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WEAK CONVERGENCE OF SERIAL RANK STATISTICS

UNDER DEPENDENCE WITH APPLICATIONS IN TIME
SERIES AND MARKOV PROCESSES

By MicHEL HAREL AND MaDAN L. Puri!

Institut Universitaire de Technologie de Limoges and U.A. C.N.R.S.,
Rouen, and Indiana University
The asymptotic normality of linear serial rank statistics introduced by
Hallin, Ingenbleek and Puri (1985) for the problem of testing white noise
against ARMA alternatives is established for ¢-mixing as well as strong

mixing sequences of random variables. Applications in Markov processes
and ARMA processes in time series are provided.

1. Introduction. Let {X,;,, 1<i<n, n>1} be real-valued random
variables with continuous distribution functions F,(x) = P(X, ; <x),1 <i <
n, n > 1. Consider the statistics

n
-1
(11) ) “/;z= (n_k) Z cn,ian(Rn,i—k""’Rn,i)’
i=k+1
where the c, ; are known constants, a,(-,..., ) are the scores, R, ; denotes

the rank of Xn,i among (X, ,..., X, ,) and k > 1 is a fixed integer (< n).
Our aim is to study the asymptotic behavior of ., when the sequence {X,, ;}
is @-mixing with rates

(1.2) o(m)=0(m~17°) forsomee>0,m=>1

or

m_1<p1/2(3+k)( m) < oo,
1

(1.3)

3
uMS

or is strong-mixing with rates

(1.4) Y, m***9af(m) < o for some e € (0,1/2(3 + k)).

m=1
Recall that the array {X,, ;, 1 <i <n, n > 1} is p-mixing if
sup  sup {IP(AIB) - P(A): Beo(X, ;1 <i<j),

m<n l<j<n—-m

Aca(X,,izj+m)}=e(m)l0
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1362 M. HAREL AND M. L. PURI

as m 1 for positive integers j and m, and it is strong-mixing if

sup sup {[P(ANB)-P(A)P(B),Aeco(X,;,1<ix<)),

m<n l<j<n-m
B e O'(Xn,i’ i Zj + m)}
=a(m)|0 asm o,

for positive integers j and m. Here o(X, ;, i <j) and o(X,, ;, i =j + m) are
the o-fields generated by (X, ;,..., X,, ;) and (X, n,j+m> Xn, j+m+1» -+ + ) T€SpEC-
tively. The asymptotic behavior of the statistic -, under strong-mixing
conditions leads to interesting applications in ARMA processes in time series
as well as in Markov processes (Section 6). In passing we may mention that
Hallin, Ingenbleek and Puri (1985) established the asymptotic normality of
linear serial rank statistics ., defined in (1.1) for an ARMA process contigu-
ous to white noise. We show (in Section 2) that contiguity is not necessary
for the derivation of the asymptotic distribution theory derived in Hallin,
Ingenbleek and Puri (1985) and our results also lead to applications in some
Markov processes which are either geometrically ergodic or Doeblin recurrent,
and to some ARMA processes. For a related problem dealing with the applica-
tions of U-statistics [see Harel and Puri (1989a, 1990)] to some Markov
processes and ARMA models, the reader is referred to Harel and Puri (1989b).

2. Asymptotic normality. We start with a few preliminaries.
Denote by F ' (x), the right continuous emplrlcal distribution function of

X, i=1,...,n; ie, let F(x)=n"1T2, (x <m where I, denotes the
indicator function. Denote by G, the dlstrlbutlon function of the %2 + 1 of the
successive random variables X, ,..., .Let H, (foreachn >k + 1) bea

sequence of continuous distribution functlons on (O 1)#*1 defined by
Hn(t) = Gn(Fr:I(tl)’ e Fn_l(tk+1))

forallt = (¢y,...,t,,,) €(0,1)

(2.1)

k+1

where F;Xu) = inf{t: F(¢) > u}, 0 <u < 1. Since H, is continuous, it is
actually well defined on [0, 1]***. Though G,, H, and t depend on %, we have
suppressed this fact for notational convenience.

Denote by C, . ,, the space of all continuous maps f: [0,1]**% - R, and by
C..1Jj), 1 <j<k+1, the space of all continuous and bounded maps f:
A(j) » R, where A(j) =[0,1F"! x (0,1) X [0, 1]**1 7.

DEerFiNITION. We say that the sequence {H,} satisfies the differentiability
condition if (a) 8Hn/at exists on A(j) and belongs to C,,(j), 1 <j <k + 1,
and (b) 9H, /dt; — 1, in the uniform topology on any compact subset of A(j)

asn — o, and [; belongs to Cp,1(J).



SERIAL RANK STATISTICS UNDER DEPENDENCE 1363

We define the graduate empirical process [also called the copula process,
see, e.g., Gaenssler and Stute (1987), Chapter V] W, as

1 [nto] (Rk+1
(22) W) =(n-k) ¥ { IT hescx ey Hn<t)}
i=k+1 \J=1
for all t = (t,,t) = (ty, ty,...,t,.1) € (0,1D**2, where [nt,] denotes the inte-
gral part of the real number nt,.
We also consider the rank process L, (called the graduate rank process)
defined as

. [nt)] (k+1
@9 L= (=" T (Tl ans ~ B8],
i=k+1\Jj=1
For any n > 1, we define a signed measure A, concentrated on {1/n,...,

(n — 1)/n,1}%*2 by setting

k+1 i.
J . .
An l_[ _71] =cn,i0an(l1""’Lk+1)?
j=olLn

for all iy, ...,i5,,) €{1,...,n}**2 (By convention, ¢, ;, = 0if i, <k + 1)
We also define a centering coefficient b, by

2.4 b, = H,(¢)A(dt),

(2.4) [ AOLHCD

where H, is the function [0,11**2 - R* such that H,(¢) = (nt,] — k)H,(t).
We now state the following theorem, the proof of which is given in Sec-

tion 5.

THEOREM 2.1. Assume that there exists a Radon measure A, on [0,1]**2
such that

(2.5) lim [fdA, = [fd\, forallf& Cy.,

and

(2.6) sup ffd|)\n| <w;  N={0,1,2,...},
neN

where |A,| denotes the measure of total variation.

Assume that the sequence {X, ;} is (a) ¢-mixing with rates (1.2) or (b)
strong-mixing with rates (1.4). Furthermore, assume that (c) the covariance
functions {K,, n > 1} of the empirical processes {W,, n > 1} defined in (2.2)
converge to a function K(-, ) in pointwise topology as n — » and (d) {H,}
satisfies the differentiability conditions. Then L, converges weakly in uni-
form topology to a Gaussian process L, with trajectories a.s. in C, o, and
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(n — B)Y*(# — b,) converges in law to the normal distribution with mean 0
and variance o?, where

(2.7) o2 =[ [ E[L.(t), L(¢)] dAo(t) dAg(t) < .
[0, 1]k+2 [O, 1]k +2

REMARK 2.1. Theorem 2.1 is proved under the assumption that the se-
quence {X, ;} is nonstationary and either ¢-mixing with rates (1.2) or strong-
mixing with rates (1.4). The theorem does not hold with the ¢-mixing rates
(1.3) unless one assumes stationarity (which implies that the distribution
functions F,, G, and H, are equal to unique distribution functions F, G and
H, respectively) and the special case when c, ; = 1 for all i.

Let .7 denote the statistics .”, when c,;=1foralliie,let

n

(28) ‘/:1= Z an(Rn,i—k""’Rn,i)’

i=k+1

and let b, denote the corresponding centering constant, i.e.,

2.9 b, = H,(t)A,(dt),
(2.9) el A AOLECL)
where A, is a measure concentrated on {1/n,...,(n — 1)/n,1}**! and
. k+1 lj
)‘n( l_.[ [_’ 1]) = an(il"' 'sik+1)'
j=1ln

Then, we have the following theorem.

]k+1

THEOREM 2.2. Assume there exists a Radon measure ):0 on [0,1 such

that

(2.10) lim [fdA, = [fdA
n 0
and
2.11 sup [Fd|A,| < o,
(2.11) p [fdi,l
neN

where |Xn| denotes the measure of total variation.

Assume that the sequence {X,, ;} is (&) p-mixing with rates (1.3) and (b)) H
satisfies the differentiability condition. Then L,(1,t)- converges weakly in
uniform topology to a Gaussian process L, with trajectories a.s. in C, . ,, and
(n — R4 4 — b,) converges in law to the normal distribution with mean 0
and variance &2, where

(2.12) ¢%= E[L(t), L(t)] dAo(t) dAg(t) (< ).

[0,1]F+1 f[o,llk”
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The proof follows from Theorem 2.1 by putting ¢, = 1 for the processes W,
and L,, and showing that the finite projections of W, converge to a normal
law (the proof of which is given in Proposition 3.4).

The following corollary gives sufficient conditions under which the condi-
tions (2.5) and (2.6) are satisfied.

COROLLARY 2.2. Let J be a function on [0, 11**2 such that
J(ig/n,... 04 1/0) = Cn,ioan(il""’ik+l)

for all Gig,..., i, €(1,...,n}**% J =dJ, + J,, where J, is a step function
taking only a finite number of jumps, and where for any I c{0,...,k + 1}, J,
has a continuous derivative 8'J,/(3t,); 1, then the conditions (2.5) and (2.6)
are satisfied.

Proor. It suffices to prove the above corollary in the case when J, has
only one jump, say at a = (ag,...,a,,,) €[0,1]**% Let X', and A", be mea-
sures on [0, 1]**2 defined by

i) 2

j=oln n n
and
k1 i iO ik+1
A Lol =dJd,—,..., ,
n(jljo[n ]) d(n n )

for all (iy,...,i,,,) €{1/n,...,(n — 1)/n,1}F*+2,
It is easy to check that

. aIJc k+2—i
lim fd)\'n = Z ‘/[‘O 1 f_—((tj)jep(l) ),

n—e 0, 14+2 1c{o,... k+1) 2 (atj)jel

for all fe C,,, whose i = card I.
Thus, we obtain a measure X, satisfying

n— J[g, 1]++2 [0,1]

lim fan () = [ fdx(t).
Analogously, we obtain ‘

lim ]k+2fdA’;L(t)=f(d) h (—l)in((ai—),(aw)),

n— 0,1 I1c{0,... k+1} iel iel

for all fe C, ,, where i = card I. O
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3. Weak convergence of the graduate empirical process and the
graduate rank process. We start with preliminaries.

3.1A. The spaces D, , and C,,,. Let f:[0,11**%2 > R. For p € {0, 1}**2,
define

£ = Lm o f(s),(s,8) € ([0,10%*))°,  i=0,1,....k+1,
i T, p)=1
:lti»::(i):o

if it exists, in which case, call f,(¢) the p-limit of f at ¢. Denote by D, ,, the
space of all maps f [0,1]¥*2 — ‘R such that for all p € {0,1}**2, f, exists and
f,=1f forp=1(0,...,0).

We say that we have special Skorohod topology on D, ., if we have the
uniform topology for the first coordinate and the /;-Skorohod topology for the
other coordinates. [For definition of Skorohod topology, cf. Skorohod (1956)
and Billingsley (1968).]

We define a modulus of continuity for any bounded function f: [0,1]**2 —
R™* to be denoted by w(f,8), (5§ > 0), by setting
(31) w( f’a) = sup |f(t) _f(t,)l’ It _t," <9,

¢, £)e(0,1]**%)?
where ||¢|| = sup{|¢;|, 0 <j < & + 1}. Note that f belongs to C, ., if and only if
limg_,,w(f,8) = 0

The following proposition, which is a variant of Theorem 1.2 of Dudley

(1978), will be used to prove Proposition 3.4.

ProposITION 3.1. Let Y, be a process with values in D, , and measurable
with respect to %, . 5, the o-field generated by the uniform topology (on D, ,).
- Let P, denote the law of Y,. Then, there exists a probability measure P, with
P(C,,5) =1, for which P, converges weakly with respect to the uniform
topology if and only if

(a) for all finite subsets U of [0,11**2, ¢,(P,) converges weakly to ¢ (P)
(¢y is the projection of D, , on RY),
(b) V&> 0,lims_,limsup, ., P,[{f; o(f,8) =€]1=0

The proof is given in the Appendix.

3.1B. Grid accompanying a sequence of probability measures. We call a
grid T of [0, 1]%*2 a subset of [0, 1]**? such that T = [1%2}T, where TV is
a finite subset of [0, 1] which includes 0 and 1.

We call a pace 7 of a grid T = IT4*{T") the number r = max,. ;441 7,
where 7, = max({|¢t; — ¢;|, ¢; and ¢; are successive elements in T Wy,

We d{enote the lower boundary of T by T where

k+1(j—1 kE+1

= U ]_[T(“x{O} x 1 T®|.

Jj=0 l=j+1
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We call block B of T any part of T in the form

k+1
B= l—% {(tj, tJ’] N T, where t; and ¢/ belong to T and ¢; < tJ’}
=

We call evaluation e’ of B into T, the operator e D, ,, - R* such that

R1
e(TB)( f) = Z (_1)):’:08110[(1 - So)to + &olgs-- ey
(3'2) (egy--» £,.1)€{0,1}%+2
(1= g4 )tisr + Eparthen].

Let v be a finite measure on [0, 1]**2 and let T be a grid of [0, 1]**2. We call
reduction 7 of v on T the measure on T defined by

0 ift e ?_",
o({¢t — k+1
({#) V(H(t;,tj]) ifteT,
Jj=0 <
where
t: = max{x;x € TV;x <t;,¢; € TV}
For any & > 0, we set
wr(f,8) = sup{/f(¢) = f(¢)); (¢,¢') € T?, ||t — t| < 8}.

We say that a sequence {T,}, -\~ Of grids is asymptotically dense in [0, 1
if the pace 7, of T, satisfies lim, 7, =0, N*=N-{0}, N=0,1,2,....

Let P,, n € N* be a sequence of probability measures on (D, ,, Z,.,),
where 9, ,, is the o-field generated by the Skorohod topology (on D, _,). We
say that the sequence {T,} of grids accompanies the sequence {P,} if and only if
Ve>0,3¢>0andVsel[0,3),3 N, N* we have

P,[{f€ Dy, s o(f,6) 2cand wy(f,28) <e}] =0 VnxN,.

]k+2

The following propositions [Propositions (3.2) and (3.3)] are variants of a
result of Neuhaus (1971) [see, e.g., Theorems 2 and 4 in Balacheff and Dupont
(1980)] and will be used in Section 4.

PropoSITION 3.2. Let P,, n € N, be probability measures on (D, 5, D). 5)
such that the following conditions are satisfied:

¢y (P,) converges weakly to some probability measure Py; on

3.3
(3.3) RY for any finite subset U of [0, 1]%*2
and
(3.4) Ye>0, ;11% limsup P,[ f € Dy, o; 0(f,8) =] =0.

n—o

Then P, converges weakly with respect to the Skorohod topology to some
probability measure P and P(C,,) = 1.
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PrOPOSITION 3.3. Let v be a positive finite measure on [0,1]*% with
continuous marginals. Let P, be a sequence of probability measures on
(Dyi2) Dyro) such thatV n €N, P[fe€ D, o fI0,11**2=0] = 1. Let T, be
a sequence of grids asymptotically dense in [0,1]**2 and accompanying P,.
Furthermore, suppose that for any block B,, of T,

(3.5) P,[f €Dy leF( )l = A] <A77(5,(B,))",

where v, is the reduction of v on T,, and B > 1 and y > 0. Then, we have
Ve>0,36€<(0,1) and N, € N, such that

(3.6) PfeD, s 0(f,8)=2¢c]<e Vnx=N,.

3.2A. Convergence of the graduate empirical processes.

ProposITION 3.4. Under the conditions (a) and (¢) or (b) and (c) of
Theorem 2.1, W, converges weakly in the special Skorohod topology to a
Gaussian process W, with trajectories a.s. in C,, 5. Under the conditions (a') of
Theorem 2.2, W, = W,(1, t) converges in the Skorohod topology to a Gaussian
process W, with trajectories a.s. in Cy, 1.

3.2B. Convergence of the graduate rank process.

ProposITION 3.5. Under the conditions (a), (¢c) and (d) or (b), (¢) and (d) of
Theorem 2.1, L, converges weakly in uniform topology to a Gaussian process
L,, with trajectories a.s. in Cy . ,. Under the conditions (a’) and (b') of Theorem

<2.2, L, = L,(1,t) converges weakly in uniform topology to a Gaussian process
L., with trajectories a.s. in C, ;.

4. Proofs of Propositions 3.4 and 3.5. Our proofs of the Propositions
3.4 and 3.5 are based on the ideas of Balacheff and Dupont (1980), who
considered the asymptotic normality of the truncated empirical processes
under ¢-mixing with rates ¥ %, _,m¢/?(m) < ». Here in this paper, we con-
sider the rates (1.2) and (1.3), which are slower than the one considered by
them. In addition, we also derive results under strong mixing (1.4) which have
not been considered in the literature. To establish their result, Balacheff and
Dupont (1980) used a slight modification of an inequality due to Riischendorf
(1974) which is not applicable in our situation. Our proofs are based on the
following two lemmas.

LEMMA 4.1. Let the sequence {X, ) of real-valued random variables
(centered at its expectation) be -mixing with rates ¥%,_;m ™ 19*%4(m) < =,
where q is an integer. Denote by N, the number of indices i, 1 <i <n, for
which X, ; is not identical to zero. Set S, =Y} ,X,; and ||X, |, =
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(f/IX, ,/* dP,)'/*. Then, for any q > 1, there exists a constant C,(¢) depend-
ing only on q and ¢ such that

q 2q
(4.1) E(8%) < Cy(0) ¥ N/( sup 1%, ;i) -
=1 l<j<n
The proof is a slight modification of Theorem 2.1 of Neumann (1982) and is
sketched briefly in the Appendix.

LEMMA 4.2. Let the sequence {X, ;} of real-valued random variables
(centered at its expectation) be strong-mixing with rates ©%,_ ;m?? " 2a*(m) < o,
£€(0,1/2q) and |X,, ;| <1,1<i <n,n =1, where q is an integer. Let N,
be the number of indexes i, 1 <i <n, for which X, ; is not identical to zero.
Set Sn = 2:;l=1)(n,i and “Xn,i“s = (”Xn,i|2/(1‘b.) dPn)I—E' Then’ for any q = 19

there exists a constant C (a) depending only on q and a such that

q l
(42) E(S2) < C,(a) ¥, N( sup |IX,I.) -
=1

l<i<n

The proof is similar to that of Theorem II.10 of Doukhan and Portal (1987)
and is therefore omitted.

LEmMa 4.3 (Neumann, 1982). Let {Y,, i > 1} be a stationary sequence of
real-valued random variables centered at its expectation and with finite second
moment. Assume that the sequence is -mixing with rates ©%,_,m ™ 'o'/%(m) <
®. Then, there exists a positive constant K such that n 'E(X?_,Y,)? > K2 as
n — o,

Since the reference Neumann (1982) is not readily available, we have (at the
suggestion of one of the referees) given the proof in the Appendix.

Proor oF ProposiTION 3.4. Consider a sequence Z,, ;, 1l <i<m, m=>1

of R**1-valued random variables defined by Z,, ; = (X,, 4 is-- > Xpnip iss) =
(ZD,,...,Z%tY), 1 <i<m, m>1 Then the (k + 1)-variate truncated

empirical process Wm associated with this sequence is given by

B [(m+R)tgl-kTE+1
(4.3) Wm(tO’t) =m~1? Z I—III(F,,,M(Z%},»)gzj) - Hm+k(t)
i=1 j=
and this is the same as the graduate process W, defined in (2.2). Now the
process W, defines a probability measure @, on (D, 4, Z, ., 5)-

To prove this proposition we have to verify (3.3) and (3.4). Following
Withers [(1975), Corollary 1], it can be shown that ¢;(Q,) converges weakly to
a Gaussian measure @, if (i) K, —» some function K, (ii) £ ,, . ;a(m) < « and
Gii) m'~%(m®]) > 0 as m — =, where 0 < 2b <a <1 —b. Now, in our
situation (i) holds by assumption (c), (ii) follows from (1.2) or (1.4) and (iii)
follows from (1.2) or (1.4) by taking a = 3/4 — ¢/8, b = 1/4 and ¢ sufficiently
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small. (Since taking a(m) = m =17, m'“%(m®]) < Am /8 > 0as m - ».)
Thus, (3.3) holds whenever conditions (a) and (c) or (b) and (¢) of Theorem 2.1
are satisfied.

Now suppose that the condition (a’) of Theorem 2.2 holds with X, ; = X,.
Then, for any p € N*, any t® €[0,1]**! and any A\, €R, 1 <! <p, let
gfl)(X ) and g,(X,) be the random variables defined by

k+1 P
g(X;) = I_Il [I{F(Xi+1—h71)531) - H(t(l))] and g;(X;) = X 2,80(X)),
j= =1

where X, = (X,_,, X;_4+1, ..., X;). Then, we have TP AW, (t®) =
(n—k)"12x2_, 184X,), and so (3.3) also holds by Lemma 4.3 and the
central limit theorem for the stationary and ¢-mixing case [cf. Ibragimov and
Linnik (1971), Theorem 18.5.1 and Lemma 4.3]. Now, to prove (3.4), we shall
use Proposition 3.3 and verify (3.5) [which will imply (3.4)].

Let T, = {i/m; 0 < i < m}**?2 be a sequence of grids with n = m + k. T, is
asymptotically dense in [0, 1]**2 and we prove that T, accompanies @,. Now
for every t € (0,1)**1, let (t,t) be the points of 7(T,), where m is the
projection defined by m(¢) =t such thatt <t <t and |t — t|| < 1/m. Let us
write ¢, = [nt,]/n for every t, € [0, 1]. As the marginals of H, are uniform,
we obtain (after some computations) that

2K
IWn(tO’t) - Wn(t(’)’t’)l = ‘/—'—— + an(£0’i) - Wn(t(’),f)|,
‘ m
V (¢5,t) €[0,1]**% and V (¢),t) € [0, 1]**2 Consequently, V & € (0, 3], we
have w(W,, 8) < 2k/Vm + wr (W,,28). It follows that T, accompanies @, . It
remains to show that @, satisfies (3.5).
Let £%_,m ™ 9/23*5(m) < » [see (1.3)], and let B, be a block of T,
defined in Section 3.1.b. Using Lemma 4.1 with q = £ + 3, we obtain [see
(3.2)]

k+3

E[eg‘B;")(Wn)]z(kJrS) < Ck+3(§0) Z m—(k+3)[(m + k)(to _ t(’,)](k+3)/l
I=1

|:k+1 ](k+3)/(k+l)l

X U(tj—t;)

k+3
< Crusl(9) T m =9 5 (m + 14+
=1

[k+ 1 ](k+3)/(k+é)z

X _]:[(tj—t;)

:|(k +3)/(k+2)

E+1
< Cypis(@)(k + 3) [jl:% (¢ - tJ')
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Now let v = (C,,, (o)X % + 3))'/PU, where U is a uniform measure on [0, 1]**2
and B = (k + 3)/(k + 2). Then, by the Markov inequality, we obtain [see (3.5)]

Qu € Dyrgs |eBV(F)| 2 A] < A72++9(5,(B,))",
which implies (3.6) for the ¢-mixing rates (1.3) [and so also for (1.2)]. For the

strong-mixing case with rates (1.4), we use Lemma 4.2 with ¢ < (2(k + 3))~!
and obtain from (4.2),

2k +3)
E[eff(W,)]
E+3 z B4l d-e)/(k+1)
< Cpigla) X m™*+3-D(¢, — t4) ( l_ll(tj - t})) )
=1 J=

which [with 8 = (2 + 2X1 — &) + 1)/k + 2] implies (3.5) and hence (3.6). We
derive the convergence with respect to the special Skorohod topology because
W, is measurable with respect to this topology and we use Proposition 3.1 to
the first coordinate (of W,). O

Proor or ProposiTioN 3.5. The main line of proof is as follows: We
consider a map G,: 7, = D, ,,, where 7, is a subset of D, , and is such that
L,=G,°W,, n>1. We show that G,: (#,,d) - (D, ,,, p) is a continuous
map, where d is the special Skorohod metric and p is the uniform metric.

Let 7" be a subset of D, ,, such that for any v € 7, v equals zero on the
lower boundary of [0,1]**2 and also for t = (1,...,1). It will be noted that
7, cV forVnz>1

Let G: - D, ,, be a map defined by

k+1

(4.4) G(v)(#) =v(t) — ¢, ;l[v(l,...,tj,...,l) X ity tyen)]s

where [; is the limit of dH,/dt; as n — . We will show that ¥V (v,), cn~ €
(IT,ene?) and V v € 7N Cy i, v, 24 v = G (v,) =, G(v) as n — . Now,
using Lemma 3 of Balacheff and Dupont (1980), we get the desired conver-
gence.

Let 2, = {y € [0, 1]*: (yY, ..., y™) are distinct points of (0, 1)}. We define
Y,:[0,1]* - D, ,, by setting

[nte] Tk+1

Yn(y)(t) = (n - k)*1/2 Z 1_[ I(y(i+j—kvl)stj) - Hn(t) ,
i=k+1]J=1
for all y = (yV,...,y™) € 2 and t = (¢,,t) € [0,1]**2.
We define the space 7, by 7, = Y,(%;). Forany j € {1,..., k + 1} we define
an operator 7;: 7, — D, as follows.
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Let y4,) < *** <Y, be the order values of (¥, ..., y") (by convention,
Yoy =0, Yn+1y=1), and let v, = Y,(y). Then,
Tj(vn)(tj)
y®,  where y = max{y™; m € {j,...,j +n —k — 1}}
(4.5) _ |y, where y© = max{y"™ <y,;
me{0,j,...,j+n—k—1}}
1 1+1
if tiel—, ,
n’ n

where i ={0,1,...,n — 1}.
Now the map G,: 7, — D, ., is given by

G.(v,)(t) = v,(to, 71(v,) (1), o, T2 (V,) (Bh s 1))

[ntol

(4.6) +H(n =k L [Hy(r(0)(#), s maii(0) (Fr01)

i=k+1

~H(t,. o ty0)].

We now give the formal proof.

The first thing we have to show is that G, is continuous for every n.

Let {v, Jn > 1, I > 1, be a sequence of functions in 7, and let v, , -
v,(€ 7,) with respect to special Skorohod topology. We show that G, (v, ;) —
G,(v,) in uniform topology. From the definition of the special Skorohod
topology, we have a sequence {A; ;},_;_+1 ;51 € A**! such that V £ > 0, 3
I, € N such that max; _; _;.1lA; ,(¢;) — t;| < ¢ and

[, 1 (8) = v, (80, Ay, (£1), - Ay ()l <&

(4.7)
Vi<l andV¢te[0,1]%*2

where A denotes the space of maps A: [0, 1] — [0, 1] which are nondecreasing,
continuous and bijective, and A**! denotes the space of maps A: [0,1]**! —
[0,1)%*, where A(ty, ..., ¢, 1) = (A, . Ay ), A, EA 1 <j<k+
1. Then, we have the following lemma.

LemMa 44. 3 [,>0 such that ¥V 1>1, V.je(l,...,k+1} and
V¢ €10,1],

)‘j,l(”'j(l’n,z)(tj)) = Tj(vn)(tj)-

Proor. For fixed j, let (y“1,...,y"" %) be a nondecreasing sequence of
discontinuity points of 7,(v, ,), and let (y*',...,y%"~*) be a (nondecreasing)
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sequence of discontinuity points of 7,(v,). (By convention, yh0 =900 =0,
yhnoktl = yOn=k+l — 1) For i €{0,1,...,n —k + 1}, let ¢; e[y“y““)
Then,

(4.8) (n—k)"V*[v, ,(1,.. D) HH(L, ot )] =i(n—k) T

Let h€{0,1,...,n — k + 1} - )tj,l(tj) € [yo’h,y°*h+1). Then, we have

(2= &) [ 0(1y s Ay (8))s 1) + H(Lyee, 25402, -, 1)

(4.9)
=h(n-k) "
From (4.8) and (4.9), we deduce
h i _
(4.10) XUp (Lo tyyeey 1) = 0,(1,000, 45 4(8;), .., 1))
1
<n—k V1> some ;.

Thus, |h/(n — k) —i/(n — k)| < 1/(n — k) and this implies that A = i. Now
let lo=max,_;_, ;. Then, V I2>1, and V t; €[y"),y""*"), we have
A l(tj) € [y%¢,y»**1). Since the functions A;, are continuous and strictly
nondecreasing, the proof follows. O

We now decompose G, defined in (4.7) as G, = v, + 8, where v,(v,X¢) =
vn(tO’ T]_(vn)(tl), ey Tk+1(vn)(tk+1)) and 6n = Gn - ')’n.

Lemma 4.5. (a) vy,: (7,,d) = (D, .4, p) is continuous.
M®) 8,:(7,,d) - (D, ,, p) is continuous.

Proor. For t [0,1)**2 for V ¢ >0, 3 [,V [>1,, we have (using
Lemma 4.4)
'Un,l(t0771(vn,l)(t1)’"'77k+1(vn,l)(tk+1))

Va(to, T1(va) (21), - .. ka+1(vn)(tk+1))| <e.

The proof follows. Part (b) follows analogously, noting that H, has uniform
marginals. O

We now prove the convergence of the sequence {G,}.

Let v, € 7,, n € N*, and suppose that v, >, v € C,,, and v = 0 on the
lower boundary of [0, 1]**2 and also when t = (1, ..., 1). We have to prove that
G,(v,) =, G(v). The proof is based on the following lemmas.

i LEMMA 46. Vje(l,...,k+ 1}

(@ 7,(v,) = idy 1) in uniform topology.
(®) (n - k)3(r; (,) - idy 1) = —v(,...,idyg 1. - ., Din uniformtopology,

where idg 1) is the identity function on [0, 1].
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Proor. Note thatV v,, 3 y, = (P, ..., y) such that v, = Y,(y,). Now,

for fixed j and for each n >k + 1 define v{(¢,) as V(¢ =
n~2L7_ (I 0.,y — ¢} and note that v$/(¢,) can also be written as

v (¢;) = ((n — k) /n) ) 20,(1,.. 1)+ 72 Z [ pP<ty T j]

+n71/2 Z [I{y(z)<” tj].

i=n—j

Since v, =y v (which implies v, —, v), it follows that v{’(¢;) —,
v(l,...,t;,...,1). Thus, we can write

n
! 21{ P < 1)) tj} - n_l/zvfa’)(fj(vn)(tj))
im

ITj(vn)(tj) - tJ

IA

k .
~ + n‘l/z[p(vf{), v(l,...,",...,1))

+p(v(1,...,- ,...,1),g)] -0 as n — o, where g =0.
This proves part (a). The proof of part (b) is similar. O

LemMa 4.7. y,(v,) = v in uniform topology.
Proor. Follows by definition and Lemma 4.6(a). O
Lemma 4.8, 8,(v,) - 8(v) = G(v) — v in uniform topology.

Proor. For ¢ € [0,1]**2, we have

[nt,] — %
X{H,(71(v,) (1), - o> Tha1(0) (B31)) = Ho(Er -5 Erin)} -
If there exists a j € {1,..., %k + 1}, {; <n~', then

mHn(t1a~"’tk+l) i mn

and so §,(v,) > 0as n > .
IfVje(l,...,k+ 1}, ¢t; > n™', then by the Taylor expansion,
[ o] — k kt1
Bn(vn)(t) = ( 1/2 Z {J(Un)(tj) _tj}

a
X EHn(on,l(tl)’ s 0y (1),
J

8,(v,)(¢) =

8,(v,)(2) =

b
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where 0, (t;) € [t; A 7;(v,)¢)), t; V 7;(v,)¢,)]. Since {H,,} satisfies the differ-
entiability condition, we deduce from Lemma 4.6, the desired result.

Now, since G,(v,) = v,(v,) + 8,(v,), we obtain (using Lemmas 4.7 and 4.8)
that G,(v,) = G(v) = v + 8(v). The proof of Proposition 3.5 follows. O

5. Proof of Theorem 2.1. First, we show ., can be written as

(5.1) A =(n— k)‘1/2[/[0 1]ML,,(t)A,,(dt) +b,,

where A, is a signed measure on [0,1]**? and b, is the centering constant
defined in Section 2.

(n— k)3 (A4 -b,)

= (n - k)_1/2[ Z cn,ian(Rn,i—k"“7 Rn,i) - bn:|
i—k+1 )

n k+1
=(n-— k)_1/2[( Z cn,i(z a,(iy, . esiprr) I—III[R,,,,H_k_fij]))
j=

i=k+1 A
Lo Le+1 )| o (Lo Lp+1
=Y A=, H|—,...,
B n n n n

= (n- k)“1/2[): An(i—",..., i’““)

B n n

* (T4 Ak,
X . — — ...
PPl (| [Rptj-r-1515] "\ n? *n

- Z,\n(i_‘),..., ik”)Ln(i_",.‘., ik“)
B

n n

= L,(8)A,(d?),

[0’ 1]k+2

where T , is the sum over all (iy,...,i,,,)in{1,...,n}** " and £ p is the sum
over all (iy,...,i,,,) in{1,...,n}**2 where A, is defined in Section 2 and L,
is given by (2.3). We now prove that

(5.2) [ L (t)A,(dt) —>[ L t)A,(dt) asn — .
[0’1]k+2 [0’1]k+2
Let h,: D, .5 — R be defined as
(5.3) ()= [ fA(dD),  n=0.
1]k+2

lo,
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Let {f,, n > 1} be a sequence of functions in D,,,, and suppose that
f» = fo in uniform topology, where f, € C,_,. We show that

(5.4) h(F) = ho(fy).
We have
j;O,I]k+2fn)‘n(dt) - 'l[‘0,1]’“’2f0)\0(dt)‘

], dfolhn = 20)(a0)
[0, 1]

<

[ I = Folra(dt)
[0’ 1] +2

+

s s (0 =FO[ A
tel0, 1]5+2 [0, 1]%+2
(5.4) follows using (2.5), (2.6) and (5.3), and (5.2) follows using Billingsley
[(1968), Theorem 5.5)] and Proposition 3.5.
Now we prove that condition (2.6) of Theorem 2.1 is satisfied. By using (5.1)
and (5.2) we deduce that

f i 2fo()‘n = A0)(dt)
[0, 1]

(5.5) E[L(t)L(t)]Xo(dt)Ao(dt).

[
[0, 1]k+2 [0’ 1]k+2

We have [see (4.4)]
B+1

(5.6) L(t) = W(¢) — X tWi1,...,¢;,...,1)L;(t).
j=1

From (5.5) and (5.6) the equality in (2.6) holds.
It remains to show that o2 < «. By assumption (d) of Proposition 3.4,

k+
lim |E {Wn(t) - thOWn(l,...,tj,...,l)lj(t)}
n—x j=1
k+1
x{Wn(t') -y t()Wn(l,...,t;,...,1)lj(t)}”
j=1
= |[E[Lt)L(t)]]
(5.7) 1 271/2
< lim E{Wn(t) -y tOWn(l,...,tJ-,...,l)lj(t)} }
n—wo j=1
R+l ' 2]'/*
X E{Wn(t’) - t(',Wn(l,...,t;,...,1)lj(t’)} }
o

lim[A,B,],

n—ow

by the Schwarz inequality.
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Let now {X,, ;} be ¢-mixing with rates (1.2) or (1.3). Then from Lemma 4.1
with ¢ = 1, we obtain

k+1
A < E{Wf(t) +2\W,(0)Itg X (W, (1, ¢5,..., 1)IE,(t)
j=1
k+1k+1 1/2
+t2Y Y lj(t)ls(t)|Wn(1,...,tj,...,l)Wn(l,...,ts,...,1)|}
s=1j=1
(5.8)
E+1 1/(k+2) E+1 1/2(k+1)
<C, ( l_[tm) +2t0( l_[tm) 1(t)
m=1 m=1
k+1k+1 172
+g Y X L(6)1(t) %
s=1j=1

where C; > 0 is some constant.

Similarly, B, is less than or equal to some inequality with #’s changed to
t’s. Thus |E[ L 4(¢)L,(¢")]] is bounded by a function which is A, X A, integrable,
and so |E[Ly(¢)L (2] is also A, X A, integrable.

Let now {X,, ;} be strong-mixing with rates (1.4). Then, using Lemma 4.2
with ¢ = 2, we obtain

kE+1 (1-e)/(k+2) E+1 (1-e)/2(k+1)
A, <Gyl TT¢, + 2t T1 ¢, L;(t)
m=0 m=1
k+1k+1 172
+2 ), Y L(t) 1 (t)e o 2 me/2
s=1j=1

and a similar inequality for B,, and the result follows as in the case of
@-mixing.
The proof of Theorem 2.2 follows analogously.

6. Applications to Markov processes and ARMA processes.

6.1. Markov processes. Consider a sequence {X, ,; n € Z} of R-valued
processes such that for all € N*, {X, ,} is a k-Markov process with stationary
transition probabilities P(x;, ..., x,; A), where A € ¥, & is the Borel o-field
of R and (x,,..., x;) € R

We say that the Markov process is ergodic if there exists a unique probabil-
ity measure u, on R* with marginals I1, on R such that

,(A) = /WPt(xl,...,xk;A)p,t(dxl,...,dxk) forall A € &.
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We denote by P,” the m-step transition probability defined by
Prtl(xy, ..., %, A) = fRPtl(xz, ces Xy ¥ A)YP (4, ..., %55 dY),

for all A€ & and (x,...,x,) € R~
For a transition probability P(:--,-) and invariant measure u, and
marginal II,, we denote by P,*(-, - ) the transition probability defined by

'/l‘l Pt(ul""’uk;(_Oo’yk+1]):u't(du1"~-,duk)

t}’i=l( —oo’yi]

k
Yh+1
= Pt*(uk+1; l—[l(_w’yi] ,(duyq)-
_ i

We say that the Markov process is geometrically ergodic if it is ergodic and
if there exists 0 < p, < 1 such that

P (xy,...,%,; ) — ()| = 0(pr) forallas. (xq,...,%,) € R*,

where || - || denotes the norm of total variation and p, is called the rate.

The Markov process is Harris recurrent if there exists a o-finite measure v,
on R with v,(R) > 0 such that »,(A) > 0 implies P(x,,...,x;; X, , € Aio) =
1 for all (x4,...,x;) € R*,

Finally, the Markov process is Doeblin recurrent if it is ergodic and there
exists a finite measure v, on R with »,(R) > 0, an m > 1 and ¢ > 0 such that
P™(xy, ..., %, A) <1 —¢if v(A) <e for all (x,...,x,) €R* and A € &.

LetusdenoteVje{l,...,k+1}and VM > 0,

R,(M) = (-, +0) "I X [-M, M] X (=0, +00) 7+
‘A Then we have the following theorem.

THEOREM 6.1. Let {X, ,, n € Z} be a Markov process such that for every
t € N* (X, ,} is either (a) aperiodic, Harris recurrent and geometrically
ergodic with rates 0 < p, < py, po € (0,1) or (b) aperiodic and Doeblin recur-
rent. Suppose there exists a probability u, on R* and a transition probability
Py(--- ;) such that

(6.1) sup |u,(A) —po(A) =0(t™), a>0,
Ac B*

(6.2) sup|P,(xq,..., %53 A) — Po(%y,...,%,;A) = 0 ast — o,

where sup is over A€ % and (xq,...,x,) € R,(M). for every j €{1,...,
E+1,VM>O0, and

(6'3._2 sup|P* (%4115 Ap) — P (2,415 A,) = 0 ast - o,

where sup is over |x,.,| <Mand A, € B*.
Then, under the assumptions (3.2) and (3.3), (n — kK)'/*(#, — b,) con-
verges in law to a normal distribution with mean 0 and variance o®, where b,
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and o? are given by (2.4) and (2.7), respectively. (It is assumed that
P,, P,, P;*, P§ have densities continuous in x’s and u, have densities).

Proor. (i) Suppose (a) holds. First, we show that the process is geometri-
cally strong mixing. It is well known [see Nummelin and Tuominen (1982)]
that if a Markov chain is aperiodic, Harris recurrent and geometrically ergodic
with rate p,, then ’

f”Ptm(xl’“"xk; ) = L,( )l (dxy, . .., dx,) = O(pf*)

and this property is equivalent to strong mixing with rate p;* [see Rosenblatt
(1971), page 199]. Next, we show that the covariance functions of the associ-
ated graduate empirical process (2.2), converge to a function K, but this is a
consequence of Lemma 6 of Riischendorf (1974) which remains true for
strong-mixing conditions with a geometric rate.

Let G, be the distribution function of the % + 1 successive random vari-
ables of {X,,} and let H, be the measure on [0, 1]**! defined by
H(y1 s ¥eeD) = G Ny, . .., 117 Wy, 41)), where II, is the marginal of u,
for all (y,...,%,.,) €[0,11¥"! and ¢ > 0 (note that we also denote by II, the
distribution function associated with the measure II,).

We have to show that {H,}, . , satisfies the differentiability condition (given

in Section 2). _
Set 1{) = 0H,/dt;, and let F{ be the conditional distribution function

defined as
Ft(j)(uj;yl’""yj—l’yj+1""’yk+1)

= [P, (o yaDwi(du, o duy gy du i, duy),

where R = IT{Z{(—w, y,I[1};, (=, y], uj is the measure associated with
the distribution function Hfu,,...,u; 1,1, u;,q,...,u;,1) if j <k, and
F{**D ig the conditional distribution function associated with P,*. We have

lgj)(yl, e Yer1)
= Ft(j)(nt_l(yj); Ht—l(h)’ ""Ht_l(yj—l)’nt—l(yj+l)’ ""Ht_l(yk+1))°
Also,
D0 =190 0)
= [FOM; ;)5 Ty - T M50 T )5 -5 T M 0k1)
—FO(T; 4,05 T2 - T 20520, T )5 - T )]
+ [Féj)(nt_l(yj); 07 s T -0 T )y -5 T M0k 1))
—FO(I5 ;) T ), - 05 05— 1), g Wjan)s -5 g W)
=A+ B.
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To simplify the notation, take j = 1 (for j # 1, the method is exactly the
same). Then, we have

A=FOO; Y (y,)5 TN (y)s - T (k1))
- Fél)(nt_l(yl); Ht—l(yz)’ LR Ht_l(yk+1))

= Pt(xl; Ugy voyly; (—, xk+1])/~‘1t(du2, s duy)

1—[?=2( —°°,xl]
- % Po(xl’uZ"”’uk;(_°°’xk—l]):u'lo(duz’“"duk) ‘
Hl=2( —w,xl]
[for TI; Y(y,) =%, 1€ (1,...,k + 1}]
S8+fk /.th(duz,...,uk)—,LLlo(duz,n~,duk) <2¢
H1=2(—°°,x1]

for all (x4,...,x,,,) € R(M),
We also have

B = FO(T1; M (y0); T Y (y2), - T M (9he0)
— FO(I5 Ny T (ya)s - - g M9k 1))
= FO(Ig e Moo I3 H(yy)5 Mgt e Mg o I (), -, gt o Mg o T H(441))
— F{P(IIg e My o T (yy); Mgt e Mg o g (), ..., Mgt o g e TG My 1) -

Noting that
sup Mool (y,) —yil = sup |y, — II, o 15 (yy))|
y,€[0,1] y:1€[0,1]
= sup |H0°H61(y1) - Ht°H51(y1)|,
yIE[O, 1]

we find [using (6.1)] that B < ¢ for sufficiently large £. Thus, [(y,, ..., ¥4.+1) =
19(yy, ..., Y441 @s t = o uniformly in (y;,...,y,) € R,(M) for any M > 0,
and so {H,},. , satisfies the differentiability condition.

(ii) Suppose (b) is satisfied. Then the proof follows from Davydov (1973),
who proved that a Markov process which is Doeblin recurrent and aperiodic is
geometrically ¢-mixing. O

ExampLE 6.1. Consider the process {X,, n € 7}, where X,,; = a, X, +
ayX,6,,1 + Q36,1 +aue2,; + a5, where the a’s are real numbers and
{¢,,, n € Z} is a white noise with strictly positive density. Then Mokkadem
(1985) has shown that if a? + a%3E(e?) < 1 and E(e}) < , then the process
{X,, n € 7} is geometrically ergodic and geometrically strong mixing. Thus,
the asymptotic normality of the statistic ./, based on the ranks of {X,}
follows. ’

ExampLE 6.2. Consider the process {X,, n € Z}, where X, , = f(X,) +
€,+1, Where the ¢’s are independent and identically distributed random vari-
ables with strictly positive density, and f: R — R is bounded, nondecreasing
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and continuous. [This model was studied by Collomb and Doukhan (1983).] It
is easy to check that this model is Doeblin recurrent and aperiodic, and we
deduce that {X,,} is geometrically ¢-mixing and we can apply Theorem 6.1.

6.2. ARMA processes. Consider a sequence of ARMA (%, k,) processes,
ky
(6.4) [T(1-aPU)X,,=Q(U)s;, i€Z,neN,
i=1
where U); = A,_;, QV(U) = Li2,b{U’, b§” =1 and (¢, i €7} is a se-
quence of independent random variables such that E(e;) = 0 and ¢; has a
density g,(x), i € Z.
Then we have the following lemma.

LEmMA 6.1 [Gorodetskii (1977), Withers (1981)]. Let the sequence {X,, ,,
i € 7} satisfy the following conditions:

(6.5) sup f lgl(x + B) — g;(x)|dx < c,|B], VB andsomec; > 0;
ez U —

(6.6) sup Ele;| <cy < and sup sup || <p <1,
ez neN 1<j<k,;

where c, and p are some constants. Then for any n € N*, the process {X,, ;
i € 7} is strong-mixing with rate a(m) = O(pJ*/?) for each Po > p-

THEOREM 6.2. Let the sequence {X, ;, i € Z} of ARMA (ky, k;) process
given by (6.4) satisfy the following conditions:

{e;, i €7} is a sequence of independent and identically
(6.7)  distributed random variables, each having .#1(0, o*?) distri-

bution.
Vje{l,...,k},3a>0 and a; €(-1,1), ajaﬁO,such
(6.8) that [a‘”’ —a;/=0(n"%), and Y Il €(l,...,ky}, 3 B >0,

and b, € R such that |6y — b = O(n_ﬁ)

Then for the rank statistic ./, associated with the sequence (X, ,,..., X, ,}
and the score functions satisfying the assumptions of Theorem 2.1,
(n — YA~ — b,) converges in law to the .#(0, c?) distribution, where b,
and o? are given by (2.4) and (2.7), respectively.

Proor. To prove this theorem, we first note, using Lemma 6.1, that the
sequence {X, } is geometrically strong-mixing. Now, let F, be the distribution
function of X, ; and F, the distribution function of a stationary random

variable X,; defined by an ARMA (%, k,) process with coefficients a;, 1 <j <
k, and b;,, 1 <l < k,. Now we prove the differentiability condition for H,(t)
defined in (2.1) be verifying (6.1), (6.2) and (6.3).

Let P/ be the transition distribution function of X, o X, o1

X » X, 1k, and G/ the distribution function of (X, 1""’Xn,k1—1)’

n,j+lr>
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n > 0. Then (6.1), (6.2) and (6.3) are satisfied in view of the following well-
known result.

LeEmMA 6.2. Let {G,, n > 0} be a sequence of k-dimensional normal distri-
bution functions each with mean vector 0. Let the covariance matrices of G,
and G, be X, = () and X, = ((o;})) and assume that |of" — o;f| =

O(n=%) foreach i,l =1,...,k. Then G, converges uniformly to G,.
7. Appendix.

7A. Proof of Proposition 3.1. (a) and (b) are sufficient conditions. They
follow immediately from Proposition 3.2 by using a result from Billingsley
[(1968), page 151, line 15].

We have only to prove that (a) and (b) are necessary conditions.

Let %;*., be the o-field generated by the uniform topology on C, ,,.

As P is concentrated on a separable space (C, 4, %, ), it follows from
Wichura [(1970), Theorem 1] that there exists a probability space (Q, 7, u)
and a sequence of random variables {Y,*}, n € N*, and a random variable Y*
such that uw(Y,*) = P,, u(Y*) = P and Y,* - Y* a.s. u. For any & (> 0), we
consider the map Tj: D, ., — R defined by

T5(f) = sup{|f(¢) — f(¢); It — ¢l < 6}.

Then, T; is a continuous map for the uniform topology on %;_ ,.
Now, consider a sequence of random variables {Z, ;}, n € N*, and a random
variable Z; defined as

Z, s=Ts° Y}, Zs=TsoY*.
As Y, * converges a.s. to Y*, it follows that V ¢ > 0, 3 N, € N such that

(7.1) wllZ, s —Z| >e/2} <e/2, Vn=z=N,.
As Y* is concentrated on C, ,, we have also V ¢ > 0, 3 8 > 0 such that
(7.2) w{|Zs| > e/2} <e/2.

(7.1) and (7.2) imply
:u'{lzn,BI > 8} <eg
or
(7.3) P[f;0(f,8) 2¢] =p{lZ, s > ¢} <e,

and from (7.3) we obtain condition (b). Condition (a) is immediate. Proposition
3.1. is proved.

7B. Proof of Lemma 4.1. Without loss of generality, we can take N, = n.
First, we prove that for any p, I <p <n,

p 2q q 2q 9
(74) E( Z Xn,i) < Cq Z pq/l( sup ||Xn,1||l) (h(p’ l)) q’
i=1

I=1 l1<j<n
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where C, is a constant depending only on ¢ and ¢ and

S
h(p,l) = exp{ Yy <p1/2‘7([21/2(”1)])} for 25 < p < 2°%1L
=1
For any (I, p), 1 <l < p < n, we define S(I, p) by
U+p-DA(n+1)
S(l,p) = h X, ;, where, by convention, X, ,,; = 0.

i=IA(n+1)
Denote S =S(l,p), S'=8S(+p+r,p), R=SU+p,r)—S2p +1,r) for
r>1,
1/2q

E >z

i=In(n+1)

’ and m;= sup ”Xn,j”l'

(U+p—-DA(r+1) 2q
Xn 12
l1<j<n

a(p,q) = sup
I>1

Then, after some computations, we obtain the inequality,
(15)  E(S +8)% < 2(a(p,q))* exp{(2q¢(r)) "™} + (2a(p,q = 1))™.
From the Minkowski inequality, it follows that

U+2p—-DA(n+1)

Z Xn,i

=1

= IS + S + Rlly, <|IS + S'llgq + 2rm,
2q

< 21/2qa(p,q)exp{<p(r)1/2q} + 2a(p,q — 1) + 2rm,.

Now take p = 2°, s > 1, and put r = r(s, q) = [2°7%9* D], ¢(s, @) = (e(r)t/2a,
Then, from (7.5), we can write

a(2°,q) < 2129a(2°71, ¢ )exp{¥(s, q)} + 2a(2°~%, ¢ — 1) + 2r(s,q) my,

a(2,q) <2714 2% 2-i/2qr(i,q>)mqexp{ 5 w(j,q)}
j=1

i=1

(7.6) ) .
+2Y) 2670/2g(2i71 g — 1)9XP{ ) tﬁ(j,Q)},

i=1 J=i+1
where, by convention, X%_, . ¢(j,q) = 0.
For g = 1, we have

a(2°,1) < K,2°/2h(2°,1) m,,
where K, is a positive constant. '
We give a proof by recurrence on g. Suppose that, for all ¢ > 2 and p = 2%,
we have :

g—1
a(237q - 1) =< Kq—l Z 23/2lh(2syl)ml7
=1
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where K is a positive constant. From (7.6), we deduce

qg—1

S / s
a(2',q) < 2°/% exp{ )» w(j,q)})(l +2 Y 27 eIy

Jj=1 j=1

g—1
+24,K,_, ¥ 2°/%R(25, [)m,,
=1

where A, is a constant depending only on ¢ and ¢. That is,

(7.7) a(2°,q) <K, ¥ 2°/%h(2°,1)m,.
=1
Finally, for each p < n, we can write the binary decomposition as

s

= Z vi2i’ U; € {0’ 1}
i=0
From the equality h(p, 1) = h(25,1) for 2° < p < 25*! and (7.7), it follows that

s

a(p,q) < ¥ va(2,q) < Zs‘, a(2i,q),

i=0 i=0

s q
(7.8) a(p,q) <K,), Y 2°%h(2',1)m,,
i=01[0=1

q
(a(p,a)* < C, T p*/!(h(p,1)m,)™,
=1
< and (7.4) is proved.
(4.1) now follows by putting p = n = N, and by using the relation

(7.9) i( @2 < 40 o m~Yo(m))"* < +oo.

HwE

Lemma 4.1 is proved.

7C. Proof of Lemma 4.3. For every p, N,r € N, we define Sy = LN Y,
TN,J = Z Y(N+7‘)+l’ RNJ l—l(Yj(N+r)+N+l - YpN+Jr+l) for J = 0 L]
p—1 For every [ € N, we denote K? = E(L!_,Y,)%

From the property of stationarity, we have

=E(S%) =E(Ty ;)" forj=0,...,p—1

and
w 2 1 p—l ’ 1/2
(7.10) E(Sy)? - o E Y Tn;| [ <p(e(r)*KE.
j=0
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We have
ZY_ZTNJ+ZRNJ
i=1

We deduce from (7.10)

<p(e(r))’K} + 4pK, Ky.

(1.11)  |E(Sy)* - %E(SPN)z

From Lemma 4.1, there exists a constant C depending only on ¢ such that
K2 <CrK? and K2% <CNKZ
Now, taking r = r(N) = [N'/2] and using (7.10) for p = 2, we obtain

1 m—1 1
—2—S—E(st) 2S+mE(st+m) <% Z o E(Sgeet)? — Ezv:(szs+;,+1)2
s+m—1
<8CK? Y ((e([2%77]) + 27%7%).

k=s

It follows that (1/2°)E(S,:)? is a Cauchy sequence. Hence there exists a
constant K such that

1
’2‘3‘E(st)2 - K? ass— o,
We deduce that for every p, € N,

K? — -0 ass — o,

2
sup S,5:)
P=2po

Let [ be such that pg <! < (p + 1)q. Then

1

1
—— | forallqg > 1.
p1/2)

Consequently, V ¢ > 0, 3 p, € N, such that

s 1 2 €
sup - TE(S)"|<5, Vpz=p,.
I=p l 2

1
Ik (Spi1/p1)

Now if we choose s, such that 2°¢ > p, and
2
E(Sp2s)

then there exists for every n > n,=p,2°, an s >s, and a p for which
Do <p <2p,and p2° <n <(p + 1)2°

sup |K? — for all s > s,

P=2py

w
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We deduce that V n > n,,

1 1 1 1
K2 — —E(S,)?| <|K? = —E(S,,:)*| +|—=E(S,5:)° — —E(S,)®
n (Sn) < pzs (Sp2 ) pzs (Sp2 ) n (Sn)
€ €
<—+—-=
2 T2 ®

which implies

1 2

;E(Sn) —»K? asn—> o
and Lemma 4.3 is proved.
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