DIMENSIONAL PROPERTIES OF ONE-DIMENSIONAL BROWNIAN MOTION¹

By Robert Kaufman

University of Illinois

For each closed set $F \subseteq [0,1]$, dim $X(F+t) = \min(1,2\dim F)$ for almost all t>0. (X is one-dimensional Brownian motion). For each closed set $F\subseteq [0,1]$ of dimension greater than 1/2, m(X(F+t))>0 for almost all t>0. These statements are true outside a single null-set in the sample space.

Introduction. X(t) is the standard one-dimensional Wiener process on $0 \le t < +\infty$. We are interested in the Hausdorff dimension dim X(F) for closed sets F in R^+ . Since X is almost surely in every class $\operatorname{Lip}^{1/2-\varepsilon}$ on every bounded set, we obtain easily dim $X(F) \le \min(1, 2\dim F)$ for all sets F, outside a single null set. For fixed closed sets F the inequality is an equality [Kahane (1968, 1986)], the exceptional set depends on F. Since $X^{-1}(0)$ has almost surely dimension 1/2, it is clear that results valid for all closed sets F must have a different form. Theorems 1 and 2 name properties of X valid outside a single null set for all closed sets F. After presenting their proofs, we make some comments of a more speculative nature.

THEOREM 1. For each closed set $F \subseteq [0,1]$, dim $X(F+t) = \min(1, 2 \dim F)$ for almost all t > 0.

THEOREM 2. For each closed set $F \subseteq [0,1]$ of dimension greater than 1/2, m(X(F+t)) > 0 for almost all t > 0.

PROOF OF THEOREM 1. It is convenient to define H(u) = 1 if |u| < 1, H(u) = 0 otherwise and

$$I(x, y, R) = \int_0^1 H(RX(x+t) - RX(y+t)) dt$$

provided R > 0, $0 \le x < y \le 1$.

LEMMA 1. $E(I(x, y, R)^p) \le p! 3^p R^{-p} (y - x)^{-p/2}$ for $p = 1, 2, ..., 0 \le x < y \le 1, R > 1$.

PROOF. The pth moment is a multiple integral,

$$p! \int \cdots \int_{-\infty}^{\infty} P(|X(x+t_i) - X(y+t_i)| < R^{-1}, 1 \le i \le p) dt_1 \cdots dt_p,$$

where the integral is extended over the set defined by $0 \le t_1 \le t_2 \le \cdots \le t_p \le 1$.

Received May 1987; revised January 1988.

¹Supported in part by National Science Foundation Grant DMS-84-20561.

AMS 1980 subject classifications. 60J65, 28A75.

Key words and phrases. Brownian motion, dimension, capacity.

We estimate the conditional probability

$$P(|X(x+t_j) - X(y+t_j)| < R^{-1}|X(s), 0 \le s < y+t_{j-1}),$$

for $2 \le j \le p$. Now $P \le 1$ always,

$$\begin{split} P &\leq R^{-1} \! \left(t_j - t_{j-1} \right)^{-1/2}, \quad \text{when } R^{-2} \leq t_j - t_{j-1} < y - x, \\ P &\leq R^{-1} \! \left(\left. y - x \right)^{-1/2}, \quad \text{when } y - x < t_j - t_{j-1}. \end{split}$$

(We assume that $R^{-2} < y - x$, since the inequality is trivial otherwise.) Integration on t_j yields an upper bound $3R^{-1}(y-x)^{-1/2}$, and iteration of this yields the inequality of Lemma 1. \Box

For use in Theorem 2, we observe that the integral of the square of the probability has magnitude $O(R^{-2}\log R) + O(R^{-2})(y-x)^{-1}$ and that this too is trivial if $y-x < R^{-2}$.

To prove Theorem 1 we use Lemma 1 with $R_n = 2^{-n}$ (n = 1, 2, 3, ...) and x, y all possible choices from the set T_n of rationals $k8^{-n}$ in [0, 1]. The number of pairs x < y in question is at most 8^{2n+1} . Hence for A > 1,

$$P(I(x, y, 2^n) > nA2^{-n}(y - x)^{-1/2} \text{ for some } x \in T_n, y \in T_n)$$

 $< 8^{2n+1}3^p p! (An)^{-p}.$

The optimal estimation of $P(\cdot)$ is easily estimated by Stirling's formula and is summable for large A (e.g., $A > 24 \log 2$).

We claim now that $I(x, y, 2^n) < A'n2^{-n}(y-x)^{-1/2}$ for all x, y and $n > n_0(\omega)$, almost surely. This is trivial unless $A'n^24^{-n} < y - x$, which we therefore assume to be true. Let \bar{x} and \bar{y} be the closest points in T_{n-1} to x and y, respectively. For $n > n_0(\omega)$, we get from Lévy's modulus of continuity $I(x, y, 2^n) \le I(\bar{x}, \bar{y}, 2^{n-1})$. But

$$I(\bar{x}, \bar{y}, 2^{n-1}) < An2^{1-n}(\bar{y} - \bar{x})^{-1/2} < 4An2^{-n}(y - x)^{-1/2}$$
 for $n > n_0(\omega)$.

Let now $e < \dim F$ and $0 < \eta < 1$, $0 < \eta < 2e$. By a theorem of Frostman [see Carleson (1967), page 28 or Kahane and Salem (1962), page 62], F carries a probability measure μ such that $\mu(S) \le c(\dim S)^e$ for every measurable set S. Let λ_t be the transform of μ by the mapping $x \to X(x+t)$ (0 < x < 1, 0 < t < 1). A further theorem of Frostman [Carleson (1967), page 28 or Kahane and Salem (1962), page 34] shows that X(F+t), the support of λ_t , has dimension at least η if

$$\iint |s_1 - s_2|^{-\eta} \lambda_t(ds_1) \lambda_t(ds_2) = \iint |X(x+t) - X(y+t)|^{-\eta} \mu(dx) \mu(dy)$$

is finite. The second formula for "energy of λ_t in dimension η " can be transformed (using the function H introduced above) into

$$\eta \iiint H(RX(x+t) - RX(y+t))R^{\eta-1}\mu(dx)\mu(dy) dR
\leq 1 + \int_{1}^{\infty} \iiint H(RX(x+t) - RX(y+t))R^{\eta-1}\mu(dx)\mu(dy) dR.$$

To prove that the integral on the right is finite for almost all $t \in (0,1)$, we integrate on (0,1) obtaining

$$2\iint_{x$$

The product measure of the set defined by $0 < y - x < R^{-2}$ is $O(R^{-2e})$, and the consequent estimation converges because $-2e + \eta - 1 < -1$. On the complementary domain we have $(y-x)^{-1/2} < R$ and then we have $I(x, y, R) < B(\omega)\log(e+R)R^{-1}(y-x)^{-1/2}$ (with B depending only on the path). Integrating with respect to R first, we obtain $O(y-x)^{-\eta/2}\log(e+|y-x|^{-1})$, and the integral converges because $\eta < 2e$. This completes the proof of Theorem 1. \square

PROOF OF THEOREM 2. The argument applies to sets E of positive h-measure, where $h(u) = u^{1/2} \log^{-3}(e + u^{-1})$, 0 < u < 1. Obviously the method used for Theorem 1 must fail, since the energy in dimension 1 is always infinite. The standard technique involves the Plancherel formula; we employ the notations $e(t) \equiv \exp 2\pi i t$, $\hat{\mu}(u) \equiv \sqrt{e(us)}\mu(ds)$. In proving that X(F + t) has positive measure for almost all $t \in (0,1)$, it is natural to consider

$$\int_{-\infty}^{\infty} \int_{0}^{1} \left| \hat{\lambda}_{t}(u) \right|^{2} dt du = \int_{-\infty}^{\infty} \int \int \left[\int_{0}^{1} e(-uX(x+t) + uX(y+t)) dt \right] \times \mu(dx)\mu(dy) du,$$

for an appropriate measure μ on F, determined by Frostman's theorem. The inner integral, however, cannot be brought down to $o(u^{-1})$ even for x = 0, y = 1, and so this method, too, seems to fail. To overcome this difficulty, we choose and fix a smooth, even function $\psi \ge 0$, such that $\psi(u) = 1$ when $1 \le |u| \le 2$ and $\psi(u) = 0$ outside 1/2 < |u| < 5/2. Then for any function g(u),

$$\int_{|u|>1} |g(u)|^2 du < \sum_{0}^{\infty} \int \psi(2^{-n}u) |g(u)|^2 du.$$

Writing $g(u) = \hat{\lambda}_t(u)$, we find a formula for the *n*th integral on the right (n = 0, 1, 2, 3, ...),

$$2^{n}\int\int \hat{\psi}(2^{n}X(x+t)-2^{n}X(y+t))\mu(dx)\mu(dy).$$

Bearing in mind that this integral is positive, we see that Theorem 2 can be proved by verifying the convergence of

(1)
$$\sum_{n=1}^{\infty} 2^{n} \int \int \left| \int_{0}^{1} \hat{\psi}(2^{n}X(x+t) - 2^{n}X(y+t)) dt \right| \mu(dx)\mu(dy)$$

for all measures μ on (0,1) with the appropriate Lipschitz-type property. From the *n*th integral in (1) we remove the set defined by $|x-y| < 4^{-n}(n+1)^{-2}$,

allowing thereby an error $O(n^{-2})$. For the remaining points (x, y), we define

$$J(x, y, n) = \int_0^1 \hat{\psi}(2^n X(x+t) - 2^n X(y+t)) dt$$

and state

LEMMA 2. For $n \ge n(\omega)$ and $|y - x| \ge 4^{-n}n^2$, $|J(x, y, n)| \le (2 + c)^{-n}(y - x)^{-1/2}$, for some c > 1/2.

Taking into account the Hölder-continuity of X and the smoothness of $\hat{\psi}$, we see that it will be sufficient to prove an inequality

$$E(J(x, y, n)^{2p}) \le A_p(2 + c_1)^{-2pn}(y - x)^{-p}$$

with a constant $c_1 > 1/2$. (*J* is real because ψ is even.) The moment is the expected value of a multiple integral,

$$\int \cdots \int \prod_{1}^{2p} \hat{\psi}(2^n X(x+t_K) - 2^n X(y+t_K)) dt_1 \cdots dt_{2p}.$$

We can assume that 0 < x < y and claim that the expected value is exceedingly small if, for a certain K, $|t_K - t_j| \ge 4^{-n}(n+1)^2$ for $j \ne K$ and $|y + t_K - x - t_j| \ge 4^{-n}(n+1)^2$ for $j \ne K$. To verify this we let $r_n = 4^{-n}(n+1)^2$ so that the interval $(t_K + y - r_n, t_K + y + r_n)$ is entirely contained in $(0, +\infty)$ and contains none of the 4p values appearing in the product Π except $y + t_K$. Thus $X(y + t_K - r_n) - 2X(y + y_K) + X(y + t_K - r_n)$ is orthogonal to all values $X(\cdot)$ appearing there, except $X(y + t_K)$, with which it has inner product $-r_n$, its variance being $2r_n$. Hence $X(y + t_K) = h + Z$, where h is measurable over the σ -field of the remaining values $X(\cdot)$, and Z is Gaussian and independent of those values, $\sigma^2(Z) \ge (r_n/2)$, $\sigma^2(2^nZ) \ge 4^n r_n/2 = (n+1)^2/2$. Here we invoke a formula from Fourier analysis: When $\psi \in L^1(R)$ and Y is a random variable, $E(\hat{\psi}(Y)) = \int_{-\infty}^{\infty} \psi(s) E(e(sY)) ds$. We use the requirement that $\psi(u) = 0$ when |u| < 1/2, and first take the expected value with respect to the variable Z. The expectation is indeed minuscule, being bounded by $c_1 \exp(-c_2 n^2)$ ($c_1 > 0$, $c_2 > 0$). This argument is valid for $K = 1, 2, \dots, 2p$; a bit of combinatorics shows that it applies to all values t_1, \dots, t_{2p} except a set of product measure $A_p r_n^p = A_p' 2^{-np}(n+1)^{2p}$, which we call $T_n(x, y)$.

$$\int \cdots \int_{T_{-}} E(\prod |\hat{\psi}(2^{n}X(x+t_{K})-2^{n}X(y+t_{K})|) dt_{1} \cdots dt_{2p})$$

by means of the Cauchy–Schwarz inequality and a remark made in the proof of Lemma 1. Let B be any (large) positive number; since $\hat{\psi}$ is a rapidly decreasing function, the product Π is bounded by $C(B)2^{-nB}$ outside the set defined by the inequalities $|X(x+t_{\rm K})-X(y+t_{\rm K})|\leq 2^{-7n/8}$. The Cauchy–Schwarz inequality, the estimate for the measure of T_n and the remark cited above

therefore yield (with $R = 2^{-9n/10}$) an estimate

$$A_{p}'' \left((y-x)^{-2np} 2^{-7np/2} 2^{-np} \right)^{1/2} n^{8p} < A_{p}''' \left((y-x)^{-np} \right) (2 \cdot 1)^{-2np}.$$

The nth integral in the sum (1) has magnitude

$$O(n^{-2}) + (2+c)^{-n} 2^n \int \int_{-\infty}^{\infty} |y-x|^{-1/2} \mu(dx) \mu(dy),$$

where the integral \iint^* extends over the subset $|x-y| \ge 4^{-n}(n+1)^2$. Since $\int_0^1 h(t)t^{-3/2} dt < +\infty$, the sum (1) converges. \square

Remarks and problems. For Brownian motion (X_1, X_2) with range in \mathbb{R}^2 , Theorem 1 has no interest in view of Kaufman (1969b) and Hawkes (1970). The following problem analogous to Theorem 1 seems very difficult.

For each closed set F, a number θ in $[0, \pi]$ is exceptional if $X_1 \cos \theta + X_2 \sin \theta$ maps F onto a linear set of dimension less than min(1, 2 dim F). Is there a random closed set F whose exceptional set of angles has positive dimension?

Returning to one-dimensional Brownian motion X, t is exceptional if dim $X(F + t) < \min(1, 2 \dim F)$. What about the exceptional sets? On these topics compare Kaufman (1968, 1969a) and Kaufman and Mattila (1975).

When F is a fixed set of dimension greater than 1/2, then X(F) has almost surely an interior point [Kahane (1986)]. Is it true that for every closed set F of dimension greater than 1/2, X(F+t) has an interior point for some t?

REFERENCES

Carleson, L. (1967). Selected Problems on Exceptional Sets. Van Nostrand, Princeton, N.J. Hawkes, J. (1970). Some dimension theorems for the sample functions of stable processes. *Indiana*

Univ. Math. J. 20 733-738.

KAHANE, J.-P. (1968). Some Random Series of Functions. Heath, Lexington, Mass. (2nd ed. (1986) Cambridge.)

KAHANE, J.-P. and SALEM, R. (1963). Ensembles Parfaits et Séries Trigonométriques. Hermann,
Paris.

KAUFMAN, R. (1968). On Hausdorff dimension of projections. Mathematika 15 153-155.

KAUFMAN, R. (1969a). An exceptional set for Hausdorff dimension. Mathematika 16 57-58.

KAUFMAN, R. (1969b). Une propriété métrique du mouvement brownien. C. R. Acad. Sci. Paris Ser. A 268 727-728.

KAUFMAN, R. and MATTILA, P. (1975). Hausdorff dimension and exceptional sets of linear transformations. Ann. Acad. Sci. Fenn. Ser. A I Math 1 387-392.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF ILLINOIS 1409 WEST GREEN STREET URBANA, ILLINOIS 61801