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STABILITY RESULTS AND STRONG INVARIANCE PRINCIPLES
FOR PARTIAL SUMS OF BANACH SPACE VALUED
RANDOM VARIABLES

By UwWE EINMAHL

Universitdt zu Kéln

A general stability theorem for B-valued random variables is obtained
which refines a result of Kuelbs and Zinn. Our proof is based on two
exponential inequalities for sums of independent B-valued r.v.’s essentially
due to Yurinskii and appears particularly simple. We then use our theorem to
prove strong invariance principles, LIL results and other related stability
results for sums of ii.d. B-valued r.wv.’s in the domain of attraction of a
Gaussian law. Most of these results seem to be still unknown for real-valued
r.v.’s,

1. Introduction. Let B be a real separable Banach space with norm || - ||.
Write Lt for log(¢ v e) and set Lyt = L(Lt) and Lyt := L(L,t), t > 0. Let X:
2 — B be a random variable defined on a p-space (2, &7, P). Let further {X,}
be a sequence of independent copies of X. Suppose that X satisfies the central
limit theorem, i.e.,

1 n
(1.1) Po 7 Y. X, converges weakly top = PoY,
n o

where Y: @ — B is a nondegenerate Gaussian mean zero random variable.

Let H, be the reproducing kernel Hilbert space of p and denote by K . the
unit ball of H,. Then K, is a compact subset of B, which plays a crucial role in
the subsequent compact law of the iterated logarithm (LIL) for partial sums of
iid. B-valued r.v.’s satisfying the central limit theorem (CLT).

THEOREM A [Goodman, Kuelbs and Zinn (1981) and Heinkel (1979)]. Sup-
pose that X satisfies (1.1). Then we have: With probability 1, {£7X,/ [2nL,n :
n € N} is relatively compact in B and its limit set equals K i

(1.2) iP{HX” > nLyn } < co.

It is now of great interest to find out whether related results can hold true
when X does not satisfy CLT, but it is still in the domain of attraction of a
Gaussian law, i.e.,

12 .
(1.3) Po . )X, converges weakly to p = P oY for some sequence a, 1 o0.

n 1
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It is always possible to choose the above sequence {a,} in a way such that
(1.4) b, = a,/Vn is nondecreasing,

which can therefore be assumed in the sequel.

Let b: [0,00) — [0,00) be the nondecreasing continuous function with
b(0) =0 and b(n) =b,, n € N, obtained by linear interpolation between the
integers.

Noticing that for real-valued random variables the CLT and the finiteness of
the second moment are equivalent, we see that Theorem A in this case is just a
refined version of the classical Hartman—-Wintner LIL. The more general ques-
tion in this setting, whether an appropriate LIL holds for random variables with
infinite variances, was studied by Feller (1968) and Kesten (1972). From their
work follows

THEOREM B. Let X: Q@ » R be a random variable satisfying (1.3) with
p = N(0,1) (standard normal distribution). Then we have: With probability 1,
{(XX,/ 2nLyn b(nL,n): n € N} is relatively compact in R (bounded in R) and
the set of its limit points is a nontrivial subset of K, = [—1,1], iff

(1.5) fp{pq > [nLynb(nLyn)} < oo.

In the two above-mentioned papers it was also discussed whether it is possible
to obtain LIL results with respect to norming sequences other than that one
considered in Theorem B. A basic result in this direction is the subsequent
Theorem C which can be obtained from Theorem 7 of Kesten (1972).

THEOREM C. Let X: @ » R be a random variable satisfying (1.3) with
p = N(0,1). Let {c,} be a sequence of positive real numbers such that c,/ Vn is
nondecreasing and

(1.6) ¢,/ nLyn b(nLyn) - .
Then we have: With probability 1,

lim sup =0 or =0

n—oo

n
ZXk/ Cn
1
according as LTP(|X| > c,} is finite or infinite.

Theorem C shows that there are no LIL results with respect to sequences {c,}
satisfying (1.6), but that it is still possible to obtain stability results for these
sequences.

Theorem C was later refined by Klass [(1976), (1977)]. From his work it
follows that this result remains valid for sequences {c,} satisfying instead of (1.6)
only

17 ¢,/ynLynb(n/Lyn) - 0.
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Since b is nondecreasing [see (1.4)], this clearly improves Theorem C.

It is now natural to ask whether an LIL can hold with respect to the norming
sequence {y2nL,n b(n/Lyn)}. This problem was partially solved by Klass who
was able to establish an analogue of Theorem B. However, similarly as in
Theorem B, the question remained open whether the limit set in this LIL equals
the unit interval. Kuelbs (1985) finally extended Klass’s LIL to the B-valued
case. He was also able to determine the limit set, thereby answering the above
question in the affirmative.

THEOREM D [Kuelbs (1985)]. Let X: @ — B be a r.v. satisfying (1.3). Then
we have: With probability 1, {X7X,/ 2nLynb(n/Lyn): n € N} is relatively
compact in B and its limit set equals K, iff

(1.8) ip{uxu > [nLnb(n/Lyn)} < co.

Moreover, Kuelbs obtained a functional LIL under assumption (1.8).

In our paper [Einmahl (1988)] we established a strong invariance principle for
partial sums of i.i.d. B-valued r.v.’s in the domain of attraction of a Gaussian law
implying a compact and a functional LIL with canonical limit set under condi-
tion (1.5), which is weaker than (1.8).

In the present paper we want to further discuss the problem of which regular
norming sequences one can obtain compact (functional) LIL’s. The starting point
of our investigations is a refined version of Theorem C being valid for sequences
{c,} satisfying, for some q € R,

(1.9) ¢,/ \nLynb(n(Lyn)?) - oo.

Our method of proof works for Banach-valued r.v.’s. Thus, we are able to
establish this refined version of Theorem C even in the infinite-dimensional
setting. Having obtained this result, it appears now reasonable to ask whether
LIL results for B-valued r.v.’s can hold with respect to the norming sequences
{y2nLyn b(n(Lyn)?)}. Our answer to this question is affirmative. In fact, we
prove somewhat more: strong invariance principles implying compact (func-
tional) LIL’s with respect to the norming sequences {y2nLyn b(n(Lyn)?)},
q €R.

2. The results. Let us first state our refined version of Theorem C.

THEOREM 1. Let X: @ — B be a r.v. satisfying (1.3). Let {c,} be a sequence
of positive real numbers such that c,/ Vn is nondecreasing and for some q € R,

(2.1) c,/nLyn b(n(LG)q) - 0.
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Then we have: With probability 1,

lim sup =0 or =

n—oo

n
ZXk/ Cn
1
according as YTP{||X|| > ¢,)} is finite or infinite.

Our next result contains the related strong invariance principles.

THEOREM 2. Let X: @ — B be a r.v. satisfying (1.3). Let g € R. If the

underlying p-space (2, o, P) is rich enough, one can find a sequence {Y,} of
independent copies of Y such that

(2.2) max iXk - b(n(LG)q)iYk = o( nLyn b(n(LG)q)) a.s.
iff
(2.3) iP{”X” > annb(n(LG)q)} < 0.

1

Combining (2.2) with the compact (functional) LIL for the sequence {Y,} of
ii.d. Gaussian mean zero random variables, we immediately obtain

COROLLARY 1. Let X: @ — B be a r.v. satisfying (1.3). Let ¢ € R. Then we
have: With probability 1, {£7X,/ [2nLyn b(n(Lyn)?): n € N} is relatively com-
pact in B and its limit set equals K, iff (2.3) holds.

Let Cg[0,1] be the space of all continuous B-valued functions on [0, 1],
endowed with the sup-norm. Define 7,: € — Cz[0,1] by

YX,, t=m/n,0<m<n,
(2'4) 17n(t) = 1

linearly interpolated elsewhere for ¢ € [0,1].

Denote by ¢, the canonical limit set in the functional LIL for the Gaussian r.v.
Y [cf. Kuelbs (1985), (2.6)].

COROLLARY 2. Let X: Q@ — B be a r.v. satisfying (1.3). Let ¢ € R. Then we
have: With probability 1, {n,/ (2nLyn b(n(Lyn)?): n € N} is relatively com-
pact in C5[0,1] and its limit set is X, iff (2.3) holds.

. We now consider some special cases of Corollary 1. If ¢ = 1, we obtain the
compact LIL with respect to the norming sequence y2nL,n b(nLyn) ~ @nr,n)
as proved by Einmahl (1988). If ¢ = =1, we obtain Theorem D. Finally,
applying Corollary 1 with g =0, we see that the compact LIL holds with
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norming sequence {{2nL,n b(nLyn)} as well as {{2nLyn b(n)}, iff
o0
(2.5) Y P{IX|| > JnLynb(n)} < o.
1

This is now an infinite-dimensional version of Feller’s LIL. Unfortunately, the
original result of Feller is in error. From Theorem 1 of Feller (1968), specialized
to r.v.’s in the domain of attraction of N(0,1), it would follow that one always
has an LIL with norming sequence {|/2nL,n b(rn)} when (1.5) holds. It was
however shown in Section 5 of Einmahl (1988) that this is not true . [See also
Kesten (1972), Remark 9.] As it now turns out, Feller’s result can be proved—at
least for r.v.’s satisfying (1.3)—under the more restrictive (and necessary) condi-
tion (2.5).

The proof of both Theorems 1 and 2 is based on the following general stability
result.

THEOREM 3. Let X: @ — B be a r.v. with E[||X||"] < oo for some 1 > 0.
Suppose that we have for some t, > 0,

limsupP{ iXk > toa(n)} < 1/17e%,
n— oo 1

where a: [1, ) — (0, 0) is a continuous function satisfying
(2.6) b(t) = a(t)/Vt is nondecreasing.
Then, if {c,} is a sequence of positive real numbers such that
(2.7) c,/n'3*? is nondecreasing for some & > 0
and for some p > 1 and all n > N,,

(2.8) c, > max{a(n(L3n)2), \/mb(n/( LG)p)},
we have

(2.9) limsup < ¢,(960 + 160p) a.s.

n— oo

¢! f.(Xk - E[X1{||X|| < ¢}])
iff |
(2.10) i:jp{uxu > ¢} < o0.

A closely related result is Theorem 5 of Kuelbs and Zinn (1983). This result,
}éowever, is only applicable to-sequences {c,} such that c,/n is bounded and
¢, 2 nLyn b(n/Lyn) for n > Nj. Therefore, it is neither possible to infer from
it a result like Theorem C nor is it possible to prove LIL results with respect to
the norming sequences {2nL,n b(n(L,n)?)} if ¢ < —1.
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The remaining part of this paper is now organized as follows: In Section 3 we
prove Theorem 3 and from it we then infer Theorem 1. Our proof is based on two
exponential inequalities for partial sums of independent B-valued r.v.’s essen-
tially due to Yurinskii (1976). The first one is an infinite-dimensional version of
the Fuk—Nagaev inequality. Let us emphasize that the use of this inequality
enables us to give a much easier proof of Theorem 3 than the one given by
Kuelbs and Zinn (1983) for their weaker result. Qur proof even leads to simplifi-
cations in the real-valued case [cf. Feller (1968) and Kesten (1972)]. The second
exponential inequality—an infinite-dimensional Bernstein type inequality —is
decisively needed to handle sequences {c,} satisfying (2.8), but not (1.7). Some
technical lemmas used in the proof of Theorems 1 and 3 can be found in the
Appendix.

In Section 4 we prove Theorem 2. Using Theorem 3, we are able to reduce the
proof to the finite-dimensional case. Combining the multidimensional strong
approximation technique developed in our papers [Einmahl (1987a), (1987b)]
with a double truncation argument obtained from the proof of Theorem 3, we
obtain Theorem 2 for ¢ < 1. We finally prove this result for ¢ > 1 by an
application of Theorem 2 of Einmahl (1988).

3. Proof of Theorems 1 and 3. We first state the two exponential inequali-

ties needed in the proof.
Let Z,...,Z,: @ — B be independent random variables. Suppose that
E[|Z, + --- +Z,|1 < B, and that E[||Z;|*] < ¢?,1 <j < n.Put B, = ¥L{0s’.

J?

INEQUALITY 1. We have for t > 48,

A

INEQUALITY 2. Suppose additionally that
E|Z)™]/0?) < (m!/2)H™2, =3,4,....
max (E[IZ)"]/o}) < (m1/2) m

n

27

1

n
> t} <9-2% 3 Y E[1Z;)°] + exp(—t2/96B,).
1

Then we have for t > 48,,

P{
Proor. If t> 16(X7E[|IZ;|%1/B,)'/? V 4B,, we obtain Inequality 1 im-

mediately from Theorem 5.1 of Yurinskii (1976). .
If t < 16(X7E[||Z;|*1/8,)"/? we get, from the Markov inequality,

d

hence, Inequality 1 for ¢ > 48,.

n

2z

> t} < exp(—t%/16B,) V exp(—t/64H).
1

n

Xz

1

> t} <t8, < 256t L E[|1Z°],
1
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Inequality 2 follows from Theorem 2.1 of Yurinskii (1976), after some
straightforward calculations. O

We still need the following simple, but nevertheless useful lemma.

LEMMA 1. Let {X,} be a sequence of i.i.d. B-valued r.v.’s. Suppose
that {c,} is a sequence of positive real numbers satisfying (2.7) such that
YPP{|| X, || > ¢,} < 00. Then we have:

(i) Y e E I X IPL{I X, < ¢,}] < 0.
1
(ii) fc,:lE[uX,,ul{ecn <X <e}] <o, e€(0,1).
1
(iii) f‘,P{”Xn” >8c,} <0, 8>0.
1

PrOOF. (i) can be shown by the same argument as in Lemma 1 of Einmahl

(1988).
(ii) follows from (i) using the simple inequality

E[IX,1{ec, < | X, < c,}] < e 2%, 2E[IIX,IPL{l| X, | < c,}]

(iii) has only to be shown for 6 € (0,1). Since we have LPP{|| X,,|| > ¢,} < oo,
it suffices to prove LP{dc, < || X, || < ¢,} < oo. This follows immediately from

@ii). O

We now proceed to the proof of Theorem 3. W.Lo.g. we assume ¢, = 1. We put
a = 1/24 and we set
)

X; = X,1{1X, ]| < ac,/(Lyn)* ™77},
Xy = X {ac,/(Lyn)" P < || X,|| < ac,},
X =X 1{|X,| > ac,}, neN.
We further define the subsequences {m,}, {n,} by the recursion
my =1, my=min{m>m,_:c,>2¢c, },
k=2, np=m,,,—1, k>1.
It suffices to show that

n

Z(xy - E[x7])

my

> 40(1 +p)cnk} < o

(3.1) fp{ max
k=1

my<n<ny,
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and

n

Z(XJ, - E[Xf,])

my

> 2000nk} < 0

(3.2) i P{ max
k=1

mp<n=<n,

when (2.10) holds. :
This can be seen as follows: Using the Borel-Cantelli lemma and the defini-

tion of {m,}, we obtain from (3.1) and (3.2)

lim sup
(38.3) n— oo

<960 + 160p a.s.

' Y (X)+ X - E[X1{|| X|| < ack}])“
1

Since L7X,”” = O(1) a.s. [use Lemma 1(iii)], (2.9) follows from (3.3) provided that
we can show

(3.9 iE[Xl{uxu < acy)] - iE[xuuxn < &}] U = o(c,).

Employing Lemma 1(ii) and the Kronecker lemma, we immediately obtain (3.4)
from (2.10).

Moreover, it is trivially seen that (2.10) is necessary for (2.9).

We use Inequality 1 for the proof of (3.1), whereas the proof of (3.2) is based
on Inequality 2. In order to apply these inequalities we still need estimates for
E[|n(X/ — E[X/DIl] and for E[[E5(X} — ELX/DI], my < m < n < n,.

LEMMA 2. Under the assumptions of Theorem 3, we have form, <m < n <
n,, if k is large enough,

l] E["é(xj" - E[X/]) ‘H) <2c,,.

]SCn,

Proor. We show for n > n, (say),
n
X (X/+ Xy - E[X) + X/'])
1
} <.

|
i

Taking into account Lemma 2.7 from Chapter 3 of Araujo and Giné (1980), we
see that (3.6) implies (3.5). '

(3.5) m(E[ ¥ (x; - E[x/])

(3.6)

E(x; - B[x)))
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Since c,/a(n) — o0, (3.6) easily follows from Lemma A.1 because we have, for
sufficiently large n,

k

LX;

max P{
1

l<k<n

> acn} < 1/16e€”. o

ProoF oF (3.1). Using Lemma 2, we easily obtain from the Markov in-
equality if & is large enough,

n

(3.7) max P{ Y(x7 - E[X/])| = 200 +p)cnk} <1/10.

my<m=<n,

Employing Ottaviani’s inequality, we get from (3.7),

P{ max zn‘,(Xj" - E[XJ”]) > 40(1 +p)cnk}
(3.8) e
< (10/9)P{ Ek(Xj" - E[X/])] = 20(1 +p)cnk}.

Applying Inequality 1 with B, =2¢c, and of =4E[| X, ,/°], 1</<
n, — n,_,, we obtain

d

Since Xy_ lc,:kai,':,”kE [I1X/1’] < oo [use Lemma 1(i)], it suffices to show

ny,

X (Xy - E[X/])

my

> 20(1 + p)cnk}

ng ng
<2079 - 2. 8¢, 3 Y E[IX7)1°] + exp(—(l +p)’e?, 2E[||Xj"||2]).
m,, my,

(3.9) 1?—3 exp(—(l +p)2c,2,k f,E[llXj”Hﬂ) < .

To simplify our notations we set d; := ¢,/(L,j)**?/?, j € N. Using integra-
tion by parts, Lemma A.4 and noticing that we have by virtue of (2.6), for the
inverse function a™! of a, a ' (u) = u?/S(u), where S is nondecreasing, we
easily obtain, for sufficiently large J,

acj
E[I1X712] < o®d2P(|X,| > ad,} + 2/d'uP{||Xj|| > u) du

R 3S(ad;) + ./::ju‘IS(u) du < (1 + p)(Lgj)S(c;)

J

(1 +p)ciLyj/a™(c;).

IA
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Using the trivial inequality exp(—¢) < 2¢ 'exp(—t/2), t > 0, we infer, for
k > k, (say),

ny
exp(—(l +p)iec, ZE[IIXj”Ilz])
my,

ng ny
< ;2 Y E[I1X/)12]exp| - 4(1 + p)*e2, ZE[||X,-"||2])
my my

ng
< 48¢;2 LE[I1X/1°](Lany )" P exp( — 1(1 + p)a(c,,) /nuLsny)
my

g
< 48¢;* L E[I1X71].
my

[Notice that ¢, > a(n(Lsn)?), n > N,.]
Recalling Lemma 1(i), we see that (3.9) holds and our proof of (3.1) is
complete. O

Proor oF (3.2). Using the same argument as in the proof of (3.1), we obtain,
for sufficiently large &,

P{ max f(x;—E[X;]) 2200cnk}
(3.10) I
< (50/49)P{ f(X; - E[X/])| = 100c,,k}.
my
Set

o= [r/(Lona)’],  qu= [(ng = mus)/ml + 1,
Jrp—1

U=U(k)= ¥ (Xpui—E[X;]), 1<i<a,
(J=Dry

9 —1

Uy, = Up(k) = 24— ELX;D) - & U,

1

We now want to apply Inequality 2 with Z; = U;, 1 <j < q;, n = g,. Since
¢,/(Lyn)3*P/2 > a(n/(Lyn)PY for sufficiently large n, we obtain from Lemma
Al,

(3.11)  E[UI?] < 4-12%2 /(Lyn,) P =02,  1<j<gq,
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and

(3.12) max (E[||Uj||”']/oj2) <(m!/2)HP2, m=3,4,...,

where H,, := 12¢, /(L n,)1+p)/2,
We now get fr om Inequallty 2 (applied with 8, = 2¢, ) for sufficiently large ,

P{
< (Lnk) —1.05‘

When Y(Ln,) % < o0, we immediately have (3.2). But it may happen that
this series is not convergent. Therefore, we give a further bound for the above
probability.

Using Theorem 2.1, de Acosta (1981) and Lemma 2 above, we have, if % is
large enough,

/3
> lOOan} < exp(—1002c,2,k/1620j2) V exp(-100c, /64H,)
1

qr
LU
1

P{ %(X;—E[XJ!]) 2100c,,k}
SP{ §<X;_E[XJ!])’_ %(Xj’—E[Xj’])H 298%}

<4-98" 2c-2ZE[||X' E[X/]1?] <16-987%;” ZE[||X’||2]

<16-987"n, E[||X|"]c, Y < Cn\27",

where C is a positive constant, y :=n A 2. (Notice that Cp 2 2k=1c.) Set
== (k € N: n;, < 272} N, := N — N,. Then we have

0 ny

Y P{|X(x; - E[X/])| = 100c,,

k=k, my,
Y Cc-2724 ¥ (Ln,) ' < 0.
keEN, ’ kEN,

Recalling (3.10), we see that (3.2) holds. O
In order to prove Theorem 1, we need the following corollary to Theorem 3.

COROLLARY 3. Let X be a B-valued random variable satisfying (1.3). Let
t, > 0 be such that P{|Y|| > t,} < 1/17e% Then, for any sequence {c,} satisfy-
ing (2.7) as well as

(3.13) liminf(cn/‘/ann b(n/(L2n)p)) >1 forsomep >1,
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we have

1 n
—2X,

n 1

lim sup < £,(960 + 160p) a.s.

n—oo

iff TEP(IX] > ¢} < co.
Observing that condition (2.1) implies for any & > 0,
liminf(ecn/\/nL2n b(n/(LZn)p)) >1,
n—oo

where p == (—q) V 2, we see that Theorem 1 is contained in Corollary 3. [Notice
Lemma 1(iii).] Thus, it remains to show Corollary 3.

PROOF OF COROLLARY 3. We set a(t) := Vtb(t), ¢t > 1. Recalling (1.4), we
see that (2.6) holds. Moreover, (1.3) implies

LX,
1

From (1.3) it also follows that E[|X]|"] < o0, 7 < 2. Thus, all assumptions of
Theorem 3 are fulfilled. To prove Corollary 3, it suffices to show

n—oo

lim supP{ > toa(n)} < P{||Y|| = t,} <1/17e%.

(3.14) ynLyn b(n/(LG)p)/a(n(L3n)2) - 0
and
(3.15) éE[Xl{”X” <c}]|| =o(c,) asn— co.

(3.14) easily follows from the well-known fact that the function b is slowly
varying at infinity when (1.3) holds. (3.15) is an immediate consequence of
Proposition 2 of Einmahl (1988). O

4. Proof of Theorem 2. We prove
THEOREM 2'. Let X: @ — B be a r.v. satisfying (1.3). Let ¢ € R. Suppose
that LP(|| X|| > ynLyn b(n(Lyn)?)} < co. Then one can construct a p-space

(R, Hp, By) and two sequences of i.i.d. r.v’s (X,),{Y,)} with Pyo X, = Po X
and PyoY, = PoY such that

(4.1) f)fk - ib(k(L2k)")Y‘k

= o(\/nL2n b(n(L2n)q)) a.s.

Using analogous arguments as in Section 4 of Einmahl (1988), we infer, from
(*D),

(4.2) max ifk—b(n(szz)q)if}z

l<m<n

= o(‘/nL2n b(n(L2n)q)) a.s.
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Thus, we obtain from Theorem 2’ a particular p-space (£,, %, P,) such that
(2.2) holds for an appropriate construction. This seems to be still weaker than
Theorem 2, but the assertion follows from (4.2) by an application of Theorem 1
of Skorokhod (1976).

It remains to show Theorem 2’. To simplify our notations, we set for ¢ € R,

0,(q) = b(n(Lyn)?) and v,(q) = |nLyno,(q).

4.1. The finite-dimensional case when q < 1. Let (R%| - |) be the d-dimen-
sional Euclidean space and let X: © - R? be a random vector in the domain of
attraction of N(0, I), where I denotes the d-dimensional unit matrix. Let {X,,}
be independent copies of X so that we have

1 n
(4.3) Po— Y X, converges weakly to N(0, I').

n 1

Let & © — R be the first component of X and set G(t) == E[£%1{|¢] < t}],
t > 0. Then it follows from Proposition 1 of Einmahl (1988) that

1
G(t)

Let the function a: [1,00) — (0, o) be defined as in the proof of Corollary 3,
ie., a(t) = Vtb(t), t = 1.

Setting X = X,1{|X,| < a(n(Lyn)?)}, n € N, we infer from relation (3.14)
and Lemma 3 below that

(4.4) cov(X1{|X| <¢}) > 1 as t— co.

n

X, - i(x,; - E[X{))

1

(4.5) =o(1,(q)) as.

[Notice that a(n(Lyn)?) = v,(q)/(Lyn)*~972]

Using the same arguments as in the proof of Theorem 2 of Einmahl (1988), we
obtain from Einmahl [(1987b), Theorem 2] a p-space (Q,, %, P,) and two
sequences of independent random vectors {X,}, (Y} with P,o X,=PoX and
P, oY, = N(0, I) such that
n n
XX, — Leov(X()'*Y,

1 .

1

(4.6) =o(v.(q)) as.

Since G(a(n(Lyn)?)) ~ b(n(Lyn)?)? = 02(q) [use (2.6) of Einmahl (1988)], it
easily follows from (4.4) and (4.6) that

n n
ZXk - Zok(q)Yk
1

1

(4.7) = o(v.(q)) -as.,

hence Theorem 2’ holds for finite-dimensional random vectors when g < 1.

LEMMA 3. Let X: Q@ — B bear.v. satisfying (1.3) and LPP(|| X, || > ¢,} < oo,
where {c,} is a sequence of positive real numbers such that c,/ Vn s
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nondecreasing and c,/Qupap) > ©. Let p >0 be fixed. Set X, =
X 1{IX,|l < ¢,/(Lyn)?}, n € N. Then we have

=o(c,) a.s.

i( - E[x]) - ZXk

Proor. Fix € > 0 and put
X = X;(e) = X,1{c,/(Lyn)" <|IX,]| < ec,},
Xnm = Xnm (€) = an{”Xn" > ECn}, n € N.

A straightforward modification of the proof of (3.1) yields

(4.8) limsupc,! < 1536¢ a.s.

n—oo

i(x,;' - E[x7])

Combining Lemma 1(iii) and the Borel-Cantelli lemma, we obtain

n

(4.9) Y X

1

=0(1) as.

Moreover, we have according to Proposition 2 of Einmahl (1988),

=o(c,).

(4.10) ’ S E[X]

Since E[X] = E[ X/] + E[Xk”] + E[ X, ] = 0, we finally conclude

n

TX, - i(x,;—E[X,;])

1

limsupec,* < 1536¢ a.s. O

n— oo

4.2. The finite-dimensional case when q > 1. Since LPP{|X| > v,(q)} < oo,
we obtain from Theorem 2 of Einmahl (1988) a p-space (£, %, F;) and two
sequences of i.i.d. random vectors {X,}, {Y,} with Pyo X, = Po X and PyoY, =
N(O, I) such that

(4.11)

n n
Y X - LT, | = o(va(2)) as,
1 1 .

where T, := cov(X1{|X| < v,(q)}), n €N.
Using (4.4), we infer from (4.11),

(4.12) - Z':‘,x/G(Yk(q))Y;e =o0(v.(q)) as.
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[Notice that according to (2.6) of Einmahl (1988),

nL,nG (v,(q)) ~ nLyn(v,(9))*/a  (v,(q)) = O(7a(q)?)

when ¢ > 1.]
Since 02(q) ~ G(Y(q)(Lyk) 9~ D/2) = G(3,(q)), it suffices to show

(4.13) =o(v,(q)) as.

i(«a(mq)) — 6@ )%,

We set m,, == 2*"1 n,:==m,,, — 1, k € N. We show that we have for any
>0,

(4.14) kéexp(—ezvfk(q)/2d§(G(?m(q)) - G(Ym(Q)))) < oo.

(4.13) easily follows from (4.14), when using a well-known exponential in-
equality for normally distributed r.v.’s and the Borel-Cantelli lemma.

In order to prove (4.14), we use a similar argument as in the proof of (3.9). We
first note that we have for £ > &, (say),

E(G(?m(q)) ~ G(1.(9))) < nG(%,(q)) < nu(Lyny) G (v, ().

my
Notice that, as a consequence of (1.3), G is slowly varying at infinity.
Since a~'(¢) ~ t2/G(t) as t - oo, we further have, for k& > &, (say),

exp| - e, (0)2/24 5 {G(7(0)) — Clvn(a)))

< 4de?y,(q)”" :EZ{G(?m(q)) - G(vn(9))}
xexp( - (¢2/4d)7,,(0)"/mul L) 6 (1,(a)))
< 8de?y,(q)7° '%Ehsﬁlﬂa < ¥m(2)}]
xexp( = (e/5d ) (v,(@)) /na(Lony) ")

<7(@)° LE[E°1(18) < 7a(a))]-

[Notice that v,(q) > a(n,Lyn,), k € N.]
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Since we have, by virtue of Lemma 1,
Y 3a(0) CE[IE1{18l < Fu(@)}] < 0,
1

we obtain (4.14). This completes the proof of Theorem 2’ for finite-dimensional
random vectors when ¢ > 1.

4.3. The general case. Let I1y: B —» H,, N € N, be the maps obtained from

= PoY according to Lemma 2.1 of Kuelbs (1976). Let @: B — B be defined
by @n(x) = x — IIy(x), x € B.

Let & > 0 be fixed. Then it follows for sufficiently large N,,

(4.15) P{|lQn(Y)Il = £/(1920 + 320p)} < 1/17e2,

where p == (—¢q) V 2.
Since @, is continuous and linear, we obtain from (1.3)

1 n

(4.16) Po - 2 Qn,(X,) converges weakly to P @y (Y).
n 1

Combining (4.16) and Corollary 3 [applied with @y (X)], we get

- f:QNO(Xk)

(4.17) limsupv,(q) <e/2 as.

n— oo

Applying Theorem 2’ to the finite-dimensional random vector HN(X ), we
obtain a p-space (2,, #;, P;) and two sequences of independent r.v.’s {x,,} {3}
with Piex, = Pelly(X) and P ey, = PeIly(Y) such that

n n
Zxk - Zyk
1 1

Using the same argument as in the proof of (3.26) of Einmahl (1988), we also
get, for N, large enough,

(418) = o(v(q)) as.

<eg/2 as.

! iok(Q)QNO(Yk)

(4.19)

n—oo

Combining (4.17), (4.18) and (4.19) with Lemma A.1 of Berkes and Philipp

(1979), we can find a p-space (2,, %,, P,) and two sequences of independent

random variables {X,}, {Y,} (possibly depending on &) with P, X, = P X and
P, oY, = PoY such that

(4.20) limsupy,(q) ! <e as.

n— o

Observmg that (4.20) holds for arbltrary &> 0, we finally obtain the p-space

(R, o, P,) with the desired r.v.’s {X,},{Y,} by a known argument of Major
(1976).

ifk - zn‘.ok(Q)?k
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APPENDIX

LEmMmA Al. Let Z,,...,Z,: Q@ - B be i.i.d. random variables satisfying
maxlsk<nP{||ZkZ | > K,) < 1/16e PutZ} = ZA{|Z|| < 7;},1 < j < n, where
7, 1 <j < n, are positive real numbers such that max, ;7 < K,. Then we

have:
/12Kn)] <e

@) [exp(
(ii) [ é( E[Z']) ] <m!(e-1)(12K,)", meN.

ProoF. Let Zl, cee, Zn be independent r.v.’s with Po ZJ =PeZ,1<j<n,
and let further ¢,...,¢, be a Rademacher sequence. Suppose that the three
sequences (Z,,...,Z,}, {Z,,...,Z,} and {g,...,¢,} are independent of each
other. Put ﬁnally Z’ = Z1{||Z || <7} 1<j<n.

Then it easily follows for t>0,

n —
Ye(2/-Z))

& [ow|{£(2 - 212)
ot -7) |

where we use Lemma 2.7 from Chapter 3 of Araujo and Giné (1980). (Notice that
the rv.’s Z/ — Z' 1 <j < n, are symmetric.)

> (2; - B[z])

< E|exp| 4| (27 - Z)

1

exp (

=K

exp( t

Applylng the Holder inequality, we further conclude

E[exp(t DA
1

Jo i

n

Ze(Z - Z)

1

LeZf
1

ol

n
< E[exp(2t EejZ; ) .
1
Thus, it remains to show in order to prove (i),
n
(A1) E exp( P /6Kn) <e
1

Noticing that the r.v.’s ¢,2/, 1 <j < n, are symmetric, we obtain (A.1) from
Lemma 6.1(b) of Kuelbs and Zinn.(1983), provided that we can show

> 2Kn} < 1/4e”.

(A2) p{
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It easily follows from Lemmas A.2 and A.3 below that

n n
P{ YeZl| > 2K,,} < 2P{ Y&z, zZKn}
1 1
k
< 4 max P{ YZ| > K,,} < 1/4e%
1<k<n 1

Hence (A.2) holds and our proof of (i) is complete.
(ii) immediately follows from (i) and the fact that

o]

=1+ i;lE li(z; - E[z}])

E

2(z - £[7))

m
}t”‘/m!, teR. O

LEMMA A2. LetZ,...,Z, Q@ — B be independent symmetric random vari-
ables. Put Z! == Z1{||Z}|| < 7;}, 1 <j < n, where 7, 1 <] < n, are positive real
numbers. Then we have

> t} < 2P{

A

PROOF. Setting Z, :== Z1{||Z,|| > 7}, we have

Po(z2/-2,)=P-(2}+Z,)=P-2;, 1<j<n.

n

Xz

1

n

2z

1

2o), 0

Using the simple inequality ||x|| < |lx + ¥|| V |lx — ¥, x, ¥y € B, we infer

o|57]= < o ’ 1)+ 7 - )
~o{|$2) = . :

LEmmA A3. LetZ,,...,Z,: Q — Bbei.i.d. random variables. Let ¢, ..., ¢,

2 - {—1,1} be a Rademacher sequence independent of the Z,’s. Then we have
fort > 0,
P{

n

Xz}

1

n

Y(z - 2)

1

Y (2 +Z)
1

n

Xz

1

E

n

)y &,Z;

1

k

Xz

1<k<n 1

zt}sZ max P{

> t/2}.
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PrOOF. See Giné and Zinn (1984), Lemma 2.7(a). O

LEMMA A4. Let {Z,} be a sequence of i.i.d. B-valued random variables
satisfying

lim sup P{

n—oo

> a(n)} <c<1/4,

n
X7
1
where a: [1, ) — (0, ) is a continuous function such that t~'/%a(t) is nonde-
creasing. Let a™': [a(1), 00) — [1, ) be the inverse function of a. Then we have

limsup (@~ Y(u)P{||Z,|| = u}) < 16c/(1 — 4c).

u— oo

Proor. Let ¢ € (c,1/4) be fixed. Let {¢,} be a Rademacher sequence inde-
pendent of the Z,’s. By virtue of Lemma A.3 we have, if n is large enough,

A

Using Theorem 2.6 from Chapter 3 of Araujo and Giné (1980), we infer

n

E eJ’Zj

> 2a(n)} < 2¢.

P{ max |12, 2a(n)} - P{ max |le, 7 = 2a(n)} < 4.
Hence
log(1 — 4¢) < log(P{ max [|Z]| < 2a(n)}) = nlog(1 — P{||Z,]| = 2a(n)})
1<j<n

< —nP{|Z)| = 2a(n)}.
Using the inequality log(1/(1 — t)) < t/(1 — ¢), t € [0, 1), we get
nP{||Z,|| > 2a(n)} < 4¢/(1 — 4¢).
Recalling that a(t)/ V¢ is nondecreasing, we obtain by means of interpolation,

limsup (@ *(w)P{||Z|| = u}) < 16¢/(1 — 4¢). o

u— oo
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