends on 8 only through the (at most) exp{y,} members of
U J —OS( 8j )y

Zk P(IRD 4l > nP,) < kE exp(v;} [ P(RD4() > ne, ) |
n k’l
(3.31) - -
< ¥ exp{y, — 30 p?/16a,}.
k<k,

For1 <k <k,+1, R?,(s)is a sum of i.id. mean zero r.v.’s, each bounded
by a,, ! by equation (3.20). Also

Var R2,(s) < E(l, 4(s,V) = Ly o5, V)"
< E(un,k—l(s’ V) - ln,k—l(s, V))2
<82 ..
Again by Bernstein’s inequality, for each s € S,
P(|R®4(5)| > 10w, < 2exp{ —nP%9%/2(8%_, + a;n?/3)}.
Then, as for R,

> P(IR? . > 72e,)

1<k<k,+1

<2 Y exp{y,— nP%2/2(82_, + am?/3)}.

i<k<k,+1

(3.32)
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Lastly, for s,z € S, LO(s) — LO(t) is a sum of i.i.d. mean zero r.v.’s, each
bounded by a,p, !, and, when p(s, t) < §,

Var(LO(s) = LO(2)) = E(ly, o5, V) = L, o(t, V)’
< (B, V) - 12, V)
(Bt o(5,V) = L of5,V))))

(B o6, V) = ot V))) )
< (p(s, t) + 28,)°
< 82(1 + 20)%
Again using Bernstein’s inequality, for all s, ¢t € S with p(s, t) < §,
P(|Z9(s) ~ LO(#)| > mgne, ) < 2exp{ —ndg2/2(8%(1 + 21)* + agno/3)).
Then ‘
(3.33) P(ILLDlls > m0®s) < 2exp(2vo)}exp{ —nipZ/2(82(1 + 21)* + agno/3)}.

We now specialize to the proof of Proposition 3.1. Set ¢, =1 for all n and
fix A=1. Recall Lx =Inx for x>e, Lx=1 for x <e. For k>0, let
ap = 8,(3/8(v, + n°Lk))'/%, P = 28}/a,,, and %> = 82_ /a,. Thus, since
vy — 31/16a, < —m’Lk and v, — 37®°/2(367_, + a;n®) < —n2Lk, we have
from (3.31) and (3.32)

1/2

(3.34) Y PIRD,> n®) < Y exp{—n2Lk)
k<k, k<k,
and }
(3.35) Y P(IR2uI>n®)<2 Y exp{—n’Lk}.
1<k<k,+1 1<k<k,

Also set m, = 78%/a,, so that 2y, — 12/2(278% + ayn,/3) < —7%, and thus, by
(3.33),

(3.36) P(ILPll5 > mo) < 2exp{—n?}.

By (3.30), it remains to show that (3.29) holds for some fixed constant c. First
notice that

/2
z ng) =< (32/3)1/2 Z: (82/8k+1)(7k+1 + 'n2L(k + 1))1
OSkSkn k>0
< (32/3)/%8% ¥ 8,(v}/2 + nL%k).
k=1
Clearly
Z skL1/2k =8 Z BkLl/2k < cé

k>1 k>1
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for some constant c. From the definition of y,,

Y 8a2< ¥ 8, X (H5(8;,8,0))”

k>1 k=1 j<k

< ¥ (H%(3,,8,0))" ¥ 8,

Jj=0 k>j

(1-8)" X 8(HS,8,0))"

j=0

<@-p" L [ (Hw,S,0)" du

Jj=0 J+l

=1-8)" /0 (H"(u,8, )" du

(3.37)

Since 7@ = 1{) ,/2 and
o = 7(8/3)"28(yy + n2)"”*
< 7(8/3)"*(8(HE(8,8, )" + 8n)

< 7(8/3)1/2(f8(HB(u,S, )" du + sn),
0
the result follows. O

Proor oF THEOREM 3.3. Pick up the proof of Proposition 3.1 above at (3.33).
For k>0, let a, = 8,(3/8(y, + 2Lk + n?/28))'%, v = 28}/a,,, and P =
82_,/a,;. Then

Y — 31)9%/16a, < —2¢7Lk — n’p}/28
and
— P '92/2(382_, + am®) < —2¢2Lk — n’2/28,
so that by (3.31) and (3.32)

(338) Y PRVl > nVg,) < exp{ —n’p2/28} Y. exp{—2¢2Lk)}
k<k, k<k,
and
P(IR? 4l > nPgp,)

3.39 "
(8.39) <exp{—n’p2/28} ) exp{-2¢2Lk}.

1<k<k,+1
Now fix £¢> 0 and set 1, = (2n%a,/38(2 + ¢)) + n(1 + 2A)(28/(2 + ¢€))"/?, so
that —n2/2(82%(1 + 2M)% + agne/3) < —1%/8(2 + ¢). Then, by (3.36),
(3.40) P(ILDlls > nopn) < 2exp{yo)exp{ —n’¢}/8(2 + ¢)}.

As in the proof of Proposition 3.1, it is straightforward to show that
To<h<alP + Eicnar,+1M2 < c(fooH*(u) du + n8,) for some fixed constant
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c. Also notice that
Mo = 67202\ (1o + 2 + 12/28) T/7(2 + &) ' + n(1 + 21)(28/(2 + €)'
<nA/2 + (1 + 20)(1 - ¢/3)"%,
Thus, recalling that &, = A, and choosing A small enough to satisfy

(c+ 1)(/8°(H3(u,S, p))l/2 du + 1180) < ne/12,
0

A <e/6and
(1+270)(1 - ¢/3)% < (1 — ¢/6),
we have
Mt X AP+ X 1@+ fs‘)(l‘lf’g(u,S,p))l/2 du + 18, <.
l<k<k,+1 1<k<k,+1 0

Combining (3.29), (3.30), (3.38), (3.39) and (3.40) the result follows. O

4. Invariance principles and a law of the iterated logarithm. Recall the
definition of the S,-process,

S(s)=n""%2Y ¢f(s,V,), forseS,
i=1

and let {Z(s): s € S} be the mean zero Gaussian process with covariance
function given by
(4.1) Cov(Z(s), Z(t)) = Cov(f(s,V), f(¢,V)), fors,teS.

In the following, we show an invariance principle holds for the S,-process by
utilizing a strong invariance formulation due to Dudley and Philipp (1983). The
ensuing results also yield a functional law of the iterated logarithm.

Let (V®, 7", u®) denote the countable product of copies of (V, ¥, u), and
(2,2, P) denote the product of (V®, ¥ ®, u*) with (I, Z(I), ) where #(I) is the
collection of Borel sets in I = [0,1] and A is Lebesgue measure on I. Assume for
now that f(-,V) € B(S) and recall that (B(S),|| - |) is a Banach space. The
conditions imposed on f by equations (2.5), (2.6) and (2.7) together with the
metric entropy integral condition,

(4.2) fol(H"l}(u,S,p))l/2 du < o,

insure that the family of functions { f(s, -): s € S} is totally bounded as well as
uniformly bounded in L,(p). Condition (4.2) also implies that {Z(s): s € S}, the
mean zero Gaussian process with covariance defined by (4.1), has versions which
are uniformly continuous. The following theorem is a restatement of Theorem
1.3 of Dudley and Philipp (1983).

. THEOREM 4.1. If F= {f(s,V): s € S} is totally bounded in Ly(p) and for
all m, € > 0 there exists 8§ > 0 such that, for n sufficiently large,

(43) P*("SnHS > 77) < g,

then there exists a sequence of i.i.d. copies of {Z(s): s € S}, defined on
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(2, =, P), almost surely uniformly continuous on S, and in Ly(P), such that
Y (ef(-, V) - Z,())“ -0 asn— ©

(4.4) n~'/2 max
=nlli<k

in probability as well as L,(P) for any p < 2. The Z;’s can also be chosen so
that

(4.5)

T (af( V) = Z()| < Uy = o((nLLn)'"),

i<n

with probability one for some sequence of measurable U,’s.

The following corollary essentially states that, when the metric entropy
integral condition holds, our S,-processes can be approximated by continuous
Gaussian processes defined on the same probability space and having the same
covariance structure as the S’s.

_CoroLLaRrY 4.1. If equation (4.2) holds, then there exists a sequence
{Z,: n>1} of copies of {Z(s): s €S}, defined on (%, 2, P), almost surely
uniformly continuous on S, and in Ly(P) such that

(4.6) IS, — Z,l >0 asn— o

in probability as well as L,(P) for any p < 2. The Z s can also be chosen so
that

(4.7) 1S, = Z,ll < U, = o((LLn)"?),
with probability one for some sequence of measurable U,,.

Proor. This corollary follows from Theorem 4.1 and the probability bound
of Theorem 3.3 after setting Z, = n~'/?L?_,Z; and observing that Z, has the
same distribution as Z for all n. O

Since we assume Ef(s,V) =0 and Ef %(s,V) < oo, the classical law of the
iterated logarithm, Hartman and Wintner (1941), implies that, for each s € S,
the set of limit points of {S,(s)/@,: n > 1} is, with probability one, the closed
interval

[~ (Bi (s, V)2, (i (s, V).
[Here we set @, = (2LLn)"/?, where Lx = In x V 1.] We are, however, interested
in a functional law of the iterated logarithm of the type first proved by Strassen
(1964).
Let

(48) 9= (g€ Ly(w): [g(o)du(v) < 1)

and

(49) 9(S) = {G: S - R:G(s) = ff(s, v)g(v) dp(v) for some g € g}

We prove that, with probability one, the sequence {S,(s)/9,: s € S} is relatively
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compact and its set of limit points coincides with 4(S) in the topology generated
by || - I

THEOREM 4.2 (Functional law of the iterated logarithm). If the metric
entropy integral condition (4.2) holds, then with probability one, {S,/¢,: n > 1}
is relatively compact with respect to || - ||, and the set of its limit points coincides
with 9(S).

The proof of this theorem relies heavily upon the invariance results - of
Theorem 4.1 and the relationship between the central limit theorem and the law
of the iterated logarithm in separablé Banach spaces. [See, for example, Heinkel
(1979).] An alternate proof is available using the exponential probability bound
of Theorem 3.4; see Ossiander (1985).

Proor. By (4.4) of Theorem 4.1 and Theorem 3.3, there exists a sequence
{Z;: i > 1} of i.i.d. copies of {Z(s): s € S}, the mean zero Gaussian process with
covariance given by (4.1), such that .

(4.10) “(S,, -nV2 Enl Zi)/fpn

i=1

<Y, =o0(),

with probability one for some sequence of measurable Y,’s. The r.v. Z obviously
satisfies the central limit theorem. Since ||Z|| is square integrable and Z takes
values in C(S), which together with the sup-norm, |||, forms a separable
Banach space, by Theorem 4.3 of Pisier (1975,/1976) Z satisfies the law of the
iterated logarithm as well. That is, for each ¢>0, P(n Y% 'Yr Z ¢
Z48S) i.0.) = 0, and with probability one each G € %(S) is a limit point of
n~Y%p-1¥" | Z.. From (4.10) the result follows. O

5. Remarks. Jain and Marcus (1975) present, in addition to the theorem
mentioned above in Section 1, a central limit theorem for continuous processes
with sub-Gaussian increments. They require that (S, p) be a compact metric
space, with f(-,V) € C(8S),

[ (H(2,8,0))"” du < oo,
0

where o represents the (pseudo-) metric on S given by the L, norm, and that the
process {f(s,'): s € S} has sub-Gaussian increments. This last assumption
imposes a rather strong condition on the tails of f(s, ) — f(¢, :) for each pair
s, t € S. Giné and Zinn (1984), Section 8, and Pollard (1982) study weak conver-
gence of function-indexed processes which are uniformly bounded in L,. The
theorem of Giné and Zinn requirés certain integrability conditions on a random
measure of metric entropy. The theorem of Polard (1982) requires that a
combinatoric entropy condition be satisfied. Both of the above conditions are
related to the combinatoric notions of Vapnik and Cervonenkis (1971). The
connection between all of these conditions and the integrability condition (4.2)
needs study.
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The notation used to represent the random process { f(s, V): s € S} is subject
to choice. Let {X(s): s € 8} represent a B(S)-valued random variable defined
on some probability space (2, 2, P). A realization of this process at the point s
is generally written X(s, w) for w € Q. We can equate f(s, V) with X(s, ») by
equating f with X and V with w. Thus, suppressing the V, we can write f(s, V)
as f(s) and, when {f;: i > 1} is a sequence of independent copies of f,

(5.1) S,(s) =n"12 Zn‘, f.(s), forseS.
i=1

The above representation of the S,-process suggests generalizations of the
results of Sections 3 and 4. The probability bounds on S, derived in Section 3 all
depend, ultimately, on bounds on the tail of the distribution of f(s) — f(t) for
pairs s, t € S. These bounds in turn are calculated from the second moment
conditions imposed on f. This suggests that the results could readily be extended
to processes of the form (5.1) where the f;’s are independent, but not necessarily
identically distributed. When it is stipulated that each f; satisfy conditions (2.5),
(2.6), (2.7) for the same 8-net SZ(§) as well as conditions (2.1), (2.2) and (2.3),
then, when (4.2) holds, the crucial bounds in the proof of Theorems 3.3 and 3.4
[equations (3.31), (3.32) and (3.33)] easily follow.

The reader familiar with the study of partial-sum processes composed of
random masses attached to fixed lattice points has perhaps noticed that the
methods used in deriving the probability bounds of Section 3 have been previ-
ously seen in the context of partial sum processes, see for example Bass (1985).
Perhaps because of this, many of the conditions which arise in the study of the
convergence of the process {S,(s): s € 8} where S, is as defined in (5.1), are
analogous to those which arise in the study of partial-sum processes. A unified
approach to these two areas of research could be considered; this could be done
by studying generalizations of the S,-process.

A tightness result for set-indexed partial sum processes (analogous to Theo-
rem 3.3) is due to Alexander and Pyke (1986). A different method of proof, which
also allows the derivation of an exponential probability bound (analogous to
Theorem 3.4), was subsequently developed by Bass (1985). Both proofs begin by
symmetrizing and stratifying the partial-sum process, whereas Alexander and
Pyke complete the proof by using Gaussian domination, Bass goes on to use an
extension of a classic chaining argument. The latter techniques are more closely
related to those seen in the proofs of Theorems 3.3 and 3.4. For set-indexed
processes made up of random masses attached to random locations a slightly
different method of proof can be seen in Ossiander (1985). There the use of a
sub-Gaussian inequality [cf. Jain and Marcus (1978)] replaces the Gaussian
domination argument of Alexander and Pyke. Indeed a (longer) proof of Theo-
rem 3.3 is available using either Gaussian domination or a sub-Gaussian in-
equality; however, these methods do not give the exponential probability bound
of Theorem 3.4.

Another generalization is the study of the S,-process, as defined in (5.1), with
the V.’s no longer assumed to be independent. This would involve the assump-
tion of a mixing condition on the f;’s. Goldie and Greenwood (1986a,b) have
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considered problems of this nature for partial-sum processes composed of ran-
dom masses attached to fixed lattice points.

Due to the second moment conditions imposed upon the process
{f(s,+): s € 8}, all S,-processes considered have limiting Gaussian distributions.
It would be of interest to consider

Si(s) =n"V* 3 f(s, V), forses,
i=1

where each f(s, +) is in the domain of attraction of a stable law of exponent a. In
the context of set-indexed partial-sum processes consisting of random masses
attached to fixed lattice points, Bass and Pyke (1985) prove a uniform central
limit theorem for a problem of this nature. Their work suggests that the metric
entropy condition imposed on S depends upon the value of a.
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