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A CENTRAL LIMIT THEOREM FOR STATIONARY p-MIXING
SEQUENCES WITH INFINITE VARIANCE!

BY RicHARD C. BRADLEY

Indiana University

A central limit theorem is proved for some strictly stationary p-mixing
sequences with infinite second moments. The condition on the tails of the
marginal distribution is the same as in the corresponding classic result for
ii.d. sequences. The mixing rate is essentially the slowest possible for this
result.

1. Introduction. Khinchin (1935), Lévy (1935) and Feller (1935) showed
that for some sequences of i.i.d. random variables with (just barely) infinite
second moments, the partial sums are attracted to a normal law. A convenient
reference for this result is Ibragimov and Linnik (1971), page 83, last four lines,
and page 85, Theorem 2.6.3. Lin (1981) extended this classic result to some
strictly stationary m-dependent sequences. Samur (1985), Corollary 3.3, extended
it to some strictly stationary sequences which are ¢-mixing with a polynomial
mixing rate, with the random variables taking their values in a separable Hilbert
space. The purpose of this note is to extend this classic result to some strictly
stationary sequences of real-valued random variables which are p-mixing with a
certain logarithmic mixing rate.

A number of other papers have been devoted to convergence in distribution
for mixing sequences of random variables when second moments are not assumed
to be finite. For stationary sequences, limit theorems involving the attraction of
the partial sums to nonnormal stable laws can be found, e.g., in Davis (1983),
Samur (1984) and the survey by Philipp (1986). For stationary ¢-mixing se-
quences, the attraction of “trimmed” partial sums to normal laws was studied by
Hahn, Kuelbs and Samur (1987). For ¢-mixing arrays of random variables,
attraction of the row sums to infinitely divisible laws (including special condi-
tions for attraction to normal laws) was studied in, e.g., Bergstrom (1972),
Krieger (1984) and Samur (1984, 1985).

Suppose (X, k € Z) is a strictly stationary sequence of real-valued random
variables on a probability space (2, #, P). For —o0o <J <L < o0 let FF
denote the o-field generated by (X, J < k < L). For any two o¢-fields &/ and %,
define the “maximal correlation”

o(, &) = sup|Corx(f, g)|,
real f € Z)(Z), realg e L(%).

For each n € N define the dependence coefficient p(n) = p(F°,, %>). The
stationary sequence (X,) is said to be “p-mixing” if p(n) - 0 as n — oo.

Received March 1986.

1This work was partially supported by NSF grant DMS-84-01021.

AMS 1980 subject classifications. Primary 60F05; secondary 60G10.

Key words and phrases. Strictly stationary, p-mixing, infinite variance, central limit theorem.

313

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to éﬁ%
The Annals of Probability. STOR ®

Www.jstor.org



314 R.C. BRADLEY

In the statement of our main result we shall use the following notation: The
partial sums of our given sequence (X,) are denoted by S, = X, + --- +X,,.
Indicator functions are denoted by I(-). Given a function g: [0, c0) — [0, o) such
that g(x) > 0 for all x sufficiently large, we say that g(x) is “slowly varying” as
x> o0ifVit>0,lim, , g(tr)/g(x) = 1. Our main result is as follows.

THEOREM 1. Suppose (X,, k € Z) is a strictly stationary sequence of
nondegenerate real-valued random variables. Suppose that

(1.1) H(c) = EX(X,| < c) is slowly varying as ¢ = o,
(1.2) EX,=0,
(1.3) p(1) <1,
and
(1.4) 2 p(2") < .
n=1

Then there exists a sequence (a,, n € N) of positive numbers with.a, - © as
n — oo, such that S,/a, - N(0,1) in distribution as n - .

In the case EX?Z < oo this result, under the same mixing rate (1.4), was
established by Ibragimov (1975), Theorem 2.2 [with (1.3) replaced by an essen-
tially weaker assumption]. Our attention here is on the case EX?Z = oo. The
assumption (1.1) is equivalent to

lim ¢’P(\X,| > ¢)/EX3I(X,| < c) =0,

and (in either form) it is precisely the assumption used in the classic CLT for
ii.d. r.v.’s with infinite second moments. It implies that E|X,|* < oo for every a,
0 < a < 2, a fact which (for a = 1) was implicitly used in the assumption (1.2).
See Ibragimov and Linnik (1971), page 83, last four lines, and page 84, Theorems
2.6.3 and 2.6.4. The condition (1.3) is a simple and not too restrictive condition
whose purpose is [with the assistance of (1.4)] to insure sufficient “growth” (in
probability) of |S,|. The mixing rate (1.4), used by Ibragimov (1975), Theorem
2.2, as noted above, is essentially sharp, even in the case of finite second
moments. In Bradley (1987), Theorem 2, a strictly stationary sequence (X}) is
constructed with EX? < co and VarS, » o0 as n — oo, with p(1) arbitrarily
small, with p(n) — 0 at a rate that is essentially arbitrarily close to (1.4), such
that S, is partially attracted to a nondegenerate nonnormal law. Under stronger
“moment” assumptions than just second moments, it is fairly well known what
mixing rates for p-mixing will insure the CLT; cf. the CLT’s in Ibragimov (1975),
Theorem 2.1, and Peligrad (1987) and the counterexamples in Bradley (1987).

Theorem 1 will be proved in Section 3, after some preliminary work is done in
Section 2.

The following notation will be used: The greatest integer < x will be denoted
by [x]. Terms like a, will be written as a(bd) when that is needed for typographi-
cal convenience. The notation a, ~ b, will mean lim,_, a,/b, =1, and the
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notation a, < b, will mean a, = O(b,). Random variables are real unless
specified otherwise. )

2. Preliminaries. In this section we shall give some lemmas that will be
used in Section 3 in the proof of Theorem 1. The first is a special case of Peligrad
(1982), page 973, Lemma 3 4.

LEMMA 2.1. Suppose (r(n), n € N) is a nonincreasing sequence of nonnega-
tive numbers such that YX_,r(2") < wo. Then there exists a positive con-
stant D = D(r(1), r(2),...) such that the following holds:

For every sequence Y,,Y,,...,Y,, of square-integrable random variables such
that the condition

Vj,nsuchthatl<j<j+ n<m,
p(o(Yl,..., Y;-),a(YjM,...,Ym)) <r(n),
holds, one has that
Var(Y, + Y, + --- +Y,,) < Dm max Var(Y,).
1<k<m

Here the notation o( - - - ) means the o-field generated by ( - - - ). In her proof
of this result, Peligrad gives an explicit value of such a constant D, namely
D == 8000I1%_,(1 + r([2"/%])). For stationary sequences we need a similar bound
in the opposite direction, and to avoid trivial counterexamples this will require
the extra condition r(1) < 1. The existence of such a bound will be established in
Lemma 2.3 below; Lemma 2.2 will be important in the proof of Lemma 2.3.

LEMMA 2.2. Suppose (r(n), n € N) is a nonincreasing sequence of nonnega-
tive numbers such that r(1) <1 and lim,_, r(n) = 0. Suppose A > 0. Then
there exists a positive integer N = N(A, r(1), r(2),...) such that the following
holds:

For every strictly stationary sequence (X,, k € Z) of square-integrable ran-
dom variables such that the condition

Vnx>1, p(n)<r(n)
holds, one has that
(2.1) vn>N, VarS,>AVarX,.

ProOOF. Suppose (r(n), n € N) and A are as in the hypothesis of Lemma 2.2.
Our first task is to define the positive integer N = N(A4, r(1), r(2),...).
First, let J be a positive integer such that

(2.2) Jr/(J*+ J) > r(1)
and
(2.3) () <12,

Let ¢ > 0 be such that
J? — 4J%

(24) (JE+J) + 6J%

r(1).
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Define the positive number

(2.5) B=2(AY% + 2J)%.
Let L be a positive integer such that

(2.6) (L - 1)e/50 > B.
Let & > 0 be such that

(2.7) L% < 1.
Let M be a positive integer such that

(2.8) r(M) < min{§, ¢,1/50}.
Finally, let N be a positive integer such that

(2.9) N > max{LM,2B?}.

Now suppose that (X,) is strictly stationary and satisfies the conditions
specified in Lemma 2.2. Our task now is to prove that (2.1) holds for this
sequence.

The case Var X, = 0 is trivial. Let us assume Var X, > 0. Without loss of
generality we assume that

(2.10) EX,=0 and EXZ=1.
To prove (2.1) we first need to prove a preliminary statement.

CLAIM 0. There exists n,1 < n < N, such that VarS, > B.

ProOF. For each [ € Z define the r.v.
Y, = Xyg-vyr1 + Xug-ny+2 + -+ + Xpge

Then the sequence (Y;, I € Z) is strictly stationary. [The notation p(n) and S,
will, of course, continue to refer to the original sequence (X}).] We shall divide
our argument into three cases.

Case I. VarY, <1/100.
We shall first show by induction that V j = 0,1,2,...,

(2.11) VarS(27/) > 2772,

First, (2.11) holds for j = 0 by (2.10).
Now suppose j > 0 is any integer satisfying (2.11). Then

IS@71)ll2 2 11S(27) + S(27** + M) — S(2/ + M),
—1IS(@27 + M) — S(27)Il, - IS(27*") — S(2/** + M),
> (IS(27) + S(27*! + M) — S(27 + M), — 2|yl
> |1S(27) + S(27** + M) — S(2/ + M)||, — 1/5.
Now by a simple argument and (2.8),
Var(S(27) + S(2/** + M) — S(2/ + M)) > [2 — 2r(M)]VarS(2/)
> (1.96)Var S(27).
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Hence [since ||S27)||, = 2/ > 1]

1827 M)llp = (14)IS(27)ll2 — 1/5 = (1.2)I1S(27) ;-
Hence Var S(2/*1) > 2/2Var §(2”/) > 2U+V/2, This completes the induction step.
Hence (2.11) holds for all j > 0 by induction.

Now B > 1 by (2.5). Let m be the positive integer such that B2 < 2™ < 2B2,
Then 2™ < N by (2.9), and Var S@2™) > 2™/2 > B by (2.11). Thus Claim 0 holds
(with n = 2™) for Case L.

Case II. VarY, > 1/100 and Corr(Y,, Y;) < —1/2 + &. Define the r.v.’s

V=dJdY, +(J-1)Y,+ --- +1-Y,
and
We=dJdYy+(J-1)Y_,+ -+ +1-Y_,,,.
Then
VarV = E I2VarY, + 2 Z I(1-1)Cov(Y,,Y,)

=1

+2Jz_:1 Y I(1- u)Cov(Y,,Y,)

u=2l=u+1

< (Vary,) [Z i (l—1)(—1/2+e)+J4r(M)]
1=2

=1

J J
= (Vary,) [Z Z (l—l)e+J4r(M)]
-1

< (VarYp)[J(J + 1)/2 + 3J%],

where the last step holds by (2.8). Also, clearly Var W = Var V.
Now Cov(V, W) = J2Cov(Y,, Y;) + Z, where Z is the sum of J2 — 1 terms,
each of the form J,J,Cov(Y,,Y,), where 1 < ;, J, < J and |u — v| > 2. Hence

Cov(V, W) < (VarY,)[J2(=1/2 + &) + J*r(M)]
< (VarYp)[-J2%/2 + 2J%],
again using (2.8). Putting all this together, we obtain
—J? + 4J%
JTrDrese - "W

by (2.4). Hence p(1) > r(1), but this contradicts the specified restrictions on (X})
in Lemma 2.2. Consequently, Case II is vacuous.

Corr(V, W) <

Casg III. VarY, > 1/100 and Corr(Y,, Y;) > —1/2 + &.
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Then by (2.8), (2.7) and (2.6),
L
Jj=1
= LVarY, + 2(L — 1)Cov(Y,, Y,)
+ Y Cov(Y;,Y,)
1<j,k<L
|J—k|=2
> (VarYp)[L + 2(L — 1)(=1/2 + &) — L?*r(M)]
> (Var Y,)[1 + 2(L — 1)e — L2%]
> (1/100)[2(L — 1)e]
> B.

Since ML < N by (2.9), Claim 0 holds for Case III (with n = ML). This
completes the proof of Claim 0. O

Now let us complete the proof of Lemma 2.2. Using Claim 0, let m < N be a
positive integer such that Var S, > B.
Suppose n > N. Then

ISallz 2 1S + (Sptg = Sue)llz = I1Smss = Snllz = 1S, = Syl
2 IS, + (Spig = Sue)llz — 2,
by (2.10). Now, by (2.3) and (2.5),
Var(S,, + S,,,— S,.s) = VarS,, + Var(S,,, — S,..,)
—2r(J)(VarS, ) *(Var(S,, = S,.)) 7
2 (1 - r(J))[VarS, + Var(S,.; = Spss)]
> (1/2)B
= (A2 + 2J)°
Hence ||S, ||, > (A2 + 2J) — 2J = A/ that is, Var§, > A. Since n > N was
arbitrary, (2.1) holds [by (2.10)]. This completes the proof of Lemma 2.2. O

LeEmMA 2.3. Suppose (r(n), n € N) is a nonincreasing sequence of nonnega-
tive numbers such that r(1) < 1 and ¥2_,r(2") < oo. Then there exists a positive
constant C = C(r(1), r(2),...) such that the following holds:

For every strictly stationary sequence (X,, k € Z) of square-integrable ran-

dom variables such that the condition

Vrn>1, p(n)<r(n)
holds, one has that
(2.12) Vn>1, VarS,> CnVarX,.
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PROOF. Suppose (r(n), n € N) is as in the hypothesis of Lemma 2.3. Our
first task is to define the positive constant C = C(r(1), r(2),...).
First, let ¢, 0 < ¢ < 1/2, be such that

(2.13) [20 - )] — e > 23,
Let L be a positive integer such that

(2.14) r([25/¢]) <.
Let A > 0 be such that

(2.15) 2-2L/6 /A2 < g,

Define the positive integer N by N := N(A, r(1), r(2),...) from Lemma 2.2.
Define the positive integers K, K,, K,,... by K, = [2(L+)/6],
Define the positive constant

(2.16) B= l]j) [1 - r(K,)][1 - 2- %%

[Recall that ¢ < 1/2 and r(1) < 1.]
Finally, define the positive constant C by

(2.17) C =min{A/N?, AB/(2N)}.

Now suppose that (X,) is strictly stationary and satisfies the conditions
specified in Lemma 2.3. Our task now is to prove that (2.12) holds for this
sequence.

The case Var X, = 0 is trivial. Let us assume Var X, > 0. Without loss of
generality we assume that

(2.18) EX,=0 and EX}-=1.
By the definition of N we have
(2.19) Vn>N, ES:>A.

If n> Nand m =2n or 2n + 1, then

1Snll2 = IS, + S2n+K(0) - n+K(0)||2 - "Sn+K(0) =Sl = IS, — S2n+K(0)"2
2 [2(1 - r(Ko))]1/2||Sn||2 - 2K,
> [2(1 - )]2IS, |l — 2K oA ™2, |1,

> [(2(1 - )" - e]US,1l,

> 23|18, ||,

by (2.18), the definition of K|, (2.14), (2.19), (2.15) and (2.13). Now for any j > 0
and any m, 2/N < m < 2/*!N, one can define the integers my, m,,..., m; such
that m; = m and (if j = 1) [m;/2] = m,_,,V i = 1,..., j; these integers satisfy
2'N <m; < 2'*!N,V i=0,..., j. Therefore by (2.19) and repeated applications
of (2.20) one has

2.21 Vj>0,Vvme {2N,...,2/*IN - 1}, S, ||, > 2773412,
mll2

(2.20)
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If j>0, 22N<n<2/*!N, and m=2n or 2n + 1, then by (2.18), the
definition of K}, (2.21) and (2.15), one has that

1Sallz 2 1S, + Soms xisy = Swrcillz = ISus x5y = Sallz = 1S = Som kil
> [2(1 - #(K;))] 1S, - 2K,
> [2(1 - r(K,))] 1S,
—-9. 2(L+j)/6(2j/3Al/2)_1||Sn||2
> [[2(1 - #(K))]"” - 2777210,
> [2(1 - r(K))]’[1 - 277751118, 1.,

where in the last step we are using the fact r(K ) <1r(Ky) <e<1/2 [see
(2.14)]. Consequently,

Vj=0,Vme{2'N,...,2/*IN - 1},

(2.22)

j-1
(2.23) ISl = 27724V TT [1 - r(K)]"/?[1 — 27+/%]
i=0

> 2//2( AB)"2.
Here the first inequality is derived from (2.19) and (2.22) in the same way that
(2.21) was derived from (2.19) and (2.20); and the second inequality comes from
(2.16). By (2.23) we have that

Vj>0,Vne{2N,...,27%'N - 1},
(2.24)

n~'VarS, > (2/+'N)"'(2/AB) = AB/(2N).
Also, if 1 <n<N-1, then Nn> N and VarSy, < N?VarS, and hence

n~'VarS, > N"'N~?VarSy, > N~%4 by (2.19). This and (2.24) and (2.17) to-
gether imply (2.12). This completes the proof of Lemma 2.3. O

The next three lemmas are elementary.

LEMMA 24. If Vis a bounded random variable, then
E min{|V - EV]%,|V - EV)®} < 4(EV)® + 8E min{V2,|V}3}.

PROOF. Suppose x and r are real numbers. If |x| < |r|, then min{|x — r|?,
lx — r®} < Jx — r* < 4r% If |x| > |r|, then min{|x — r?, |x — 7|3} <
min{4x?,8|x|*}. In either case, min{|x — r|?, |x — r|3} < 4r? + 8 min{x2, |x|3}.
Letting r = EV and x = V() for sample points « € Q and taking expectations,
we obtain Lemma 2.4. O

The next lemma holds by Withers (1981), page 512, Theorem 1.1, and trivial
arithmetic.
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LEMMA 2.5. Suppose &/ and # are o-fields, V and W are complex-valued
random variables such that V€ Zy() and W € Z(#), and y and z are
complex numbers. Then |[EVW — EVEW) < p(&Z, )|V — yll2l|lW — 2||5.

LEMMA 2.6. If ¥;, Yoy » Yms 215 295+ -+ » 2y @re complex numbers in the closed
unit disc, then

m
< Y -zl
k=1

m m
]._ka_ l_[zk
k=1 k=1

The proof is a trivial induction argument.

3. Proof of Theorem 1. Suppose (X,) is a strictly stationary sequence
satisfying the hypothesis of Theorem 1.
It follows from (1.1) that lim, ,  x~2H(x) = 0. Let M* be a positive integer
such that
supx~2H(x) > 1/M*.

x>0
For each n > M* define the positive number
(3.1) t, =sup{x > 0: x ?H(x) > 1/n.}.

As in the classic i.i.d. case [under (1.1)], these are the values at which the X,’s
will be truncated in our proof. We need a few standard elementary properties of
these t,’s; for the reader’s convenience, we shall quickly give standard proofs of
these properties here.

Note that by (3.1),

(3.2) t, — oo monotonically as n — 0.

Ateach ¢ > 0,lim, , ._H(x) < lim, _, ., H(x) [both limits exist, and the latter
one is H(c)], and hence lim, , ,_x~2H(x) < lim__, .,x~2H(x). This and (3.1)
together imply, by a trivial argument,

(3.3) Vnx>M*, t;2H(t,) =1/n.

Next we need a couple of lemmas.

LEMMA 3.1.
(2) lim nP(X,| > t,) =0
and "
(b) lim n/2(H(z,)) " E\XI( X, > £,) = 0.
PrOOF. Let ¢ 0 < & < 1, be arbitrary but fixed. It suffices to prove that
(34) limsupnP(X,| > t,) < e
and e
(3.5) lim sup n'/2( H(¢,)) " E|Xo|I(X,| > t,) <.

n— oo
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Let a >0 be such that aZ%,27(1 + «)’ < e Let c,> 0 be such that
V ¢ 2> ¢y, H(2c) <1 + a)H(c). For each ¢ > ¢, we have by induction that V-
J =1, H2%) < (1 + a)’H(c). Hence V ¢ > ¢, Vj=0,

E|Xo|*I(27% < |X,| < 27*%) = H(2/*'c) — H(2%)
< aH(2%) < a(1 + a)’H(c).
For each n > M* such that ¢, > c,,

P(X,| > t,) = ¥ P(2%t, < |X,| < 2/*t,)
Jj=0

< i (27¢,) E\X2I(2%t, < |1X,| < 2/+1¢)
Jj=0

< f (27¢,) "a(1 + «)’H(2,)

< et;?H(t,)

=¢/n,
by (3.3). Hence (3.4) holds.
For each n > M* such that ¢, > ¢,

E|X,|I(X,| > t,) = ZEIXoII(Wt < |X,| < 27%1,)

j=0

[
< L (2) EIXLI < 1K) < 272,)

< Z (2’t,) 'a(1 + a)’H(t,)

<et;'H(t,).
Hence by (3.3) one has (3.5). This completes the proof of Lemma 3.1. O

LEMMA 32. Asn - oo,
Emm{ X3I( X < t,) ’ |1 X0’ 1(1 X,| < tn)} _ (l)
nH(t,) n®?H¥%(¢,)
PRrROOF. Suppose 0 < ¢ < 1. Then by (3.3), for all n > M*,
[Lhs. of (3.6)] < n=32H=%2(¢,)E| X ’I(1 X, < ct,)
+nT'H™Y(¢,)EX2(ct, < | X,| < t,)
< n 3?H%2%(t,)ct, EXZI(X,| < ct,)
+n~H™Y(t,)[H(t,) — H(et,)]
= (¢/n)H™(t,) EXJI(X,| < ct,)
+n"H™\(t,)[H(¢,) — H(et,)]
< (e/n) + n'H(t,)[H(¢,) - H(ect,)].

(3.6)

n .
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Hence [Lh.s. of (3.6)] < 2¢/n for all n sufficiently large, by (3.2) and (1.1). Since
¢ can be taken arbitrarily small, Lemma 3.2 follows. O

Recall that E|X,| < oo [a simple consequence of (1.1), as mentioned in Section
1]. By (3.2) and (1.2),

(3.7) lim EX,I(|X, <t,) =0.
n— oo

It follows that
(3.8) Var X, I(|X,| < ¢,) ~ H(¢,), asn— oo.

This completes our review of elementary properties of the ¢,’s. Now we start the
main part of the proof of Theorem 1.

Define the positive "constants C := C(r(1), r(2),...) and
(39) D= D(rQ1), r(2),...) from Lemmas 2.3 and 2.1, with r(n) :=
p(n),VnrneN.

[Recall (1.3) and (1.4).]
Define the following random variables:

Vin>M*VkeZ, X" =XJI(X,<t,)—EXI(|X, <t,);
and
Vn>M*VmeN, S®:=X"+XM+ - +XP.
Note that by the definition of C and D in (3.9),
(310) Vn=M*VmeN, Cm|X{|}=<IS{I3< Dm|| X§™)12%;

and
V n > M*,V finite nonempty sets S C N,
(311 % x| < D (card S)IX{IE.
keS 2
For each n > M* define the number
(3.12) Ay = 1S
By (3.10) and (3.8),
(3.13) A, < n?HY*(t,) < A,, asn— .

In particular, A, - oo as n — oo. Hence, to prove Theorem 1 it suffices to prove
that S,/A, — N(0,1) in distribution as n — oo.
By Lemma 3.1(a),

lim P(|X,| > ¢, forsomek=1,...,n) =0.
n—oo
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Also, by (1.2), (3.13) and Lemma 3.1(b),

n
n— oo k=1
Hence, to prove Theorem 1 it suffices to prove that S{®/A, — N(0,1) in

distribution as n — o0.
To prove Theorem 1 it suffices to prove that

VteER, lim E(exp[itS{™/A,]) = exp(—#%/2).
n—oo

This limit holds trivially for ¢ = 0, so it needs to be proved only for ¢ # 0.
Let T # 0 be an arbitrary but fixed real number. Let &€ > 0 be arbitrary but
fixed.

To prove Theorem 1 it suffices to prove that 3 N* > 1 such

B9 that v n > N, |EexpliTS("/4,] - exp(~T%/2)| = e

To carry out this proof, our first step is to define a positive integer N*. This
will require the definition of some other parameters.
Let J be a positive integer such that

(3.15) T2D f:lp([Z'Hj/z]) <¢/6,
(3.16) 1-¢/|6T| < Jf[l(l - p([27+72]))
and

(3.17) ,f[l(l + p([27+72])) <1 + ¢/|6T).

These conditions are somewhat redundant, but that is harmless.)
Define the positive integers K; < K, < K; < --- by

(3.18) K, = [27+72],

Let p* be a positive integer such that

2D/2 0 ) 1/2
(319) Cl—ﬂ(;)—fﬁ (ngzJ—J/Z) < £/|6T|
Let L* be a positive integer such that
(3.20) vj>2l, 1-T2/(2j) <1
and

|[1 = 72/@2))]’ - exp(-T%/2)| < e/6.
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Now, finally, let N* be a positive integer such that

(3.21) N* > M*,
(3.22) N* > (2p*) - 2%,
(3.23) V>N | X§), >0,
and

128( p*)*T?

V n>N*, [EX,I(X, < ¢,)]”

Cn|| X{™13
N 400( p*)*max{T?,|T))
(3:24) min{C, C¥?}

 E mi XSI(Xo| < 8,) 1X’I(X| < t,)
nlX§UN T n¥AXEN3

< e/(6n).

Condition (3.21) insures that the r.v.’s X{® and S{” are defined V n > N*.
Condition (3.23) is justified by (3.2) and our assumption (in Theorem 1) that X,
is nondegenerate. To justify (3.24), first note that by (3.8) one has that (3.6) in
Lemma 3.2 remains valid if H(¢,) and H3?(¢t,) there are replaced by || X{™||2
and || X§™||3; this and (3.7) and (3.8) together imply that in (3.24) the Lh.s. is
o(1/n) as n = co. (Remark: It is easy to see that in fact. C < 1 and hence
min{C, C%/2} = C3/2, but this is not important.)

Let N be an arbitrary but fixed integer such that N > N*. Referring to
(3.14), we see that the following is true:

To prove Theorem 1 it suffices to prove that
|E exp[iTS{V/AN] — exp(—T?%/2)| < e.

To prove this inequality we shall use a blocking argument. This will require
the definition of more parameters.
Referring to (3.22), let L be the positive integer such that

(3.25)

(3.26) p* < N2t < 2p*.
Note that [by (3.22) and the fact N > N*]

(3.27) L>L*

Let p be the positive integer such that

(3.28) p-2!<N<(p+1)-2L
Note that by (3.26) and (3.28),

(3.29) p* < p <2p*.

Let us partition N into disjoint blocks of consecutive integers, leaving no gaps
between the blocks. The order of the blocks is G(1), G(2), G(3),..., and the
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cardinalities will be
p, if jisodd;
(3.30) card G(j) = { K,, where ! is the positive integer such that j/2! is
an odd integer, if j is even.

Henceforth, we shall deal only with the blocks, G(1), G(2), G@3), ..., G(2L*! — 1).
For each I =1,..., L, there are exactly 2-~! (even) integers j € {1,2,3,...,
2L+1 — 1} such that j/2 is an odd integer. Hence

L
(3.31) card(G(2) UG(4) UG(6) U --- UG(2L*! - 2)) = Y 2l K,

=1

Hence by (3.28) [and (3.30)],

L
N<2p+(2t-1)=2p + Y okt
=1

L
<2ip+ Y 2tk
(3.32) P
= card(G(1) UG(2) UG(3) U --- UG(2L*! - 1))
L
<N+ Y 2K,
=1
[where the last step comes from (3.28)]. We shall come back to (3.31) and (3.32)
later on.
For each j=1,2,...,2L*1 — 1 define the random variable
U= T X,
keG())
In what follows, we shall work mostly with the r.v.’s U; [also denoted U(j)] for
odd j. The following (perhaps peculiar) notation will be helpful: For even
positive integers j; and j, such that 0 < j, <j, < 2L+, define the r.v.

V(i o) = U(jy + 1) + U(jy + 8) + U(j, + 5) + -+ +U(j, — 1).

The sequence Uy, Uy, U, ..., U@2L*! — 1) is in general not stationary, but it
has a useful property [to be stated in (3.33) below] akin to stationarity. Suppose
l is any integer such that 1 </ < L. If 1 <j < 2/ — 1, then for the integer m
such that j/2™ is an odd integer, we have that m < I and hence (2! + j)/2™ is
an odd integer, and hence card G(2' + j) = card G(j) by (3.30). Consequently, if
we denote u = card(G(1) U G(2) U GB) U --- UG(2Y) and use the notation
u+ S:={u+ s: s €8} for sets S of positive integers, we have (by induction on
J)that G2' + j) =u+ G(j),Vj=1,2,...,2" — 1. In particular, if we denote

S=GQA)UGB)UGB)U---UG((2'-1)
and
S*=G2'+1)UGE2'+3) UG +5) U --- UG(2!*! - 1),
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then S* =u + 8, V(2,2 = L, X[V = ZkesXé’l’L, and V(0,2)) =
T, esX V). Because of the stationarity of the sequence (X{™), k € Z), this
implies the following property:

For each I=1,..., L, the random variables V(0,2‘) and
V(2,2!*1) have the same distribution.

If 1 < I < L, then the random variables V(0, 2") and V(2},2!*!) are “separated”
by the block G(2'), whose cardinality is K, [by (3.30)]. Hence, by (3.33), the fact
that V(0,2*1) = V(0,2") + V(2},2'*1), and a simple calculation,

(3.34) ViI=1,...,L, 2(1 - p(K))IV(0,2")2 < ||V(0,2"*")) 2
< 2(1 + p(K,))IIV(0,2%))3.

Similarly, using also Lemma 2.5 and the trivial inequality |e? — 1| < |6 for real
8, we also have

vi=1,...,L,VteR,
IEexp[itV(0,2’“)] — [ Eexp[itV(o, 2’)]]2|

(3.33)

(3.35) < p(K)E|explitv(0,2")] - 1’

< o(K,)E|tv(0,2Y) "
= p(K,)t*||v(0,2")|2
< p(K,)tD - 24 Uy13.

[The last step, ||V(0,2Y)|12 < D - 21-Y|U,|12, is easy to verify from the definition of
D in (3.9).] We shall come back to (3.35) later on. First, we need to get bounds on
the variances of some random variables.

In what follows, it should be kept in mind that ||S{™||, > 0 for all m > 1 by
(3.23), the fact N > N* and (3.10).

By (3.34) and induction [and the fact that V(0,2) = U],

2L[n (1- p(K,))]uuluz < V(0,25 )2

=1

L
< 2L[ Ma- p(K,»]nUluz,

and hence by (3.16), (3.17) and (3.18),
(3.36) 1 —¢/|6T| < ||V(0,25* 1)1/ (2%/%|Uyl) < 1 + &/16T].

Now by (3.31) and (3.11),

L
Uy + Uy + Ug + -+ +UERM - 2|13 < D( ) 2L—IK1)||X3N)||§-
=1
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Also, by (3.32), U, + U, + Uz + - -- +U@2L*! — 1) — S(™ is the sum of at most
Tk 2L~!K, distinct X{™’s, and hence

WU, + Uy + Ug + -+ + U2+ - 1) — SV)12

L
< D( )y 2L"Kz)||Xé">n§.
=1

Consequently,
IV(0,25*%) = SVl < Uy + Uy + Uy + - -+ +U(@2E+ - 1) - SVl
U + U+ Ug + -+ +U@2L - 2)),
L 1/2
P> 2L"Kl) 1 XEM),-
=1

Now ||Uy]|l; = C2p'/*| X{M||, by (3.10); and hence by (3.18), (3.19) and (3.29) we
have .

IV(0,25+1) = 8§V,

< 2DV?

L 1/2
(3.37) <2DY2. 2L ( IZ 27 2) ITllo/(CY2p?)
=1

< 287%||Uy | ¢/ 16T

Let us now turn our attention to characteristic functions. Using (3.12), we first
present a detailed version of (3.25).

To prove Theorem 1 it suffices to prove the following five
(3.38) .
statements:

(&) [Eexp[iTSIM/ISIVIl,] — E exp[iTSEV/(2121U,1, )] | < e/3,

®) | Eexp[iTS¢V/ (222U, )]

~Eexp[iTV(0,25*1) /(252U |1,)] | < e/8,
|E exp[iTV(0,25+1) /(222U

(C) . L oL

~ [Eexp[i(T/2"2)UNULI1,]]™ | < e/8,

(D) [[Eexpli(T/252)U U] 1™ - [1 - (1/2)T%/24] | < e/8,

and

(E) |[1 - (1/2)T%/24]* - exp(-T?/2)| < e/6.
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ProoOF OF (A). Using the trivial inequality |e? — e*| < |0 — ¢| for real 0
and ¢, we have

[Lhus. of (A)] < E|TSEV /IS N, — TS/ (252|Uy1, )|

Ty E|Sy")| ISEV Il
IS8z 2872\l

V(0,25 )l

1-——
282Uy,

s|T|-1~[

V(0,25 H)ll5 — I1SK Il
AP

|

v(0,2"*1) — S(V
sm-[ e I m) V112
1671 2272||U, I,
< |T) - [¢/16T| + ¢/16T1] = ¢/3,
by (3.36) and (3.37). O

Proor oF (B). Using (3.37) and arguing as in the proof of (A),

SV - v(0,25+!
T[N ( )]

lhs.of (B)] < E
lLba. of (B) 227Ul

ISEY — V(0,25 )l
2L2|U,

<|T| <¢/6. O

ProoF oF (C). Foreacht€ R and each I =1,2,..., L, by (3.35) and Lemma
2.6,

I[E exp[itV(O, 2l+1)]]2l‘_’ _ [Eexp[itV(O, 21)]]2L+1—l|
< 2L_lp(Kl)t2D . 21-—1"Ul”%
< 2"p(K,)£*DIU,I3-

Hence by induction, for each ¢,

|Eexp[itV(0, 2L+1)] — [Eexp[itV(0,2)]]2L|

L
< 2"*D|UyI3 X p(K)).
=1

In particular, letting ¢ = T/(2L/2||U,)|,) and keeping in mind that U, = V(0,2),
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we have by (3.15) and (3.18),

L
[Lhs. of (C)] < 2L[T2/(2LnU1n%)]DnUln%lle(K,)
L
=T?DY p(K,) < ¢/6. i
=1

Proor oF (D). First, for each 2 = 1,..., p, define the event F}, == {|X{V)| =
max, _ ;_,|X{™|}. To shorten the notation, define s:= T/(2L/2||U,||,). Note
that by (3.10) and the second inequality in (3.28),

s? < T?/(2"Cp|| X§M|13) < 2T2/(CN|IX§M|13).
By Lemma 2.4 [with V = sX I(|X,| < ty)], (3:29), (3.24) and (3.28), we have that
E min{|sU,|?, |sU,|*}

p
< ¥ EI(F,)min{|sU, %, sU,*)
k=1
p
<Y EI(Fk)min{|stI£N)|2, |st,£N)|3}
k=1
P
<p* £ EICE,Jmin((sX{OP, lX{V7)
k=1

p
<p® ¥ E min{|sX(V)?, |sX{V°}
k=1
= p*E min{|sX§V)%, |sX§™|°}
<p* [432[EXOI(|X0| < ty)]?
+8E min{sngI(|Xo| < ty), |3|3|Xo|3I(|Xo| < tN)}]

2
< (21”")4 . m[EXomXol < tN)]2
+ 8E min { 2T2XZI(X,| < t,) 2¥2T1\X, 11X, < ty) H
CNIXMI2 * C¥2NY2 XM}
128( p*)*T?

< ———_[EX,I(X,| < ty)]

400( p*)*max{T%,|T®} [ X2( X, < tn) 1Xo (1 Xo| < ty)
min{C, C%?} NIXMIE 7 N3 XN

<e/(6N) < ¢/(6-2L).
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By this equation and Billingsley (1979), page 297, equation (26.5), we have that
| E exp[i(T/2"2)Uy/ U] — [1 - (1/2)T%/2]|
=|[Eexp(isUy)] - [1 - (1/2)s%U413] |
< E min{|sU,|?, |sU,*}

<e/(6-20).

Hence by (3.20) [together with the fact 2% > 2" by (3.27)] and Lemma 2.6
statement (D) holds. O

Proor oF (E). Simply use (3.20) and (3.27). O
By (3.38) the proof of Theorem 1 is now complete. O

Note added in proof. The author has learned of three more references giving
central limit theorems for weakly dependent stationary sequences in the absence
of finite second moments: ‘

M. 1. Gordin (1973). Central limit theorems for stationary processes without
the assumption of finite variance. In International Conference on Probability
Theory and Mathematical Statistics, June 25-30, 1973, Vilnius. Abstracts of
communications 1, 173-174.

L. Heinrich (1982). Infinitely divisible distributions as limit laws for sums of
random variables connected in a Markov chain. Math. Nachr. 107 103-121.

Q. Shao (1986). An invariance principle for stationary p-mixing sequences with
infinite variance. Report, Department of Mathematics, Hangzhou University,
Hangzhou, People’s Republic of China.

The paper of Shao extends Theorem 1 to a weak invariance principle (under
the same hypothesis); it also shows that under extra “regularity” conditions on
the tail of the marginal distribution (which do not imply, and are not implied by,
finite second moments), the mixing rate in (1.4) can be relaxed somewhat.
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