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Consider two Brownian motions Bj and BZ, each taking values on an
interval [0, a;], i = 1,2, with absorption at the endpoints. The time evolu-
tion of the two processes can be controlled separately: i.e., we can alternate
between letting Bj run while freezing BZ, and lettmg B, run while
freezing B1 This results in a switched process that evolves in the rectan-
gle, D= [O a,] X [0, a,] like a horizontal Brownian motion when B
freezes and like a vertical Brownian motion when Bl1 freezes. Let f(xq, x2)
be a nonnegative continuous payoff function defined on the boundary 4D of
D. A control consists of a switching strategy and a stopping time 7. We
study the problem of finding an optimal control which maximizes the
expected payoff obtained at time 7 (stopping in the interior results in zero
reward). In the interior of the rectangle, the optimal switching strategy is
determined by a partition into three sets: a horizontal control set, a vertical
control set and an indifference set. We give an explicit characterization of
these sets in the case when the payoff function is either linear or strongly
concave on each face.

1. Introduction. Consider a pair of Brownian motions (B!, ¥, P!), i =
1,2. The process Bi= {Bgi, s; > 0} evolves on the interval [0,a;] and is
absorbed at the endpoints. For each i, B’ is adapted to the filtration #° =
{? i, s; > 0} on the space Q! of continuous functions and has expectation
operators E: corresponding to the probability measures P‘ x; €10, a;]. Also,
we assume that the filtration & is right-continuous and complete relatlve to
every measure P‘ x; € [0, a;]. The time evolution of the two processes can be
controlled separately i.e., we can let the B! process run and freeze B2 or we
can let the B2 process run and freeze B!. This results in a switched process
whose state space is the rectangle D = [0, a,] X [0, a,]. On the faces of D, only
one of the Brownian motions can actually move because the other is at an
absorbing state. Likewise, the corners are completely absorbing since both
processes are in absorbing states. Suppose that we are free to choose both the
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OPTIMAL SWITCHING BETWEEN BROWNIAN MOTIONS 1011

switching strategy and the stopping rule. When we decide to stop, we collect a
payoff depending on the location of the pair (B!, B?) within D at the time of
stopping. Our goal is to maximize the expected payoff.

We consider a special form of this problem: We assume that the payoff for
stopping in the interior D° of D is zero and that on the boundary dD of D the
reward is specified by a nonnegative continuous payoff function f(x,, x,). As
mentioned above, once the process hits a face of D, it must remain on that face
for all time. Therefore, on each face the problem reduces to the classical
optimal stopping problem for a single Brownian motion (see, e.g., [6]). Thus
the problem does not change essentially if on each face we replace f by its
smallest concave majorant and simply stop as soon as we hit a face. Also,
stopping before a face is hit is never advantageous since the reward will then
be zero. Hence, the stopping rule part of the problem has now been trivialized:
Stop at the first hitting time of 4D. The problem then is to find the switching
mechanism that maximizes the expected payoff at the first hitting time of the
boundary.

To formulate the problem precisely, we use the notion of a switching
strategy. A switching strategy T is a family of random time pairs,

(1.1) ' T = {T(t) = (T(t), Tx(t)),t 2 0},
satisfying
(1.2) T(0) = (0,0),
(1.3) T,(t) is increasing in ¢ for each i,
(1.4) T (t) + Ty(t) =t
and

. (L.5) {Ty(t) <51, Ty(t) <55} € F} X T2

The random variable T,(#) represents the amount of time the ith Brownian
motion has been used up to time ¢. The interpretation of (1.4) is that, at time
¢, the total allocation of time between the two processes must equal ¢.
Condition (1.5) says that the switching strategy must be nonanticipating. This
notion of two-parameter random time change was first introduced in the
discrete case in [3]. It was independently proposed by two of the current
authors in [13]. Walsh seems to have been the first to use this notion in
continuous time in [19], where T is called an optional increasing path. The
switched process XT is defined as

(1.6) XT(t) = Brg) = (B%l(t)’ B%z(t))'
The problem is:

ProBLEM. Find a switching .strategy T'* that maximizes the expected
payoff at the first hitting time of the boundary:

(]“7) U(x) = Ex f(BT*(T*)) = Sl;pExf(BT(T))’
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where
(1.8) r = inf{t > 0: By, € 4D}

and E_ denotes expectation using the product measure P, = lel X Px22, x =
(x4, %) € D.

Note that E,» < « for any strategy T' and all x € D since T does not exceed
the sum of the absorption times of B! and B2 The function v is called the
value function.

This problem is interesting for several reasons. For example, the
Hamilton-Jacobi-Bellman principle of dynamic programming suggests that
the associated value function v(x,, x,) is in some sense a solution of the
nonlinear Dirichlet problem

v %

max(—z, —2) =0, in D,
d0x7 9x;
v=f, ondD.

(This is proved in the discrete case in [13] and assuming some regularity on v
it is proved in the continuous case in [14].) Nonlinear Dirichlet problems of
this type have been extensively studied (see, e.g., [7], [10], [9], [16] and [18]), but
this particular equality corresponds to a degenerate case of the general theory
and none of the general results seem to apply. The solution we propose is
explicit and the behavior of the optimal solution is somewhat surprising. For
example, on the boundary between the horizontal and vertical control sets, the
switched process exhibits an interesting Brownian local-time behavior.

As mentioned earlier, it suffices to consider the case where f is concave on
each of the four faces of dD. We restrict our attention mostly to two extremal
cases: linear and strongly concave. By strongly concave, we mean twice contin-
uously differentiable and strictly concave.

The existence of an optimal switching strategy has been considered in
varying degrees of generality in [18], [14], [4] and [5]. Our contribution is that,
in the specific setting described above, we give explicit analytical formulas for
the value function. Consequently, while parts of the paper are probabilistic in
nature, other parts are distinctly analytical. This is in the same spirit as [1]
and [17].

2. The main results. In this section we present the main results. The
proofs are deferred to Section 3. Sometimes it is convenient to write the
arguments of a function as subscripts rather than in parentheses. We do this
freely and hopefully without causing confusion.

PRrOPOSITION 1. Suppose that f is linear on each of the four faces of dD. Let

x X
w(xy,%5) = fo,0+ ( a0 — fo,o)a_1 + (fo,a2 _fo,o)a_2
1

X1%Xg

+(fa1,a2 _fal,O _fO,az +f0,0)

a,ay
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denote the bilinear interpolation of f. Then v(x) = w(x) and every switching
strategy is optimal.

ReEMARK. Whenever the value function is bilinear in some region, then in
that region either the horizontal or the vertical Brownian motion can be
chosen (or any combination). We call such a region an indifference region. The
conclusion of the previous theorem is that all of D is an indifference region.

To discuss the remaining cases, we need a notation for the faces of dD. We
will call them north, south, east and west and denote them by Fy, Fg, Fg
and Fy.

PrOPOSITION 2. Suppose that fis concave on Fg and Fy; and is linear on Fy
and Fy,. Then

Xg Xg
o) = 22 () + (1 - a—z) F(0,0)

and an optimal strategy is to run the vertical Brownian motion

T*(t) = (0,¢).

ReEMARkS. (i) If f is strictly concave on either Fg or Fy, then T'* is unique.

(ii) By taking f to be linear on Fy, we get the following heuristic: When
near a face having concave data, it is best to choose the Brownian motion that
runs perpendicular to this face.

2.1. Two concave faces. We now proceed to the case of two adjacent faces
having concave data. Based on the above heuristic, we suspect that near the
faces having concave data we should choose the Brownian motion that runs
perpendicular to this concave face. Hence, there must be an interface where
the control switches between horizontal and vertical. This is indeed what
happens.

First, we briefly digress to discuss concave functions. We associate with any
strongly concave function y defined on an interval [0, a] another function T’
defined on the same interval by

(2.1) I'(x) = y(x) —xy'(x) — v(0)
(2.2) = —/;)uy”(u) du.

From (2.2), we see that I is strictly increasing, continuously differentiable and
that I'(0) = 0. The function I' has a simple geometric interpretation: I'(x) is
the difference between the y intercept of the line tangent to y at the point x
and v(0).
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Suppose that f is strongly concave on Fg and Fy, and linear on Fj; and
F. Let

yi(x;) = f(x4,0),
yo(x2) = (0, x5)

denote the strongly concave restrictions of f to Fg and F, respectively.

We will call a strictly increasing parametric curve &(u) = (&(w), £5(w)),
0 < u < u, a switching curve if £(0) = (0,0) and &) € Fy U Fy. Our aim is
to show that for a certain switching curve, the optimal control is to run the
horizontal Brownian motion above the curve and to run the vertical Brownian
motion below. Hence, the value function should be linear in x; above the curve
and linear in x, below it. If we knew the value function along the curve, then
these linearity constraints would completely define the value function. This
leads to the following definition. Let ¢ be a switching curve and associate with
it the rectangle R defined by the constraints 0 < x; < ¢(%)and 0 < x, < £,(%).
Given any real-valued function 6(u), 0 < u < &, that satisfies 6(0) = f(0,0),
let w denote the continuous function defined on R that

agrees with 6 along the switching curve,
agrees with y; along the x; axis,

agrees with y, along the x, axis,

is linear in x, above the switching curve and
is linear in x, below the switching curve.

Oup -

We call w the (¢, 0) sweep of (y,,v,). The explicit formula for w is

Xop(x1) + v1(x1), £ (xy) < &7 '(%y),

(2.3) w(xy, x3) = 2,0 (2,) + 75(%s), E7M(xy) < E3(xy),

where
and
(25) R CRC)ERZEN

§1(§2_1(x2))

Let T, denote the increasing function associated with vy; as in (2.1) and for
0 <u <T{a)),let

(2.6) g(u) =T/ Yw), i=1,2.
{fwe put .
ﬁ = min(FI(al)’ l—‘2(0'2))’

then it is easy to see that &(u) = (£(u), é5(w), 0 <u <%, is a switching
curve. It terminates on Fy, (resp. Fy) if T(a;) < [y(a,) [resp. Ty(a,) < I'(a)l.
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Call ¢ in (2.6) the (y,, y,) switching curve. We are now ready to state

THEOREM 3. Suppose that f is strongly concave on Fg and Fy, and is linear
on Fy and Fy. Let £(u), 0 < u < u, be the (v, v,) switching curve and let R be
its associated rectangle. Then, in R, the value function v is precisely the (£, 0)
sweep of (yy,7vs), where for 0 < u < u, '

(2.7)

0(u)=§1(u)§2(u){ frale) 4oy

V== 1 S
&(u)éy(u) P ) w  E3E

and 0(z) = f(£(u)). Outside R, v is the linear interpolation of the boundary
values on the two opposite faces. Furthermore, there exists an optimal strategy
T* such that T*(¢) increases only when XT*(t) is on or above the switching
curve and Ty (t) increases only when XT*(t) is on or below the switching
curve.

0(z) /55{72(52) fﬂfé%(ﬁ) d }

REMARKS. (i) The region above the switching curve is the horizontal con-
trol region and the region below it is the vertical control region. The behavior
of the optimal switched process is quite interesting. Perhaps the simplest way
to visualize what happens is to consider a near optimal strategy where the
process is allowed to penetrate & units past the switching curve before
switching. For example, suppose that the process starts below the switching
curve. Initially, the vertical Brownian motion is run until either it exits D° on
Fg or it penetrates ¢ units above the switching curve. Suppose that, in fact, it
penetrates by ¢ before hitting Fg. Now we switch to the horizontal Brownian
motion, which is run until either it hits Fy, or it penetrates by ¢, the switching
curve. Since it is starting close to the switching curve, the probability is high
that it will penetrate by ¢ before it hits Fy,. Assuming that this happens, the
process is now located very close to the switching curve in the vertical control
region. Continuing in this way, it is clear that the process tends to wander up
the switching curve, making occasional excursions either into the horizontal or
the vertical control region. If we let ¢ shrink to zero, we have a pretty clear
idea of how the optimal switched process behaves. For example, this process
can exit D° only on Fy, Fg or at ¢(z). The special case where the switching
curve is the diagonal, x; = x,, is studied in detail in [12]. In this case, the
crawling up the diagonal is described by the local time of a certain Brownian
motion. Extending this detailed analysis to general switching curves is nontriv-
ial and is the subject of current research.

(ii) The exact form for ¢ and § was discovered using the principal of smooth
fit (see, e.g., [8]). That is, we found ¢ and 6 as the unique (¢, #) sweep that is
twice continuously differentiable in D°. In fact, stipulating that first deriva-
tives agree across the switching curve £(u) reduces to

(2.8) 0" = g_i(e_’)’z(gz)) + z_i(e_h(fl))-
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[This is obtained by differentiating and then equating the two expressions on
the right-hand side in (2.3).] Formula (2.8) arises no matter which first
derivative is stipulated. Making second derivatives agree reduces to

3 &5
%{0' - _2(0 - 71(51))} - 51’)’1(51)
&1 €2

_ &

&3
This formula arises no matter which of the three pairs of second derivatives
are matched. Substituting (2.8) into (2.9) yields

(2-10) F1(§1) = Fz(fz)‘

Choosing the common value of I as the parameter, we get

13

&i(u) = Fi_l(u)'

Now that the curve &(u) = (¢/(w), £,(w)) is known, we get 6 in (2.7) by
integrating (2.8) using the integrating factor 1/(£,¢&,).

(iii) For future reference, consider the following scenario: Suppose that v,
attains its maximum in the interior of [0, a,] at say x;* and similarly suppose
that y, attains its maximum at xJ. If y,(x) = y,(x5), then it follows from
(2.1) and (2.10) that the switching curve passes through the point (x, xJ).

(2.9) £
{0’ — 5-1(0 - 'yz(fz))} — &973(&2)-

ExaMpPLE. Suppose that the two concave functions are in fact quadratic,
vi(x) = c;x(a; —x).

Then T(x) = c;x? and, hence, the switching curve is a straight line,
Xy = 52(51_1(-"1)) = yc1/caxy.

2.2. Three concave faces. Now suppose that f is strongly concave on Fyg,
Fy and Fy, and that it is linear on Fy. First, we ignore the concave data on Fy
and we construct, as above, the switching curve £(u), 0 < u < u, emanating
from (0, 0). Denote by C, = {(¢,(x), £;,(w)), 0 < u < %} the graph of the switch-
ing curve. Let 0(u) be given by (2.7). Instead of requiring that z represent the
exit through the north or east face, we now allow it to be a parameter that will
be chosen. Also, (%) remains to be chosen. There are thus two unknown
parameters needed to completely specify a smooth (¢, 8) sweep of the boundary
data on Fg and Fy,. We call any such (&, 6) sweep a partial sweep of (Fg, Fy,).
Similarly, by ignoring the concave data on Fy, one constructs a switching
curve that emanates from (a;, 0). Let C, denote its point set. Associated with
this second switching curve we have partial sweeps of (Fg, Fz) which also
require two specification parameters—namely, how far the sweep extends to
the northwest and the value associated with its northwest corner.

There are two cases to consider depending on whether C,; and C, intersect
in D. If they do not intersect, then they both must exit through F, with C;



OPTIMAL SWITCHING BETWEEN BROWNIAN MOTIONS 1017
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D

F16. 1. Three concave faces.

hitting Fy to the left of where C, hits Fy. In this case, we can drop a vertical
line V through D in such a way that C, lies entirely to the left of V and C,
lies entirely to the right. By putting linear data along V we can reduce this
case to a union of two smaller problems which have been solved in Theorem 3.

We now focus on the more interesting case where C; and C, intersect at a
point, say & = (£, ,) (see Figure 1). Let

(2.11) Ry = {(x,,%,) € D: %, > &,),
(2.12) Rgw={(x1,x,) € D: x, < £, x, Sf_z},
(2.13) Rgp = {(x,%,) €D:x; > &, x, < &,).

THEOREM 4. On Ry, the value function v is the linear interpolation of f on
Fy and Fy,,

X1 a;
v(xy, %p) = a_f(apxz) +
1

- X
a - f(()’ xz), (xl’ x2) € RN'
1

. On Rgy, vis the partial sweep of (Fg, Fy,) determined by the requirement that

al_

(2.14) o2, E,) - j—llf(al,fz) N

a;

Similarly, on Rgg, v is the partial sweep of (Fg, Fy) determined by (2.14). An
optimal strategy exits. It runs the vertical Brownian motion below the switch-
ing curves in Rgy and Rgy and it runs the horizontal Brownian motion
everywhere else.

2.3. Four concave faces. Now we put strongly concave data on all four
faces. This time we expect switching curves to emanate from all four corners
(see Figure 2). The solution depends on how these curves intersect. As Figure
2 shows, the intersections can look quite complicated. Hence, it is quite
remarkable that even this case has an explicit solution. As before, let C, and
C, denote the switching curves emanating from the southwest and southeast
corners, respectively. Let C, and C; denote the ones emanating from the
northwest and northeast. Even though C; and C; can intersect several times
(and so can C, and C,), the curves emanating from adjacent corners can
intersect only once at most. Let £ denote the intersection of C, and C,, , (we
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0

53 £0

2

Fi1c. 2. Intersections of switching curves.

use the convention that index arithmetic is done mod 4). If any of these pairs
of curves fail to intersect within D, simply choose £ to be a point on the
opposite face between the points where the curves exit D°. It turns out that
the solution depends on the following possibilities (see Figure 3):

1. Whether £° is to the left or right of £2.
2. Whether ¢! is above or below &3

Based on this there are three cases to consider. Two of the cases reduce to
cases already solved. We take care of these first.

Cask 1. £° is to the left of £€2. In this case, we can drop a vertical line V so
that ¢ is to the left of V and &2 is to the right. By putting linear data along
V, we can reduce this case to a union of two smaller problems each of which
has strongly concave data on three sides and linear data on the fourth.

Cask 2. ¢! is below £3. For this case, we throw in a horizontal line H so
that £2 is above H and ¢! is below H. H separates the state space into two
regions, thereby reducing the problem to a previously solved case.

THEOREM 5. Cases 1 and 2 are disjoint.

Case 3. £° is to the right of ¢2 and ¢! is above £2. This is the most
interesting configuration. Without loss of generality, assume further that ¢° is
below £2. It is easy to see that this implies the relative positions of each of the
£¥s are as shown in Case 3 of Figure 3. If ¢ and 7 are two points on a simple

53

£O

%

fl

£3

15

“—

N\ ¢!

<)

63

P

-—

61

?

4

Case 1.

Fig. 3. The three cases.

Case 2.

Case 3.
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Co Cs
Ro R3
P’ P’ 2
Rc
0 C:
q P p! 2
Rl R2
C1

ql

Fig. 4. The most interesting case.

arc C, let C(¢, 1) denote the portion of C lying between ¢ and 7 (including the
endpoints). Let %, denote the region bounded by C'(¢71, ¢%),i=0,1,2,3.

THEOREM 6. There exists a unique rectangle R inscribed in %, having
vertical and horizontal sides such that each of the faces of % is touched by
one of the vertices of R .

Let p’ denote the vertex of R that lies on C,(¢'71, ¢%) (see Figure 4). Let
R, = {(x1,%,) € D: x; <p?, 2, > p3},
R, = {(x,,x,) € D: x; <p}, xy < Pp3},
R, = {(x,%,) € D: x; > p}, x, < p3},
Ry = {(x1,%,) € D: x; = p}, x, = p3}.
Let M = D°\ (R2 U R} U R U R} U R)).

THEOREM 7. On M, the value function v is the unique continuous function
that (i) agrees with the boundary data and (ii) is linear along each of the line
segments comprising M. In R, v is the bilinear interpolation of the values on
M N R.. On each R;, v is the partial sweep of the boundary data determined
by the requirement that v is continuous at R, N M. A switching strategy is
optimal if it runs the vertical Brownian motion

«i) above Cy in R,
(ii) below C; in R,
(iii) below C, in R,
(iv) above C; in R4
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F1c. 5. The most interesting case and its solution.

and the horizontal Brownian motion

() below C, in R,
(i1) above C; in R,
(iii) above C, in R,,
(iv) below Cg in Rs.

R is an indifference zone.

Figure 5 shows the control regions.

Although in general it is hard to determine analytically whether a specific
problem falls into Case 1, 2 or 3, there is one special case described in the
following example for which this can be determined.

ExampPLE. Suppose that the boundary function f has the following proper-
ties:

(i) The maximum value on each of the four faces occurs in the interior of
the face.
(i) All four maxima have the same value.
(iii) The maximum on Fg occurs to the right of the maximum on Fy.
(iv) The maximum on Fj occurs above the maximum on Fy,.

Then from Remark 3 following Theorem 3, Case 3 prevails and the points g*
shown in Figure 4 are the places where the maxima occur.

The general case where each face is assumed to have merely concave data
presents further challenges that cannot be easily overcome by our methods.
For example, instead of It6 calculus, we probably need to use results from a
general bipotential theory (as in [14] or [15]) some of which have yet to be
developed. .

3. Proofs. For the proofs, we use the general theory of two-parameter
processes. The reader unfamiliar with the basic definitions and results is
referred to either [14], [13] or [19]. Throughout this section, if we say that a
two-parameter process is a martingale, we mean that it is a strong martingale
relative to the product filtration &= {57;11 X F2 5,20, 5,20} (A two-
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parameter process M,  is a strong martingale if it 1s adapted, 1ntegrable and
satisfies the strong martlngale property: E{M, ,|% X % 2} =M, ,, for all
S; < t;, S5 <t,) If we say that a one-parameter process [derived from a
two-parameter process by following along a switching strategy T'(¢)] is a
martingale, we mean that it is a martingale relative to the filtration .7 7 =
{Fr@y t = 0}, where Fr,, is defined as the o-algebra containing all measur-
able sets A for which A N (T(#) <'s;, To(t) < s} € F ! X F? for all s, s,.
We begin by quoting a few well-known results.

ProposiTioN 8. () If M, = (M], M?) is a two-parameter (super)-
martingale and T'(¢) is a swztchmg strategy, “then M () 18 @ (super)martingale.

(i) If w is bilinear, then w(X[) is a martingale for any strategy T(t).

(iii) If w is biconcave, then w(XT) is a supermartingale for any strategy

T@®).

These results follow from Propositions 2.4 and 3.1 in [19].
All the proofs to follow depend on Lemma 9.

LEMMA 9. Let w be a continuous, biconcave function on D that agrees with
fon dD. If there exists a switching strategy T(t) such that w(By) is a
martingale, then w is the value function defined in (1.7) and T(t) is an
optimal switching strategy.

Proor. Appealing to part (iii) of Proposition 8 and the optional sampling
theorem, we conclude that

« (3‘1) lU(x) > Exw(BT(‘r)) = Ex f(BT(T))
for any switching strategy T'(¢). Since w(By ) is a martingale we see that
(3.2) w(x) = E.w(By,,) = E, f(By.))-

From (3.1) and (8.2), we conclude that w is the value function and that 7'(¢) is
an optimal control. O

In the remaining proofs we simply exhibit a function w that is continuous,
biconcave and agrees with the boundary data, and we describe a switching
strategy T'(¢) for which w(By ) is a martingale.

Broor oF ProposiTioN 1. Let w denote the bilinear interpolation of f.
Clearly, w is continuous, bilinear and agrees with f on the boundary. Since w
is bilinear, it follows from part (ii) of Proposition 8 that w(Bgp) is a
martingale for any strategy T'(¢). O
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Proor or ProposiTION 2. Let
Xy Xy
(21, %) = 2 f(x1,05) + (1 - —)f(xl,O).
ay Qo

Clearly w is continuous, biconcave and agrees with f on the boundary.
Consider the strategy T(#) = (0, ¢). Since w is linear in its second variable, it
follows that w(Bj,,) is a martingale. This completes the proof. O

3.1. Two concave faces.

Proor oF THEOREM 3. Let &(u) denote the (y,,y,)-switching curve, let
6(u) be defined by (2.7) and let w denote the (¢, 8) sweep of (y;, y5). It is easy
to check [using (2.3)] that w is twice continuously differentiable in D° and

2

J
(3.3) al—g—(fl(u),gz(u))=0, i=1,2,0<u<q.

It follows from (2.3) and (3.3) that w is biconcave. Also, w is clearly continu-
ous and agrees with f on the boundary.

Let T(t) be any switching strategy. Since the functions x;, i = 1,2, and

x,%, are bilinear, it follows from part (i) of Proposition 8 that X7 (¢), i = 1,2,
and XT(¢)X[I(t) are martingales. Hence, for ¢ > 0, the quadratic covariation
between X7 (¢) and XJ(¢) is
(3.4) (XTI, XTy, =0.
For i = 1,2, (B! )2 — s, is a two-parameter martingale (a rather tr1v1al one at
that) and so, by part (i) of Proposition 8, (XT(£))?* — T.(¥), i = 1,2, are
martingales. Hence, we see that, for ¢ > 0, the quadratic variation of XiT(t) is
(3.5) <XiT>t =Ty(¢).

Since w is twice continuously differentiable, we can apply Itd’s formula
together with (3.4) and (3.5) to see that

w(XT(D) - w(X7(0) = % f XT(s))dXT(s>
(3.6)

+3 Z/ . 2(XT(s>)dT(s>

Suppose there exists a switching strategy T'(¢) for which
2

(3.7) [ S (X7(s)) T (s) =0

(a.s. P, for all x € D) for i = 1 2 and for all ¢ > 0. Then from (3.6) it follows
that w(X T(#)) is a martingale and we are done.

All that remains then is to construct a switching strategy T'(¢) that satisfies
(8.7). If T(B}) < Ty(B2), then B! should be run either until I';(B;) = [',(Bg)
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or until it reaches zero. Similarly, if T}(B}) > I',(B2), then B2 should be run
either until Ty(Bg) = IL,(B2) or until it reaches zero. Hence, it suffices to
assume that the process starts on the switching curve; ie., T} (B{) = [,(B2).
Put

U(t) =influ > 0:T(B) = T}(B) +¢t}), i=1,2.

Note that Uy(t) is left continuous, strictly increasing and U, (0) = 0. The
continuity of the paths of Brownian motion implies that

(3.8) Fi(B%/,(t)) 0 I:lai(](t)l"(B ) =Ti(B}) +¢.
Let

(3.9) S= {(sl,sz): max I‘I(B ) = ,max Fz(Bz)}
(3.10) 9./= {(sl,sz): max FI(B ) = ,max I‘(BZ)>

d.# is merely a notation and does not refer to the topolog'lcal boundary of S. It
follows from (3.8) that U(¢) = (U(¢), Uy(¢)) € 8.7 for all ¢ At this point we
need a lemma which is taken from Proposition 5 in [11].

Lemma 10. U, and U, have no simultaneous jumps a.s. P, for all x € D.

It follows from this lemma that almost surely, for each ¢, 3.”N {(sy, s5):
s; + s, = t} consists of exactly one point and hence that d./ is the upper left
boundary of . Call this point of intersection 7'(¢). On the set of measure zero
_ where simultaneous jumps do occur, .~ will contain rectangles corresponding
to each simultaneous jump. In this case the intersection consists of either
points or closed line segments. On the line segments, T'(¢) can be chosen in any
predetermined manner. By Theorem 2.7 in [19], it follows that T_(t) is a
switching strategy. Put 7(¢) = U(¢) + Uy(¢). The switching strategy T'(¢) and
the increasing process U(¢) = (Uy(#), U,(¢)) are related by the time change 7(¢):

(3.11) T(7(t)) = U(¢)

(see Figure 6).
Consider a point ¢ of continuity for 7(¢),

u=r1(t) =7(t+).

In this case we see from (3.11) that T(u) = U(¢) and hence from (3.8) it
follows that

FI(B;:H(M)) = FZ(Bg‘z(u)) :

Now consider a point ¢ of discontinuity of 7(¢): 7(¢) < 7(¢+). By Lemma 10, it
follows that either U,(¢) = Uy(¢+) or Uy(¢) = U,(¢+). Suppose without loss of
generality that the first condition holds and consider a point u € [7(¢), 7(¢+)).
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FiG. 6. The optimal switching strategy.

Then T'(u) = U(#) and hence (3.8) implies that

(3.12) Ty Bfwy) = ,max Ty(By).

By the continuity of T;(B%) and the definition of T'(¢), we get

(3.13) max Ty(B}) = max T,(B}).
0<r<Ty(u) 0<r<Ty(u)

Combining (3.12) and (3.13), we see that

(3.14) Ty Biyw) < Tu( Biw)-

Also, note that u is a point of increase for TQ, but T’l is constant on
[7(¢), 7(t+)). [We say that w is a point of increase for a nondecreasing
function f if f(r) > f(u) for all r > u.]

From the analysis of the continuity and discontinuity points of 7(¢), we see
that

T(¢) increases only when T 1(B%l(,)) < F2(B%2(t)),
T,(t) increases only when F2( B%z(,)) < Fl( B%l(t)).
It now follows that (3.7) holds since

2w

€3.15) 6x_2(x) =0 on{x:T(x;) <Tp(xy)},

(8.16) ?:Tu;(x) =0 on{x:Ty(x;) > y(xy)}. ]
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REMARKS. (i) It is shown in [11] that Lemma 10 is a necessary and
sufficient condition for the uniqueness (almost surely) of a switching strategy
that satisfies (3.15), (3.16). Hence, our T is almost surely unique.

(ii) From (2.3) and (3.3), we see that the value function v is biconcave and
has the property that at every point it is linear in at least one of the two
coordinate directions. Hence, v is a solution to the nonlinear Dirichlet problem

%v 9%

Nl —_— —
(3.17) max(axf " ox2

)=0, in D,

(3.18) v=Ff, ondD.

This differential equation is interesting in its own right. It is an open problem
whether this Dirichlet problem has a unique solution in any appropriate space.

It is interesting that this nonlinear Dirichlet problem also arises in the
derivation of sharp inequalities for martingale transforms (see [2]).

3.2. Three concave faces. Let M be a subset of D° consisting of a finite
union of open horizontal and vertical line segments having the property that
every endpoint of a horizontal (vertical) line segment lies either on D or in
the interior of some vertical (horizontal) segment. We call any such set a maze
in D. Given a maze M, we say that a function defined on D is linear on M if
it is continuous on M, linear in x; on all horizontal segments of M and linear
in x, on all vertical segments of M.

LemMmA 11. If w is linear on a maze M, then there exists a switching
strategy T(t) such that w(By,) is a martingale up until the first exit time
from D° under every measure P,, x € M.

Proor. The idea is quite simple: Run the horizontal Brownian motion
whenever the process is on a horizontal line segment and run the vertical
Brownian motion whenever the process is on a vertical line segment. Clearly, if
the process starts on the maze, it must stay on it up until the first exit time
from D° Note that the result depends on excluding the possibility of a
horizontal and a vertical line segment meeting to form a corner. O

ProoF oF THEOREM 4. Let w denote the function that is the horizontal
linear interpolation of f on R, is the partial sweep of (Fg, Fy,) determined
by (2.14) on Ry, and is the partial sweep of (Fg, F) determined by (2.14) on
Rgp. Clearly, w is well-defined (that is, there is no contradiction at the
intersection of these three regions). Also, w is biconcave in each region
separately, is continuous throughout D and agrees with f on dD. We must
shéw that w is biconcave even across the boundaries between the three
regions. _

Recall that ¢ is the northeast corner of Rgy and also the northwest corner
of Rgy. Let p denote the southeast corner of Rgy (and hence it is also the
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southwest corner of Rgj). Derivatives in x; evaluated along the intersection
between Rgy, and Rgj, using the formulas for w as given either in Rgy, or
Ry are simply linear interpolations of the corresponding derivatives at ¢ and
p. Since the derivatives in x; up to order 2 are continuous both at £ and at p,
it follows that they exist and are continuous all along the intersection of Ry
and Rgy.

A similar interpolation argument reduces checking concavity in x, across
the intersection of Ry and either Rgy or Rg, to simply checking it at the
point & Let g denote the northwest corner of R sw and let r denote the
northeast corner of Rgy. Using the formula for w as given in R, we see that

(3.19)

102

(1—§—1)—(q) 5.

Using the fact that Fl(fl) = T)(&,), together with the definition (2.1) of I} and
the continuity condition y,(0) = y,(0), we see that

w(q) —w(p) + 51(3w/3x1)(p)

E( q) = i
Similarly,
Wy 2 W) Zw(p) (a1 - &)(0w/ox)(p)
dx, §2

Substituting these last two expressions into (3.19), we get

w g (L= E/aule) + (B/a)u(r) — w(p)

dxy 52

w(€) — w(p)
&

"w _

()

This is sufficient to establish the biconcavity of w throughout D.

If the process starts in RY, then T(¢) = (¢,0) makes w(BT(t)) into a
martingale. If it starts in R3y, (or R3y), then the construction in Theorem 3
yields a sw1tch1ng strategy that ensures w(Br,) is a martingale up to the first
exit time from R3y (R2, respectively). At this time; the process is located on
the maze M = D°\ (RY U R%y U RZ,). Hence, we can use the optional
sampling theorem and Lemma- 11 to extend the strategy to one that makes
w(BT(,)) into a martingale all the way up to the first exit time from D°. (This
is a special case of the operation called continuing in [18].) In light of Lemma
9, we now recognize that w is the value function and the switching strategy we
have described is optimal. O
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REMARK. It is interesting to note that 92v/dx2 has a jump discontinuity
across the south face of R . For example, at &, 0%v/dx3 evaluated from above
may be strictly negative whereas from below it is zero. It follows that C2(D°)
N C(D) is not an appropriate space in which to attempt to prove existence and
uniqueness theorems for (3.17)-(3.18).

3.3. Four concave faces. Now we embark on the proofs of the theorems
pertaining to the case where all four sides have strongly concave data. We need
to write down explicitly the parametric equations defining each of the switch-
ing curves C;. Let

Yo(x3) =£(0,a5 — x5),

yi(%1) = f(x,0),

Yz(xz) =f(ay, x3),

va(x) = f(a; — x4, a5)
and

Ao(x3) = £(0,x5),
Ay(=xy) =f(a; — x,0),
Ag(x2) =f(ay,a; —x3),
Ag(xy) = f(x1,a5).

Let G, be equal to a, when i is odd and a, when i is even. Then the y,’s and
the A;’s are related in a simple way:

r(2) =vi(a; —2).
Since f is continuous, we see that 1,(0) = v,(0), y(a;) = y5(0), y,(ay) = A5(a;)

I(z) = - fozuw(u>du,

A(2) = —j:u/\',f(u) du.

The switching curves C;, i = 0, 1,2, 3, are given by the equations
To(ay —x5) = Ag(xy),
Ty(x1) = Ao(%2),
Ty(xp) = Aq(ay —xy),
Ta(a; — %) = Az(ay —x3).
Given a point x = (x,, x,) on CO(§3, £9), let p(x) denote its u parameter,
p(x) =To(ay — x5) = Ag(xy).

We are now ready for the proofs.
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Fic. 7. Relative positions.

Proor oF THEOREM 5. The proof is by contradiction. Let us start by
assuming that £° is to the left of ¢2 and that ¢! is below ¢ Without loss of
generality, we may assume that ¢° is below &2 It is easy to see that this
implies the relative positions of each of the &'’s are as shown in Figure 7.
Starting from any point g on Cy(¢£3, ¢9), ﬁnd the point ¢! on C,;(¢2, £3) that is
directly above g. Next, find the pomt g% on Cy(¢, £2) that is dlrectly to the
right of g*. Then find the point g on C(¢°, £1) that is below g2 and, finally,
find the point on Cy(£3, £€°) directly to the Teft of g®. Denote this last point by
h(g). The function % is a continuous map of Cy(£3, £°) into itself. Let h
denote the function on u space induced by 4,

h(w) = p(h(q(u))),

where g(u) is the parametric_representation of Cy(¢% £°). To arrive at a

contradiction, we show that A'(xz) > 1 for all u. This is impossible for a

continuously differentiable function that maps a closed interval into itself.
Writing A in terms of I’s and A,’s, we get

h(u) = 1-‘o(az - Agte I‘1(‘11 —Afte Fz(a2 — AjtoTy(a; - Agl(u)))))
Put
g(u) =T(a; — A '(u))

and then let vy =u and u;,; = g5_ l(u ), i =0,1,2. For each i, the number
u, is the u parameter of the point ¢’ on the curve C,_,. Differentiating h

yields i
h'(u) = gg(us)gi(usz)gs(u)gi(uo).
Temporarily dropping the subécript i, we see that

oo TMa-ATY(w)
g = T T W)
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Now I'"(@ — 2) = —(@ — 2)y"(@ — 2) and A'(z) = —zA"(z). Therefore,

5 — A1
g'(u) = _a_A__I(_u(_)u_).

Put n; = A7 uj;_;), i = 0,1,2,3. The geometric interpretation of 7, is shown
in Figure 7. The important observatlon is that
Mo + M2 < Ay,
m tmng<a;.
Consequently,
. Qo= Mg Q1 — My By — Ny Ay — M
h(w) 2 0 a1 1@ 2 @1 3
Mo U M2 UE!
Qg =Ny Q] — N3 Ay — Ny &7 — 7N
_ 9 2 01 3 Qg 0 @1 Lo
Mo m M2 Uk

This contradiction completes the proof of Theorem 5. O

Proor oF THEOREM 6. This proof is similar to the previous one (see Figure
8). Starting from any point q on Cy(¢3, £9), find the point g on C,(£9, £') that
is directly to the right of q. Next, find the point g2 on C,(¢%, &%) that is
directly above g'. Then find the point g3 on C3(¢2, £3) that is to the left of g2
and, finally, find the point on Co(¢3, £°) directly below ¢°. Denote this last
point by h(q). The function ~ maps C,(¢3,£°) into itself. Let A denote the
function on u space induced by #,

h(u) = p(h(q(u))),

where, as in the previous proof, g(u) is the parametric representation of
Co(&3, £°). The domain of h is an interval. We will show that % is a continu-
ously differentiable function of this interval into itself and that A'(x) < 1 for
all u. Hence, A is a strict contraction and so by Banach’s theorem there is a
unique fixed point u°. Let ¢° = q(x°) and let ¢, i = 1,2, 3, be the intermedi-
ate points in the definition of A(q) obtained starting from ¢°. These points

3

F1G. 8. Geometric interpretation of n,’s.
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then form the vertices of the unique inscribed rectangle. We call this rectan-
gle R.
We must show that the map £ is a strict contraction. Writing % in terms of
I’s and A;’s, we get
h(u) = A3(a1 - Fa_1°A2(a2 - l—‘2—1°A1(‘11 - 1—‘1_1°Ao(‘12 - Fo_l(u)))))'
Put
gi(u) = A(a; — T Y(w))
and thenlet uy=u and u,, , = g,(u ),i=0,1,2. For each i, the number u,
is the u parameter of the point ¢’ on the curve C,. Differentiating £, we get
h'(u) = g3(us)gs(us)gi(us)go(uo).
Temporarily dropping the subscript i, we see that
() A'(@ - T Y(w))
0= T )
Now I'(2) = —2y"(z) and A'(@ — 2) = —(& — 2)A"(& — 2). Therefore,

o
e - -

Put n; = I (u;), i = 0,1,2, 3. The geometric interpretation of 7n; is shown in
Figure 8. The important observation is that
Mo + M2 > Ay,
Mt M3 > a.
- Consequently,
a; = M3 Gy — Mg Q1 — N1 Ay — N
Uk N2 M Mo
_ 817 M3 "M A1 T M3 Ay — My <1
M3 M2 M1 Mo

h'(u) =

This completes the uniqueness proof. O

ProOF OF THEOREM 7. Let w be defined as follows. On M, w is the unique
continuous function that agrees with the boundary data and is linear along
each of the line segments comprising M. In R, w is the multilinear interpola-
tion of the values on M N R.. On each R;, w is the partial sweep of the
boundary data determined by the requirement that w is continuous at R, N M.
Clearly, w is well defined, continuous throughout D, biconcave in each of the
five rectangles and agrees with f on dD. We must show that w is, in fact,
blconcave even across the boundaries between R, and R,, i = 0,1,2,3. Let

,1=0,1,2,3, denote the boundary points shown in Flg'ure 9 and let s, and
be the distances shown. Let s; and r;, i = 1,2, 8, be the analogous distances
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k719 S0

(]1

Fic. 9. Some notation.

and let n, = s; + r;. Put

w; =w(pi)>
Yi = w(qi) =v,(m),
S
o; = ,
s, + 1
i~ s;+r,

Since w is linear along each segment of M, we see that
(3.20) w; =0y, + W, 1=0,1,2,3.

Since the o;’s, p,’s and v,’s are known, (3.20) represents four equations in the
four unknowns w;, i = 0,1,2,3. This system of equations yields the unique
solution

0% Yt PO 1Yie1 T PiPiv10i+2Yiv2 T PiPi+1Pi+20;+3Yi+3
1~ pop1p2P3 '

(Remember that subscript addition is done mod 4.) To show that first deriva-
tives are continuous across M, it suffices to check any one of the line segments
comprising M and, by the usual interpolation argument, it suffices to check
only the places where two such line segments meet. Hence, we only need to
show that the derivative in x, is continuous at p°. Equating the derivative as
calculated from above and as calculated from below shows that we need to
verify that

wi=

Wo — Wy W, — Wy
(3.21) — =00Y0 T Po —
S1 $1
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where y/ = y/(n,). From the definitions of the switching curves, it follows that

Yi ~ Vi1~ iYioa

r_1+8,1

(3.22) ¥i =

Using (3.20) to express the y,’s in terms of the w,’s, then substitutiﬁg these
expressions into (3.22) and finally solving for the y/’s in terms of the w,’s
(using the fact that s, = s, and s, = s;), we see that

OoYo = + Py ’

which is clearly the same as (3.21). Hence, we have now shown that w
CY(D?). This is sufficient to establish the biconcavity of w throughout D.

If the process starts in R, then any strategy T'(t) makes w(Brp) into a
martingale up to the first exit time from R,. If it starts in one of the other
rectangles, say R;, then the construction in Theorem 3 yields a switching
strategy T(t) that makes w(By ) into a martingale up to the first exit time
from R;. At these first exit times, the process is located on the maze M.
Hence, we can use the optional sampling theorem and the construction in
Lemma 11 to extend the strategy to one that makes w(By,,) into a martingale
all the way up to the first exit time from D. In light of Lemma 9, we now
recognize that w is the value function and the switching strategy we have
described is optimal. O

ReEMARK. The value function v is not C%D°). Second derivatives have
jump discontinuities as they cross M. To see this, note that in R, all second
derivatives vanish but just on the other side of R, they can jump to negative
values.
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