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DIMENSIONAL PROPERTIES OF ONE-DIMENSIONAL
BROWNIAN MOTION?

BY ROBERT KAUFMAN
University of Illinois

For each closed set F C [0,1], dim X(F + ) = min(1,2 dim F') for almost
all ¢> 0. (X is one-dimensional Brownian motion). For each closed set
F c [0,1] of dimension greater than 1/2, m(X(F + t)) > 0 for almost all
t > 0. These statements are true outside a single null-set in the sample space.

Introduction. X(¢) is the standard one-dimensional Wiener process on
. 0 <t < + 0. We are interested in the Hausdorff dimension dim X(F') for closed
sets F in R*. Since X is almost surely in every class Lip'/2~¢ on every bounded
set, we obtain easily dim X(F) < min(1,2 dim F') for all sets F, outside a single
null set. For fixed closed sets F' the inequality is an equality [Kahane (1968,
1986)], the exceptional set depends on F. Since X '(0) has almost surely
dimension 1/2, it is clear that results valid for all closed sets F must have a
different form. Theorems 1 and 2 name properties of X valid outside a single
null set for all closed sets F. After presenting their proofs, we make some
comments of a more speculative nature.

THEOREM 1. For each closed set F C [0,1], dim X(F + t) = min(1,2 dim F)
for almost all t > 0.

THEOREM 2. For each closed set F C [0,1] of dimension greater than 1/2,
m(X(F + t)) > 0 for almost all ¢t > 0.

ProOF OF THEOREM 1. It is convenient to define H(u) =1 if |u| <1,
H(u) = 0 otherwise and

I(x,y, R) = fH(RX(’x +t) — RX(y +t)) dt
0
provided R > 0,0 <x <y <1.

LEmMA 1. E(I(x, y, R)?) <p'3”PR™P(y —x) P2 forp=1,2,..., 0 <x <
y<1, R>1

ProoF. The pth moment is a multiple integral,
*
p!f-~~f P(X(x+t) - X(y+t) <R L1<i<p)dt --- dt,
where the integral is extended over the set defined by 0 < ¢, < ¢, < -+ <¢,<1.
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We estimate the conditional probability
P(X(x +¢t;) — X(y+t,)l <R 'X(s),0 < s <y +¢,_,),
for 2 <j < p. Now P < 1 always,
P<R (¢ - tj_l)_l/z, when R?<t, -t <y—u,
P<R Y y-x)""? wheny—-x< b=t
(We assume that R~2? < y — x, since the inequality is trivial otherwise.) Integra-

tion on ¢; yields an upper bound 3R™Y(y — x)~'/2, and iteration of this yields
the inequality of Lemma 1. O

For use in Theorem 2, we observe that the integral of the square of the
probability has magnitude O(R~%log R) + O(R™%)(y — x)~! and that this too
is trivial if y — x < R72.

To prove Theorem 1 we use Lemma 1 with R, =2"" (n=1,2,3,...) and
x, y all possible choices from the set T, of rationals 28~ " in [0, 1]. The number of
pairs x < y in question is at most 82", Hence for A > 1,

P(I(x, ¥,2") > nA2""(y — x)~"/* for some x € T, ye< Tn)
< 82n+13Pp1(An) ",
The optimal estimation of P(-) is easily estimated by Stirling’s formula and is
summable for large A (e.g., A > 24log2).
We claim now that I(x, y,2") < A'n2 "(y —x)"'/2 for all x, y and n >
ny(w), almost surely. This is trivial unless A’n%4~" < y — x, which we therefore
assume to be true. Let X and y be the closest points in 7, ; to x and y,

respectively. For- n > nyw), we get from Lévy’s modulus of continuity
I(x, y,2™) < I(x, 3,2™1). But

I(x,5,2"') <An2'""(3 — %) V* < 4An2 "(y — x) /% forn > no(w).

Let now e <dim F and 0 <5 <1, 0 <7 < 2e. By a theorem of Frostman
[see Carleson (1967), page 28 or Kahane and Salem (1962), page 62], F carries
a probability measure p such that u(S) < c¢(diam S)° for every measurable set
S. Let A, be the transform of p by the mapping x - X(x +¢) (0 <x < 1,
0 <¢<1). A further theorem of Frostman [Carleson (1967), page 28 or
Kahane and Salem (1962), page 34] shows that X(F + t), the support of A,,
has dimension at least 7 if

J J1s1 = s A (ds)A(ds;) = [ [1X(x + £) = X(3 + £)] " (dx ) ()

is finite. The second formula for “energy of A, in dimension 5” can be trans-
formed (using the function H introduced above) into

[ [H(RX(x + ) - RX(y + £) R" w(dx)u(dy) dR

<1+ flwffH(RX(x +¢) — RX(y + £))R" 'u(dx)u(dy) dR.
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To prove that the integral on the right is finite for almost all ¢ € (0,1), we
integrate on (0, 1) obtaining

2ff_J “I(x, y, R)R" u(dx)u(dy).

The product measure of the set defined by 0 < y — x < R~2 is O(R™2°), and the
consequent estimation converges because —2e + 7 — 1 < —1. On the comple-
mentary domain we have (y — x)™2 < R and then we have I(x, y, R) <
B(w)log(e + R)R™Y(y — x)~ /2 (with B depending only on the path). Integrat-
ing with respect to R first, we obtain O(y — x) "/2log(e + |y — x| 1), and the
integral converges because n < 2e. This completes the proof of Theorem 1. O

PrROOF OoF THEOREM 2. The argument applies to sets E of positive h-mea-
sure, where A(u) = u*?log % + u™1), 0 < u < 1. Obviously the method used
for Theorem 1 must fail, since the energy in dimension 1 is always infinite. The
standard technique involves the Plancherel formula; we employ the notations
e(t) = exp2wit, fi(u) = [e(us)p(ds). In proving that X(F + t) has positive
measure for almost all ¢ € (0,1), it is natural to consider

f_wwfol|$\t(u)|2dtdu - f-wwff[ﬁle(—i)(‘(x +8) + uX(y + 1)) dt

X p(dx)p(dy) du,

for an appropriate measure p on F, determined by Frostman’s theorem. The
inner integral, however, cannot be brought down to o(u~!) even for x =0,
y =1, and so this method, too, seems to fail. To overcome this difficulty, we
choose and fix a smooth, even function ¢ > 0, such that {y(u) =1 when 1 <
|u| < 2 and ¢ (u) = 0 outside 1/2 < |u| < 5/2. Then for any function g(u),

‘[u|>1|g(u)|2du < ;i‘;fd,(z—nu)lg(u)lz du.

Writing g(u) = Xt(u), we find a formula for the nth integral on the right
(n=0,1,23,...),

2" [ [$@X(x + 1) = 2°X (5 + ()l ).

Bearing in mind that this integral is positive, we see that Theorem 2 can be
proved by verifying the convergence of

() Seff|[Hex - 2K+ 0) dep(dIn(@)

for all measures p on (0,1) with the appropriate Lipschitz-type property. From
the nth integral in (1) we remove the set defined by |x — y| <4 ™(n + 1)72,
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allowing thereby an error O(n~2). For the remaining points (x, y), we define
J(x,y,n) = _/:47(2"X(x +t)-2"X(y+t))dt

and state

LEMMA 2. Forn > n(w) and |y — x| > 4™ "n?, |J(x, y,n)| < 2 + ¢) " (y —
x)~ V2, for some ¢ > 1/2.

Taking into account the Hélder-continuity of X and the smoothness of ¥, we
see that it will be sufficient to prove an inequality

E(J(x, y,n)"") <A, 2+ ¢;) P (y—x) "

with a constant ¢, > 1/2. (J is real because ¢ is even.) The moment is the
expected value of a multiple integral,

f e f lzlitp(2nX(_x/-l-\ tx) — 2"X(y + tg)) dty, -+ diy,.

We can assume that 0 <x <y and claim that the expected value is
exceedingly small if, for a certain K, [ty — ¢;| = 4 "(n + 1)* for j# K and
|y+tK—x—t| >4"%n+ 1)? for ]=#K To verify this we let r,

4 "(n + 1)% so that the interval (tx + y — r,, tx + ¥ + r,,) is entirely contalned
in (0, + o0) and contains none of the 4p values appearing in the product [T except
y + tg. Thus X(y + tgx — r,) — 2X(y + yx) + X(y + tx — r,,) is orthogonal to
all values X(-) appearing there, except X(y + tx), with which it has inner
product —r,, its variance being 2r,. Hence X(y + tx) = h + Z, where h is
measurable over the o-field of the remaining values X(-), and Z is Gaussian and
independent of those values, ¢%(Z) > (r,/2), ¢%2"Z) > 4"r,/2 = (n + 1)2/2
Here we invoke a formula from Fourier analysis: When ¢y € L'(R) and Y is a
random variable, E(J(Y)) = [® ¥(s)E(e(sY))ds. We use the requirement
that Y(u) = 0 when |u| < 1/2, and first take the expected value with respect
to the variable Z. The expectation is indeed minuscule, being bounded by
c,exp(—c,n?) (¢; > 0, ¢, > 0). This argument is valid for K = 1,2,...,2p; a bit
of combinatorics shows that it applies to all values ¢,,..., t,, except a set of
product measure A, r,? = A/27"P(n + 1)2P, which we call T(x, y).

/ jTE(mqi(z"X(x +tx) —2X(y + te)l) dty - dty,

by means of the Cauchy—Schwarz inequality and a remark made in the proof of
Lemma 1. Let B be any (large) positive number; since x,b is a rapidly decreasing
function, the product I'1 is bounded by C(B)2~ nB outside the set defined by the
inequalities |X(x + tx) — X(y + tx)| < 27™/8, The Cauchy-Schwarz in-
equality, the estimate for the measure of 7, and the remark cited above
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therefore yield (with R = 279%/10) an estimate
_ 2 - _
Ap"((y _ x) 2"P2—7np/22—np)1/ né < Apm((y _ x) "P)(2 . 1) 2nP.

The nth integral in the sum (1) has magnitude
0(r2) + @ +¢)"2" [ [ Iy — 27 u(dx)u(dy),

where the integral [[* extends over the subset |x — y| > 4 "(n + 1) Since
Jh(t)t™3/2dt < + o0, the sum (1) converges. O

Remarks and problems. For Brownian motion (X, X,) with range in R?,
Theorem 1 has no interest in view of Kaufman (1969b) and Hawkes (1970). The
following problem analogous to Theorem 1 seems very difficult.

For each closed set F, a number 8 in [0, 7] is exceptional if X cos § + X,sin 8
maps F onto a linear set of dimension less than min(1,2 dim F'). Is there a
random closed set F' whose exceptional set of angles has positive dimension?

Returning to one-dimensional Brownian motion X, ¢ is exceptional if
dim X(F + t) < min(1,2dim F). What about the exceptional sets? On these
topics compare Kaufman (1968, 1969a) and Kaufman and Mattila (1975).

When F is a fixed set of dimension greater than 1/2, then X(F') has almost
surely an interior point [Kahane (1986)]. Is it true that for every closed set F of
dimension greater than 1/2, X(F + ¢) has an interior point for some ¢?
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