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THE TOTAL VARIATION DISTANCE BETWEEN THE
BINOMIAL AND POISSON DISTRIBUTIONS

By J. E. KENNEDY AND M. P. QUINE
University of Sydney

The exact total variation distances are obtained between a binomial
distribution with parameters n and p and Poisson distributions with means
np and —nlog(l — p), for small values of p. It is shown that the latter
distance is smaller for 0 < p < ¢, and larger for ¢, < p < a},,, where as
n — o0, nc, - 1.596... and na,, - 3.414....

1. Introduction. Let X be binomial with parameters n and p and Y be
Poisson with parameter nv. We consider the total variation distance d(X,Y) =
Y{P(X =j) — P(Y =j)}, the sum being over those j for which P(X =) >
P(Y =), in two cases: » = p and » = —log(l — p) (= A, say), and denote the
two distances d(X, Y) by d, and d,, respectively. We derive the exact distance
for small values of p in each case and prove analogues to some of the asymptotic
results of Deheuvels and Pfeifer (1986). The problem of computation of d(X,Y)
is also discussed.

2. The Poisson approximation for the binomial distribution. We will
use the notation

L) = (F)p =) = (et j=0,m.

THEOREM 1. Forn>1and 0 <np <2 — /2,

(2.1) d,=fi(p),
and forn>1and np <1/(1 + p/12 + p%/2),
(2.2) dy=fi(A).

The equality in (2.1) can be replaced by > for n > 1 and np < 2, and that in
22)by > forn>1and 0 <p <1.

Proor. Clearly fo(p) <0 and f,( p) > 0 if and only if —(n — 1)log(1 — p) <
np. Now —(n—Dlogl —p)<(n—1pl-p/2)/Q—p)<np if np <1.
For n > 2, we use the fact that fy(p) < 0 if and only if A = log(1 — 1/n) +
(n - 2)og(l —p)< —np. Now A < —np+a+ b, with na =2np -1 —
(np)?/2 <0 for np<2— 2 and n% = (np)’— 1<0 for np <1//2, so
foa(p) <0 if np <2 — /2. For n> 3, we also need the following argument:
We have

f(p) <np{(n—j+1)1-p)"7" = n(1 - ple?}/{j!(1 - p)}
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with equality for j = 1,2. Now g(x) = x(1 — p)* — n(1 — p)e™"? has a unique
maximum and the preceding results imply g(1) > 0, g(2) < 0 and it is easily seen
that g(n) <0 for n > 3 and np < 1. Thus f(p) <0 for j =2,...,n, and (2.1)
follows.

Now consider (2.2). We have f(A) =0, and f,(A) = 0 from the standard
inequality (1 + x)log(1 + x) > x. For n > 2, we must see when f4(A) <0, or
equivalently when 1— 1/n < {(1 — p)log(1 — p)}2/p? which, using the in-
equality
(2.3) (1+x)log(1+x) <x+x%/2-2x3/6+x*/3,
is implied by np < 1/(1 + p/12 + p2/2). For n > 3 we must also check when
f{(A) <0 for j =3,..., n. But this is equivalent to

172}

i
=T togf1— =) < log(~(1 ~ p)log(t ~ p)) ~ Iok
i=1

and the left-hand side is easily seen to be decreasing in j so that fy(A) <0
implies f(A) <0, j=3,..., n. Thus we have established (2.2). The rest of the
proof is straightforward. O

3. Comparisons and computational aspects. In this section we give some
inequalities on the roots of those equations used for computing the total
variation distance for any values of n and p, and in addition use these to give a
precise comparison between d, and d,. For convenience of exposition we set
g;(p) =fiA), j=0,..., n. The following lemma is crucial.

LEMMA 3.1. Let0O<p <1landn=>"1. Then

(3.1) fo(p) < 0;
fi(p) = 0 has exactly one root a,, , and f/(a, ;) <0;

3.2
(38.2) f j(P) = 0 has exactly two roots denoted
69) s <y for J=23
. a”yj_1<a;l,j—1 forj=4:~-~,n_1,and

l=j—2, ) j=2y3,

fi(a,,) >0, fi(a,,) <0, {l=j-1, J=4,...,n—1;

(3.4) f.(p) = 0 has exactly one root a,, ,_, withf,(a, ,,) > 0;

835) a,,<a,,< - <@, ,_1, a ,<a. <a s< + <Ay o}
n,0 n,1 s n,0 n,1 n,3 s

(3.6) a,4<0,0<a,s<ai;

(8.7) &(r)=0, g(p)>0;

3.8) &;(p) = 0 has exactly one root b, ;_, and gj(b, ;_;) >0

: forj=2,...,n;

(3‘9) bn,O < bn,l < < bn,n—2;

(3.10) 0<a,o<b,o<a,;<a,,<b,,.
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Note that similar results are easy to compute for 2 < n < 6. We defer a sketch
of the proof of this lemma to the Appendix and concentrate here on its
implications: ‘

1. In calculating d,, (3.1)~(3.6) imply that d,, = fi(p) for 0 <p < a,,
j+e
Y i(p), a,;<p<a,;,i=01,
i=1 .

dP = J+1
Y i(p),  @n;<p<an =23,
i=2
and d, = Y2, fi(p) for a, s <p < a} . For computation purposes, the a, ;’s

are unnecessary: One simply adds up consecutive positive f,(p)’s.

2. Similarly, (3.7)—-(3.9) imply that d, = fi(A) for 0 <p < b,, and for k=
0,...,n—2,d, =23\ for b, , <p<b,,,, This leads to an elemen-
tary proof of the result [see Deheuvels and Pfeifer (1986), Theorem 1.3] that
as n — oo, np = a € (0, ),

1, al
2" Ta]t®

d, ~ -e

3. If n > 100 and np < 0.999, then np < 1/(1 + p/12 + p%/2) so (2.2) is satis-
fied. Because of (3.8), the fact (established directly) that g,(0.999/nr) < 0 for
n = 84,...,99 shows that (2.2) holds for np < 0.999 and n > 84. This method
will work with 0.999 replaced by any 6 < 1.

4. By looking at the explicit forms of d, and d,, for p in each of the intervals
implicit in (3.10), we have the following complement (in the iid case) to the
asymptotic result of Deheuvels and Pfeifer [(1986), Corollary 2.1]:

dy <d,, 0<p<e,
dy>d,, ¢, <p<al,
where ¢, € (a, ;,a,,)and as n > oo,
ne,—> 1+ (,2+1)"°-(2-1)""
5. It is straightforward to check that as n — oo,
na,,—>2- 2, na, ,— 2+ /2,

n,0
’

na, ;»i+2-y(i+2), na,,~>i+2+(i+2), i=12,

n,i

na, ;> i+1-/(i+1), na, ,—»i+1+ /(i+1), i>3,

n,i n,i
and .
nb, ;> i+1, 1>0.

6. Two of the best-known bounds available for d, are d, < 3p//(1 — p) = R,
and d, < (1 — e "P)p = B,, due to Romanowska (1977) and Barbour and
Hall (1984), respectively. The bounds are exhibited for the case n = 10 in
Figure 1.
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Fic.1. A=R,, B=B, C=d, andD = d,,.

APPENDIX

Proor orF LEMMA 3.1. Consider for j=1,...,n the function f*(p)=
Jf{(p)/(np)’. Clearly, f(p) and f*(p) have the same sign, and for j =
1,...,n—1,

(A1) fj*/(p) = f'njﬂf+1(p),
(A2) f7(0) <0, Jj=2,...,n, f+(1) <o, Jj=1,...,n—-1,
f¥(1) > o0,

and fy(p) = 0 has only one root, namely a, ,_, = log(n"/n!)/n, which lies in
(0,1). Now f* (a, ,_;) > n!n""(log(27n) — 2)/2 > 0 for n > 2. Thus using
(Al) and (A2) it follows that fy ,(p) has exactly two roots a, ,_,, @, ,_5 in
(0,1) such that a, ,_, <a, ,_, <a, , o Now consider f; ,(p). By (Al) we
know that f* ,(p) is increasing on (0, @, ,_,) and (a,, ,_»,1) and decreasing on
(an, n—2» a;z,n—2)‘ We claim f:—2(an, n—2) >0 and f:—-2(a;z,n—2) < 0. For other-
wise we must have f* ,(p) <0 for p € (0,1). Then by (Al), fF 4(p) is always
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increasing. However, f* 4 p) is negative at p =1. So this would mean

*_o(p) <O0for p €(0,1) as well. In view of (A1) and (A2) this argument can be
repeated for j = n — 4 down to j = 2. But that f}(1/n) > 0 is easily verified.
Thus we have a contradiction. Hence f;_,(p) has two roots a, ,_3, @, ,_3 in
(0,1) such that a, , 3<a, , ,<a,, 3<a,, 5 Clearly similar reasomng
yields (3.3). Since f(0) =0, f(p) has only one root in (0,1). Note that in
addition, we have the relationship

a <a,;<a <a, ; forj>3.

n, j—1 n,j-1

To complete the proof of (3.6) it suffices to show a,, < 3/n < a,, <3.5/n <
a5, which can be done by checking that f,(3/n) > 0, f4(3/n) > 0, {4(3.5/n) <0,
fs(85/n) <0, fs4/n)>0 and fy4/n)>0. Now f,3/n)=QQ—-1/n)---
(1 —4/n)1 — 3/n)""% — e~3 Taking logs and using x(1 + x/2)/(1 + x) <
log(l1 +x) <x(1 —x/2), -1 <x<0, gives f;(3/n) > 0. Similar arguments
prove fo(3/n) > 0 and similar but messier arguments using (2.3) prove the
remaining four inequalities.

Now consider (3.8)-(3.9). We show each g,(p) (2 <j < n) has at least one
root in (0,1) by checking that g,(p) changes sign. We use (2.3) to show
851/2n) <0, and g,1/2n) <0 for 2 <j<n follows by induction. Also
8,1 -1/n)y=Q1-1/n)"-(logn)"/n!>0and g(1 —1/n)>0for2<j<n
by induction. Now write g]( p)=Q1- p)"‘fnfh (p)/j. To establish that for
2<j<n, g{(p) has a unique root in (0,1), it sufﬁces to show that for any
b, ;o such that g(b, ;_,) = 0, we have A(b, ;_,) > 0, which can be done by
wrltlng h(b, ;_;)asa 'function of J, n and b ., j—2- Finally to prove b,; < b, .,
for j = 0, .;n—3 we show g;,4(b, ;.1) > 0. Now g;,4b, ;1) = 0 and it
follows that

gj+2(bn,j+1) = b,{+12+1{(n -1 (n-j-1)
—n(n = 1) (n=j - 2)/n
which is easily shown to be positive. The proof of (3.10) follows the same lines. O

j+2]<j+2>/<j+ 3)}
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