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HOW SAMPLING REVEALS A PROCESS

By DoNALD S. ORNSTEIN' AND BENJAMIN WEISS

Stanford University and Hebrew University

A series of observations {¢;, £, &5, ...} is presented to us and at each
time n, when we have observed the first n of them, we are called upon to
give our guess for what stochastic process produced the data. A universal
scheme is given which, for any Bernoulli process (not necessarily indepen-
dent), gives a sequence of processes that converges in a strong sense (the
d-metric) to the real process. In addition to this main result, many others
are given which put it into proper perspective. In particular it is shown that
in a certain sense the class of Bernoulli processes is the largest one for
which such a universal scheme is possible.

1. Statements of results.

1.1. Introduction. A stochastic process X = {x,: 0 < n < =} is determined
by the joint distributions of the random variables {x,, ..., x,} for k. It is an
easy consequence of Birkhoff’s ergodic theorem that if a process X is ergodic
and stationary, then from almost every sample point {¢,)7 _, of the process one
can determine these joint distributions. Indeed, in that case, for fixed %, with
probability 1, the empirical distributions on k-tuples determined by {£,},_,
will converge to the true distribution and with these finite distributions the
original process X can be reconstructed exactly. In brief, with probability 1, a
single sampling of an ergodic stationary process suffices to determine the
process exactly. The above discussion holds equally well for continuous-time
stochastic processes.

A more realistic situation is one in which as time goes on we are presented
with more and more observations and we are asked to give some approxima-
tion to X based on a finite sampling (£, &4, ..., &,) (or {&}y <, <,), which
improves as n (or t) increases. The measure of distance between stochastic
processes that we use is the d-distance which gives a strong global sense of
“closeness.”

Our main result is an approximation scheme that works if X is a B-process.
We also give a counterexample to show that no scheme can be found for
general X. In addition, we prove a variant of the Shannon-McMillan theorem
that holds for a single sample point.

1.2. The d-distance. We first want a strong way .to measure the distance
between stochastic processes. We shall use the d-distance which, roughly
speaking, says that two stationary processes X and Y are close if they can be
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906 D. S. ORNSTEIN AND B. WEISS

coupled in a stationary fashion so that their outputs x, and y, are close with
high probability.

If, for example, a fixed stochastic process X is observed through a noisy
medium, so that one obtains the process X, where

(%) X, =x, te,

with {e,,} some process of errors, then X and X will be close in d (at least to
the extent that the error process is 0 most of the time) since (*) defines a
coupling of X with X in which Pr{x, # x,} = Pr{e, # 0}.

More generally, supposing that X and Y are finite-valued, we say that

d(X,Y) <e¢
if there is a single stationary process Z of pairs {(%,,, ¥,)}; _, such that

@) {x,)5 ~ {x,)5, 7,05 ~ 0.)%;
(i) Pr(Z, + 7o} < ¢.

Here ~ denotes equality for processes, i.e., same joint distributions or same
measure on realizations. Now the infimum of the &’s for which a coupling can
be found which satisfies (i) and (ii) is taken to be the d-distance between X
and Y. Note that if X and Y are ergodic, then the coupling can be chosen to be
ergodic as well. If X and Y take values in R or in a separable metric space,
then (ii) must be modified to read Pr{d(x,, 7,) > ¢} < e.

For continuous-time processes there is an analogous definition. The d-dis-
tance between stationary processes (X,R*),(Y,R*) will be the infimum of
those &’s such that a stationary coupling Z = {(%,,%,); t € R} can be found
satisfying

D {x:teR)~{x:teR), st eRT}~{y:t R}
(i) Pr{x, # ¥} <e. [Pr{d(X,,y,) > ¢} <e if X and Y take values in a
separable metric space.]

Another way to define the d-distance is in terms of generic realizations. The
sequence {£,} is generic if for each %k the empirical distributions of k-tuples in
{£,: 0 < n < N} converges to the correct distribution. For continuous time, {£,}
is generic if for each fixed a; < ay, < ‘- < a, the empirical distribution of
{riap-- 0 & +o ) in{: 0t < t} converges to the right distribution. d(X,Y)
is the infimum of the &’s such that there are generic realizations {¢,} for X and
{n,} for Y such that the set of #’s for which d(&,, 7,) > ¢ has lower density
equal to e. For more details concerning this notion seé [6]. Let us just note that
to see that d satisfies the triangle inequality d(X,Y)+d(Y,2)>d(X, Z)
one takes couplings (%,, ¥,), and (¥,, Z,) and then couples these independently
while identifying y, and 3,

1.8. B-processes. Recall that a process X is totally ergodic (TE) if for each
d the process {x,;: n € N} is ergodic. This means that there is no finite
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periodicity in the process. B-processes in discrete time are defined as follows:

A process is B if and only if it is the limit in d of TE k-step Markov
processes.

Any process has a canonical k-step Markov approximation which gives the
same probability to sequences of length less than or equal to % (i.e., we do not
let the process look back more than k-steps). We find that

A TE process is B if and only if it is the d-limit of its canonical k-step
Markov approximations.

If a totally ergodic process is not B, then it cannot be approximated
arbitrarily well by k-step Markov processes. One can state this in a more
picturesque way by saying that the long-term behavior cannot be simulated by
a machine with finite memory equipped with a random mechanism that
simulates a roulette wheel.

A continuous-time process is B if and only if all of its discretizations at
times {nAJ; give discrete time B-processes.

A more direct characterization (one that does not discretize time) can be
given. Define a ‘“‘semi-Markov process” to be a finite-state continuous-time
process which stays at each state a for a fixed length of time ¢,, depending on
the state, and the jumps to one of the other states with a fixed probability
distribution that depends only on the state. If the holding times ¢, are
irrationally related and it is possible to get from any state to any other, then
the resulting process will be aperiodic (and mixing).

Continuous-time B-processes are exactly the d-limits of such aperiodic
‘“semi-Markov processes” [13].

The usual (and equivalent) definition of a B-process is given in terms of
ergodic theory. From this point of view a stationary process is a transforma-
tion f or flow f, on a measure space X and a function P on X. (X is the
space of realizations of the process. f or f, shifts each realization—repre-
senting the passage of time—and P evaluates each realization at time 0.)
(f,X,P) or (f,, X, P)is a B-process if and only if (f, X) or (f,, X) is a
Bernoulli shift or flow. This is discussed in [6]. For now we will note that
certain dynamical systems such as the motion of a billiard ball on a square
table with a convex obstacle or the geodesic flow on a manifold of negative
curvature are isomorphic to the Bernoulli flow and our results will therefore
apply to observing the time evolution of such systems. Furthermore, as is
discussed in [12], it is not unreasonable to believe that most of the systems of
physical interest that “look chaotic”’ are Bernoulli.

“1.4. Existence of a guessing scheme. Our main result says that for the
class of finite-valued B-processes, one can give a method for constructing
approximations X,, based on (£, &4, .., &,), which will converge in d to X.
More formally, we suppose that the values the process can take on is a subset
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of a separable metric space T'. We think of T as the reals or as a finite set. By a
process reconstruction scheme or more colloquially, a guessing scheme S, we
mean a family of functions S™: T"*! — {stationary stochastic processes},
n=123,.... Thus S"(¢,, &,,...,&,) is a process and we have the follow-
ing theorem.

THEOREM 1. There is a guessing scheme S such that if X is any B-process,
then with probability 1,

(*) ’}i_llllJ(S(n)(fo,gl,...,fn),X)=0.

It also turns out that the scheme S that we will construct is robust in the
following sense: If instead of applying it to the actual sample {£,}"_ 0 it is
applied to a sequence {£,)7_, such that the upper density of the set of n’s for
which d(£,, £,) > 8 is less than or equal to 8, then

lim sup d(s(”>(§0,§1,...,§ ), X) <.

For continuous-time processes {x,} a guessing scheme S will be a family of
mappings {S™¥:_,,
S T01 — {stationary processes with continuous-time parameter},

where T'!*”! denotes finite-valued measurable maps from [0, 7] to T. This
constitutes the possible outcomes of observing a continuous process for a
period of length n. We have the following theorem.

THEOREM 2. There is a guessing scheme S such that if X is any continuous
parameter B-process, then with probability 1,
lim d(S™(¢:0<t<n),X)=0.

n—o

The robustness of the scheme S described above is valid for Theorem 2 as
well.

1.5. Description of the guessing scheme. Since the scheme S is easy to
describe we will do so here. Fix some sequence L(%) such that

lim L(k) /A" = =

for any positive A. For L(k) < n < L(k + 1), S(”)(fo,fl, .., §&,) is defined in
two steps:

Step 1: Calculate the empirical distribution of k-blocks in the finite string
(£, €p, ..., 8,), call it .

Step 2: Define S™(&, &, ..., £,) to be the process obtained by concatenat-
ing k-blocks independently with distribution .
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This procedure is not very random, since there is a periodicity of size k. To
obtain a very random process, we randomize as follows:

Step 2': Define S™)(¢,, &,,. .., &,) to be the process obtained by concatenat-
ing k-blocks independently with distribution 7,. Now leave a space between
the consecutive k-blocks with some probability p, 0 < p < 1, and do this in an
independent way.

This construction will yield a B-process.

For continuous-time processes we use the same function L(k) and the
scheme is defined in two steps similar to what was described above. The first
step is the same, for L(k) < ¢ < L(k + 1).

Step 1 (Continuous time): Calculate the empirical distribution of [0, 2]
blocks in (£,: 0 < s < ¢) that begin at an integer value of ¢ and call it =,.

Step 2: Define S@((¢,: 0 < s < t)) to be the process obtained by concatenat-
ing independently %-blocks with the distribution .

As above we need to modify step 2 to get a B-process.

Step 2': Define S¥((£,;: 0 < s <)) to be the process obtained by concate-
nating independently k-blocks with the distribution #,. Now pick an irrational
number a and probability p, 0 < p < 1, and leave a space of length a between
consecutive k-blocks independently and with probability p.

This scheme is robust in the sense that a (small) change in 7, leads to a
corresponding (small) change in S®. (The change should be measured in the
d-sense. See the discussion before Proposition 5, Section 2.)

1.6. A sharp form of the Shannon-McMillan theorem. Our scheme is
based on a strong form of the Shannon-McMillan theorem (Theorem 2.2
below). We could base our scheme on a special case of Theorem 2.2, the case of
independent random variables, by using the characterization of B-processes
given in the last paragraph of Section 1.3. We believe, however, that Theorem
2.2 is of independent interest.

THEOREM. Let {x,); be a stationary, finite-valued ergodic process of en-
tropy h. Then for a.e. realization {£,); of {x,);, and all N large enough and
M > 2"N we have: {¢,}M puts a measure on N-blocks (via their frequency) and
after ignoring a collection of N-blocks of measure less than e, the remaining
N-blocks have measure between 2~*+N gnd 2~ (h=eN,

This statement for {£;)] instead of {£;}M would, because of the ergodic
theorem, be the usual Shannon-McMillan theorem. Our theorem says that if
M is big enough to fit in the right number of N-blocks, then it works.
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Paul Shields pointed out to us that as soon as we have any scheme to guess
the entropy, then we can pick, for each n, the & such that the entropy of the
empirical distribution of % blocks in (&,...,¢,) is closest to the guessed
entropy and proceeds as in Section 1.4. However, this only works in discrete
time and for processes with values in a finite alphabet. For other such schemes
see [1] and [16].

It is worth pointing out that other features of a process may be guessed by
universal schemes. For example, in [7] it is shown that as more and more of
the past of a process is observed, (£_,,,...,£_,, £_;) we can make a series of
guesses as to the distribution of ¢, given (¢_,,...,£_,, £_;) which will con-
verge with probability 1 to the correct conditional distribution. Reversing time,
this gives a universal scheme for reconstructing the past of a zero-entropy
process, from current observations.

1.7. The non-B case. In general, one cannot hope to guess the long-term
behavior from finite information. Consider, for example, the circle {z € C:
lz| = 1} = K and a fixed partition & into two sets determined by Im z > 0,
Im z < 0. For each « € [0, 1] one gets a two-valued process (¢, R ), from this
partition with the mapping z — e?7%, the rotation by a. For any N and &,
there is some & > 0 such that if |« — B| < §, then the N-block distribution of
(£, R,) is within ¢ of the N-block dlstrlbutlon of (#, R;). Nonetheless the
processes for distinct irrational @, 8 remain a fixed distance apart in d. This
latter point may be verified by taking any two points z, w € K and observing
their orbit under R, X R; in K X K. There are similar examples in positive
entropy cases and even for K-processes (those processes that satisfy 0-1 laws,
ie., have a trivial remote future). Indeed, in [8] one finds for any N, an
uncountable family of processes that have the same dlstrlbutlon on N-blocks
but are a distance at least 1/4 apart in d.

1.8. Comparing two realizations. One consequence of the existence of our
guessing scheme is that given two processes X and Y, at least one of which is
Bernoulli, then we have a method for computing the d-distance between them.

On the other hand, if neither X nor Y is Bernoulli, then one can still assert
that our guesses will eventually be greater than or equal to d(X,Y).

For non-Bernoulli processes, not only can we not give a universal scheme
for reconstructing the process in a sequential fashion—but we cannot even
estimate the distance between processes. We shall prove that there is no
scheme S which, as a function of

(60’ 51’“ *7§n;7707 "71, . '*’nn)
will converge with probability 1 to the d-distance between X and Y. In fact
even the following weaker requlrement cannot be satisfied for processes
X® YD with
lim d(X®,Y®) =0,
1=

limsup limsup S((¢§, €0, ..., €D, 0§, 7, con®)) <4

i—> n—o
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with probability 1, while if
lim (X9, Y®) =1,
1—o00
then
liminf liminf S((¢§, &0, ..., €D, 9P, 7P, ..., nP)) = 2.
i—>o n—o

1.9. Further results. (a) The Bernoulli theory tells us that if two B-
processes have the same entropy and are d-close, then the d-joining can be
taken to be an isomorphism. This is called a-congruence and is discussed fully
in [12]. Let us give an example of this type of result. Say we are observing a
Bernoulli flow on a compact manifold, M, then the d-joining between the flow
and its reconstruction can be given a more specific form. We define a viewer as
a random device, independent of the flow, with the property that if we look at a
point x in M through the viewer, then we see another point, X, in M and ¥
depends only on x and the state of the viewer. We say that the viewer is
e-reliable if Pr{|x — X| > &} < &. Our strengthened result says that, given &, if
we observe long enough, then the reconstructed process could be simulated
exactly (as a stochastic process) by observing the original flow through an
e-reliable viewer. (There need be no redundancy in this description in the sense
that the orbit we are looking at and the states of the viewer can be recon-
structed from the path that we see.)

(b) In Section 5, where we discuss in detail the stability of our reconstruc-
tion scheme, it will also be shown that if the reconstruction scheme is applied
to a non-B-process, then it will oscillate in d by an amount that depends upon
the distance of the non-B-process to the class of B-processes.

(c) In the concluding section we shall discuss briefly some aspects of sam-
pling a nonstationary process. In this case the ergodic theorem does not apply
so that even observing an entire realization {£,)7 may not teach us a great deal
about the process. This was shown, in a very beautiful example, by Blackwell
[2]. We discuss some positive results connected with the example as well as
some other problems and directions for further research.

2. Finite-valued discrete time processes. We begin with a few lem-
mas that have the flavor of an individual Shannon-McMillan theorem.

LEmMMA 1. For any finite-valued ergodic process {x,);, with entropy h,
given & > 0 there is some N, such that for all N > N, there is a collection Dy
of N-blocks such that

(1) IDNI < 2(h+6)N;
(i) for a.e. realization {£,}], for n sufficiently large and n > N > N, a
(I — 8)-fraction of the N-blocks of {£;}} belong to Dy,.

REMARKS. 1. For any fixed N, the result with n depending on N follows
immediately from the standard Shannon-McMillan theorem and the individ-
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ual ergodic theorem. The more elaborate argument is required to get that for
n large enough (ii) will hold for all N in the range (N, n).

2. By “a (1 — 8)-fraction of the N-blocks in (¢, &,,...,£,)” we usually
mean a (1 — §)-fraction of all of the N-blocks &;,¢,.1,-..,&n_1 1 <1<
n — N + 1. However, the proof is valid even if one considers only the N-blocks
that end at &, 5's, (&4, ..., én), (Ensts - -5 Ean)s - - -, OF any of the other (N — 1)
fixed ways of dividing (1,..., n) into disjoint N-blocks.

Proor oF LEmmA 1. 1. Apply the Shannon-McMillan theorem to find some
K sufficiently large so that there is a collection of K-blocks, € c {1,2,..., A}¥
(A = number of values that {x,} takes on) satisfying :

(l) I_gl < 2(h+8/2)K;
(i) PHU€) = 1 — 7%,

where 1 will be determined below.

2. For any N > N, define Dy to be those N-blocks such that a (1 — 37)-
fraction of their K-blocks belong to ¢

To count the number of elements in D,, we first remark that by consider-
ing the K different ways of dividing an N-block into disjoint K-blocks we have
that for any w € Dy we can find disjoint K-blocks from < that cover
(1 — 3n)N of w. The number of such patterns is at most (3,17\’1\7)' The K-blocks

can be filled in at most |[€}N/X different ways, while for the gaps we have at
most A3V different possibilities, all together

IDy| < (371;]N)A3nN(2(h+8/2)K)N/K < 9h+8N

for a suitable choice of n and N,,.
3. Now for a.e. {£])], for all n sufficiently large, the individual ergodic
theorem ensures us that

|{1 <jsn—-K+1:§&,, &g 1 € {}|
n

>1- 292

Finally, the L,-Tchebycheff or Markov inequality implies that a (1 — 27)-
fraction of the N-blocks of {¢;}} are 1 — 31 covered by ¢ and thus belong to
Dy,. Since we could have taken 1 < §/2 this together with (2) establishes the
lemma. O

THEOREM 2. Let {x,}7 be a stationary finite-valued ergodic process whose
entropy is h. Then for a.e. realization {¢); we have: given ¢ > 0 if N is
sufficiently large and M > 2"N, then we cannot cover a e-fraction of the
N-blocks in {¢}M by fewer than 2*~*N distinct kinds of N-blocks and we can
cover a (1 — &)-fraction of the N-blocks in {¢,}M by fewer than 2 +ON distinct
kinds of N-blocks.
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Proor. 1. Fix, as before, A equal to the number of different values the
process may assume. Fix some ¢ > 0, and an auxiliary 6 > 0 which will be
specified later. Apply Lemma 1 with this é to find an N, and suppose that N
is larger than N,. Now if n is sufficiently large, Lemma 1 gives us half of the
conclusion of the theorem. We shall analyze the way in which the second half
can fail—i.e., those realizations {{,}7 which can be covered by fewer than
2h=N (different N-blocks. We shall simply count the number of different such
realizations and get a number decidedly smaller than 2””. Since the typical
probability of the events of the form (x; = ¢;: 1 <i < n)is 27" these anoma-
lous n-realizations occupy a very small piece of the total probability space.
Then an application of the Borel-Cantelli lemma will conclude the argument.

Here are the details.

2. Recall Dy—the collection of N-blocks that numbered at most 2(**9N—
from Lemma 1. We fix one subset C of D, with fewer than 2* )V elements.
The number of different such subsets is at most

(%) |DN|2<"-£>N < Q(h+&N-2hON

Next notice that if an e-fraction of the N-blocks in (¢4, &,,. .., &,) belongs to
C, then the same is true of one of the N different ways of dividing (1,2, ...,n)
into disjoint consecutive N-blocks. Thus the number of different ways of fixing
places where disjoint N-blocks belong to C is at most N2"/%,

3. The part of the n-blocks not covered by these special N-blocks from C
divides into two parts. On one of them Lemma 1 implies that the N-blocks are
chosen from D, while what is left fills at most a §-fraction of (1,2,...,n).
The number of ways of dividing these two parts is at most

B
n/N [—5 log 8—(1—8)log(1—8)jn /N —2[5log 8]n /N
(*%) > <2 <2 ,
: r én/N

while the number of ways of filling in a fixed pattern’is bounded by
( Adn ) ({2(h+8)N}(1 —e)n/N) ({2(h —s)N}sn/N)
< 2n(h—52+6(logA+(l—s)))'

Now notice that by the choice of n > 2"V, (*) is bounded by

onih +8)N2~ N

and thus all together by choosing § small enough and N large enough we can
assert that the number of different anomalous rn-blocks is at most.

2n( h—e? /2) .
4. For each n, consider now the collection of n-blocks (¢4,...,¢,) whose
probability is less than ’
2= (h—e2/4)n

and call these ordinary blocks. The Shannon-McMillan-Breiman theorem
says that for a.e. (¢,)7 for n large enough the block corresponding to (¢, ..., ¢,)
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is ordinary. The result of (3) gives now that the probability of the event that
the n-block is ordinary and constitutes a failure for the assertion of the
theorem for ¢ > 0, is at most 2 ¢*/9”, By the Borel-Cantelli lemma a.e. (£,)7
belongs to this event only finitely many times and thus with probability 1 for n
large enough the theorem holds for this ¢. Repeat the argument for a sequence
of ¢’s that tend to 0, and collect together the exceptional null sets to complete
the proof of the theorem. O

When we begin to observe a process we do not know the value of its entropy.
However, the qualitative nature of the above theorem allows us to do the
following. Fix some sequence of integers L(k) that grows faster than any
exponential,

lim L(k) 'C*=0 forall C > 0.

k—>o

When 7 is in the range L(N) < n < L(N + 1) try to estimate the entropy of
the process by finding a covering of at least half of the sequence of observa-
tions (¢,,.. ., £,) by as few N-blocks as possible, and calculate

1
N X log(minimum number of N-blocks needed to cover one half of (¢,,...,£,)).

This will converge with probability 1 to the entropy of the process.

Note that the restriction to ergodic processes was only made to give an
easier formulation. In fact even if a process is not ergodic, with probability 1
its realizations are typical for one of the ergodic components of the process and
thus the theorem is true as stated with the understanding that % is now the
entropy of the ergodic component for which (¢,)7 is typical.

LEMMA 3. If u is a distribution on N-blocks (in a finite alphabet with A
elements) that satisfies:

(i) for a collection € of N-blocks with |€| < 2PN w(U€) =1 - 8
(i) for any collection € with |€] < 29N we have u(U €) < 8, then if
{n; = u(£))}, where C; are the distinct N-blocks,

1
|(= X u,logp;) — Nh| < (35 + 25log A)N + 25 log  + 26hN.

In particular, the process obtained by concatenating N-blocks independently
with distribution p has an entropy that tends to h as 6 = 0 and N — .

Proor. 1. Let < denote the Cj’s whose measure satisfies
M(CJ) > 2—(h—6)N;
there are no more than 2(* =¥ such atoms so that by (ii)

,UJ(U{?)<8.
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Next let £ denote those C;’s in ¢ that satisfy
p(C;) < 2= 20N,
then the total measure of € satisfies by (i)
p(U€)<2<s

if N is large enough, as we may assume. Thus the atoms ¢; with measure y;
in the range (2~ *»+2)N 2-(h=3N) fi]] yp at least (1 — 28) of the distribution.
This gives the main term for ¥ u; log 1t ;. On the part with measure at most 28,
using the fact that there are at most A" different ¢;’s and maximizing the
possible contribution, we get the remainder of the term.

2. The second statement follows immediately from the explicit estimate for
—Xu;log u; since for independent concatenations this, suitably normalized,
gives the entropy of the process. O

A finite-valued process {x,) is said to be finitely determined (FD) if given
£ > 0 there are a 6 and an N, such that if {y,); is any process satisfying

(1) |R({2.}5) = R({x,.}5)] <8,
(2) d(dist(y, )y, dist(x,)7 ) <3,

then d({y,)s, {x,);) <.
To be completely explicit, (2) means the following: Denote by ITY, 1) the
distribution of the {x,},{y,}-processes on N-strings. That is to say,

Hg(al""’aN) =Pr(x; =a;,x,=ay,...,xy =ay),
Hg'](ala""aN) = Pr(yl =01,Y = Qg5 YN T a’N)'
Then the distance on distributions in (2) is
d(Hg’Hy).: Z lng(v(ala'“’aN)_Hgfv(lla'“’aN)l'
(ay,..., a,)

The d-metric on processes was explained in the introduction to Section 1.3.
The result we need from the isomorphism theory of Bernoulli shifts is [6]:

THEOREM. A process is B if and only if it is finitely determined.

THEOREM 4. Let L(k) be any function such that lim, _,, L(k)/A* =  for
any positive A. Let the scheme S be defined by the following algorithm:
S(&y,...,&,) is for LIN) < n < L(N + 1), the independent concatenation of
N-blocks with the distribution on N-blocks, w, being given by their frequency in
(&gya -5 &) Then if {x,); is a B-process we have

(*) r}igog(s(fo,.--,fn),{xn}z)=0

for a.e. realization {£,); of the process.
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ReEMARK. If we leave a space between the N-blocks we are concatenating,
and do this independently and with probability p, 0 < p < 1, then (*) will still
hold and S(¢,,...,¢,) will be a B-process. This follows easily from the
isomorphism theory (one can very easily check ““very weak Bernoulli”).

Proor. Because {x,); is finitely determined we need only show that the
entropy of S(&,...,&,) converges to the entropy of {x,}j (this follows from
Theorem 2 and Lemma 3) and the distribution of K-blocks in S(&,,...,¢,)
converges to the distribution of K-blocks in {x,)j for each fixed K. To see this,
note that the distribution of K-blocks in the N-blocks with the distribution =
is the same (except for end effects) as the distribution of K-blocks in &,,...,&,.
The ergodic theorem implies that the latter converges to the distribution of
K-blocks in {x,}5. O

REMARKS. The d-limit of B-processes is a B-process (see [6]) and therefore
the converse of the theorem is true as well. Namely, if for even one realization
we have () holding {x, ) is a B-process. This is true even if we do not leave a
random space as in the remark above. This follows because the independent
concatenation is basically a B-process except for the possible occurrence of a
finite rotation factor. The paper [14] explains how a limit of block independent
processes is Bernoulli. The main point is that because the block size is getting
bigger and converging in d to a fixed process the rotation factor possibility is
ruled out in the limit.

It will be useful to define the d-distance for finite sequences of random
variables. The definition is as follows: d({x,}},{y,}}?) = inflc: there is a joint
distribution on (xy, y7), ..., (x,,y,) with (1/n)L}_; Pr{x # y} <c} or
(1/n)L?_, Pr{d(x,y) > ¢} < c. The connection with the d-distance that we
have defined on processes is as follows:

J({xz}olo’ {yz}olo) = nliglm d_({xi}’llj’ {yi}rllj)

for any sequence of n;’s going to «. The nontrivial direction of this statement
is to show how good (i.e., small ¢) joinings of the finite distributions lead to
good joinings of the processes. This can be done as follows. First, get some
weak* limit of the finite joinings to give a joining of the entire process. The
resulting process will not be stationary in general; however, its marginals are.
Now shift the distribution and averages over longer and longer and longer
intervals and go to a weak* limit of some subsequence. This will produce a
stationary joining and the distribution of (x,, y;) will now reflect the average
joint distribution so that if for all n; we had d({x;}}/,{y,}7") < ¢ we would get

Pr(x # y) < ¢ as required.

ProposITION 5. If {x,); is Bernoulli, then (+) for a.e. realization {¢,)] of
{x,); the empirical distributions of the N-blocks in n-blocks with L(N) < n <
L(N + 1) tends in d to the true distribution of the N-blocks.
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PROOF. If n is large, then S(¢y,...,¢,) =8 ={s,}; will be d close to
= {x;)]. Join S and X so as to realize their d-distance. Use this joining to
ple matching realizations, {a;}] of {s,}] and {B,}7 of {x,};, and use the frequen-
cies of ({a )44 2N, (B k};{fj{” ) to match the “empirical N- block distribution”
S and the distribution of N-blocks in {x,} starting at multiples of N. This last
distribution is the true distribution of N-blocks in X because {x,} is totally
ergodic (being a B-process). [

This last proposition enables us to give a scheme which will accept the
outputs of two processes, one of which is Bernoulli, and to give a sequence of
numbers which will converge almost surely to the d-distance between the
processes.

THEOREM 6. There is a sequence of real-valued functions defined on pairs
of outputs of finite-valued processes S‘™ such that for any two processes
{x,)5,{y,); where {y,} is B and a.e. realizations {¢,)7,{n,)] we have that

hm g(n)(§17 R ] gﬂ) 171’ cr nn) = J({xn}olo’ {yn};o)

One defines S™ as follows: For L(N) < n < L(N + 1) one calculates TIY, mny
to be the empirical distribution of N-blocks in (¢,...,&,),(nq,...,m,), respec-
tively. Then

g(n)(§17"~7§n7n1;---,77n) = (HN HN)

Proor. By the definition of d we know that for ae. {¢,)] there is
some generic realization of {y,}7,{7,)7 such that the density of the set of n
where &, + 7, is less than or equal to d({x,);,{y,)7) = B. This implies
aay, nd) - . -

We can also assume by Proposition 5 that II f;’ tends to the distribution of
N-blocks in {y, )%, and that the above also holds for {II)}]. Therefore,
d(I¥, 1Y) - 0 and d(I1}, 1Y) » 8. O

3. General processes and flows. In the preceding section we formu-
lated a single scheme S which worked no matter how large the alphabet was.
It is this feature that we shall now exploit to extend the results there to more
general processes. We begin with a discussion of the d-distance. We now have
processes {x, )5, {y,); with values in a separable metric space (M, d). We will
say that the d-distance between the processes is less than C if there is a
joining of the two processes {(x,, y,)f5 as a stationary process and

(*) , Pr(d(x,,y,) > C) < C.

If M happens to be compact, then the closeness in measure between x, and y,
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can be replaced by other, perhaps more natural, measures of closeness such as
Expectation(d(x,, y,))-

However, for unbounded spaces the notions are not equivalent and it is easier
to work with (#). The d-distance is defined to be the infimum of the C’s for
which there is a joining with (*) holding.

Let us see what happens if we apply the scheme S from Theorem 5 to a
general process. There is no formal problem—we simply take for n in the
interval (L(N), L(N + 1)) the empirical N-block distribution in (¢,...,¢,)
and concatenate independently. If the distribution of x, is continuous, then
typically all of the n-blocks will be different; however, the recipe still makes
perfectly good sense. Now we claim that we will have convergence in d just as
before! This arises from the fact that x, is essentially finite-valued in the sense
that given ¢ > 0, one can find a finite number of sets Uj, ..., U, € M, each of
diameter at most ¢ and

Pr{xo & U U, }

i=1
Consider the finite-valued random variable X, which has the value i if x, € U;
and  if x, & U¢_,U,. We think of » as being an error in the joining even if
both sides have that value.

We now see that the process we have constructed by S after being coarse-
grained by this partition, is the same as what S would have constructed as in
Section 2, from the coarse-grained observations {£,)}, in other words S com-
mutes with coarse-graining. The effect of ignoring « is at most 2¢, and thus
the convergence of Theorem 4 guarantees the convergence of this generalized
procedure.

THEOREM 1. The guessing scheme of Section 2, Theorem 4, will converge
in d for a general B-process with values in a separable metric space.

Proor. The property that we need now is that a factor of a B-process is B
(see [6]). Thus the coarse-grained process is B and Theorem 4 applies in the
way we explained above. O

In the same way that we deduced Theorem 2.6 from the proof of Theorem
2.4 we can also establish its analog for any process (always with values in a
separable metric space).

THEOREM 2. There is a sequence of real-valued functions S defined on
pairs of outputs of stationary stochastic processes such that for any two
processes {x,)1,{y,)7, where {y,} is B and a.e. realization {£,)7,{n,)], we have
that

lim g(n)(gl"’"gn’nl""’nn) = g({xn}olo’ {yn};o)'

n—o
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Now that we have established the convergence of our schemes for general
B-processes we make the extension to stochastic processes in continuous time.
A stationary continuous parameter stochastic process {x,},., is B if and only
if every derived discrete-time process is B. It suffices for this that the
discrete-time process defined by

(%) X,={xsn<t<n-1}

is a B-process. Here if the values of x, lie in (M, d), the values of %, lie in the
space of measurable functions on [0, 1] with values in (M, d). We metrize this
space with the metric of convergence in measure. One defines the d-distance
between continuous-time processes in a fashion completely analogous to dis-
crete processes. We shall need the following simple lemma which relates this
d-distance to the d-distance between the discretization #,,y, defined by (*).

LemMma 3. If d((x,)5,{7,.)3) < &, then also d({x}, o, (v}, <o) < &.

Proor. Take some joining of {x,},{¥,} that realizes the d-distance. This
joining gives a probability distribution on the space of pairs (¢, n,,)% _, which
we would like to use to give a d-joining of the original processes. Identifying
(¢,,1,)5_o in a natural way with the pair of functions (&, n,),., gives us a
measure on the correct space, and its restriction to (&,),(n,) is correct. The
only problem is that it is not stationary with respect to all of R, . To solve that
problem, one simply averages that distribution over all shifts in 0, 1. Since the
restriction to the coordinate functions are shift-invariant for all ¢ > 0 this
yields a joining of the required type. Finally, it is easy to check that the
distance in probability between x, and y, now becomes what the distance
between X, and ¥, was. O

With this lemma in mind our next step is to extend the scheme S of
Theorem 1 to continuous time by simply taking for n € (L(N), L(N + 1)) the
empirical distribution of N-blocks in {£,} , where we only look at n-blocks
that start at an integer value of ¢ (an N-block is now {£,}, i <¢ <i + N, for
some integer i) and then concatenating independently N-blocks with that
distribution. This gives a continuous-time process which is just like what we
would have gotten had we applied our scheme to {¢,}. Because of Theorem 1
and the lemma we get that these independent concatenations now-converge in
d to the original flow if it was B.

We have proved the following theorem.

THEOREM 4. With the modifications above we have that if {x,},., is a
B-process, then for a.e. realization {£,}, . o, S(&,: 0 <t < T')) converges in d to

{'x‘g}t20'

We leave the obvious modifications of Theorem 2 to this context to the
reader and go on to further generalizations of the main theorem to other index
sets. Let v range now over the elements of Z? and consider a process {x,}, < 72
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which is stationary with respect to all shifts, i.e., for any v, € Z¢ the processes
{x,},{x,,, } have the same distribution. Once again the definition of d carries
over, and the same kinds of questions can be raised as before where now one
makes the observations over some finite box {v: v, <n,1 <i <d}=B,,ie,
{¢,: v € B}, and tries to learn something about the process as a whole from
such finite observations.

For such processes there is an entropy theory and a Shannon-McMillan
theorem (cf. [5], [3], [15] and [4]) and also a theory of B-processes and finitely
determined processes which is completely analogous to the theory for Z-
processes (cf. [56] and in even greater generality [9] and [11]). In order to extend
Theorem 1 to this setting we need to go through the analogs of Lemmas 1-3 of
Section 2. We shall not do this in detail and content ourselves with pointing
out that the arguments used in proving those lemmas had an essentially
combinatorial flavor and made very little use of the precise structure of the
interval {1, ..., n} and N-blocks (except for the initial and final segment); such
arguments extend to tilings of big cubes in 7" by smaller cubes.

Having made these observations, it is routine to carry over to these pro-
cesses the results of Section 2. The extension to R™ parameter processes
presents no further obstacles. We refrain from wearying the reader with the
statements of the results that he or she can easily supply. In the same spirit in
the following sections we formulate results for discrete time but their obvious
analogs hold for continuous-time processes as well.

4., Can one discriminate between two processes? We address here
the general problem of discriminating between distinct processes. The situa-
tion we envision is that we are observing two sequences of outputs,
(&,...,¢6,...5(ny,...,m,,...) and we would like to know if they represent
typical outputs of the same underlying process or of distinct underlying
process. If one output sequence is Bernoulli, then by applying our scheme of
Section 2 we can determine the issue, as we saw in Theorem 6 there. Here we
shall show that outside of &, the class of Bernoulli-processes, even this simple
“yes—no”’ question of ‘‘same-different”’ cannot be answered in an effective
way. We shall, at first, for simplicity, describe a construction which will
assume the existence of a scheme S that for any two processes {x,}7, {v,)7 and
a.e. pair of realizations (¢,)7, (n,,)T will converge to the d-distance between the
processes. With that assumption we will construct a single process that has
the property that when S is applied to an a.e. pair of realizations we will get as
an upper limit a number that is bounded away from 0! Ex post facto, this is a
contradiction to the properties of such a scheme S and then what we have
done is show that such an S cannot exist. However, by a minor modification,
we can carry out the construction knowing only that S has the requisite
property for Bernoulli-processes. As we have already emphasized such an S
exists. Thus the construction below can be interpreted as producing a process
which in spite of ergodicity will behave, with respect to any S that works for
Bernoulli, as though it were many processes in the d sense.
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The construction will be carried out by describing a sequence of distribu-
tions I1, on blocks of length [,. This is done by giving a list of words of length
1, in the alphabet {0,1} and assigning to each such word equal probability.
This gives a joint distribution on the {0, 1}-valued random variables {x1, ..., x; }.
The construction is carried out in such a way that it is manifest that for any
fixed k, the average of the distributions of {x;,...,x;,,_;} as i ranges over
{1,2,..., 1, — k + 1} converges to a limit as n tends to «. These distributions
fit together to form a stationary process, simply because they are obtained by
averaging over longer and longer intervals.

Parenthetically, we should remark that a process could also be constructed
in a formal way out of the description below via the method of “cutting and
stacking” well known to ergodic theorists. While this method is perhaps more
natural in the geometrical framework of a space and a measure-preserving
transformation, the probabilistic method described above is simpler and more
natural in our present context.

ConsTrUCTION. Start with four specific blocks of length 128 given as
follows:

a=0101...01 = (01)%,

b = 000011110000. .. = (0414)",
c= ... = (016116)4,
d= ... — (054164) ",

Build now two processes one, say X, obtained by concatenating ¢ and b
independently and the other X, obtained by concatenating ¢ and d indepen-
dently. We claim that the d-distance between the two processes is at least 2 /5
since one cannot match better any string of a’s and b’s with a string of ¢’s and
d’s.

When the purported guessing scheme is applied to typical outputs of the two
processes we eventually get the response that they are at least 1/4 apart in d.
Thus there is some r;, and sets of outputs of X;, X, of length r,, say R, R,,
such that each R;, R, has probability at least 99,/100 and for each w € R,
99,/100 of the elements u € R,, will give S"(w, u) > 1/4, and similarly for
each u € R,, 99/100 of the elements w of R, will give the same. Notice that
we cannot say SU(w,u) > 1/4 for all pairs w € R;, u € R, since large
subsets in product measure spaces need not contain large rectangles.

Now the ergodic theorem applied to each process separately gives us some [,
so that most blocks of x; of length [, are 49/50 covered by R,. We take for the
blocks of length I; of our construction all of these, taking care to have an
eqiial number of each type. Thus we have the blocks of length 7,

A, A,...,A,;B,B,,...,B,
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such that with high probability an r;-block w selected from the A’s and an
r;-block u selected from the B’s will cause S "(w, u) to give a reading greater
than 1 /4. This completes step 1 of the construction.

Step 2: Here we will merge together the blocks of the two kinds of A’s and
B’s in order to ensure that the ultimate process will be ergodic. We will also
take this opportunity to build many different types of blocks which mutually
are at a fixed distance apart in d. This is needed for the next stage in which we
will simulate many different processes. If the number of different processes
does not grow, then we will not be able to maintain a fixed distance apart in d
during the construction.

Take a; = 100°, 1 <i < 103, and N, = 100'°", For each i, first form all
possible concatenations of a;-blocks from among A;,..., A,, and separately
all possible concatenations of a;-blocks from among the B,’s, and then form
all possible concatenations of these larger building blocks taken N,/a; times.
The number of blocks of length N,I/; = [, that we get in this way is

(2kai)N2/a' = 9No/a,p Ny

and these blocks form the ith group of blocks constructed in step 2.

Notice that blocks of different groups have the property that any reasonable
initial segment of one compared with a final segment of the other have A’s
lining up against B’s at least half the time, so that they disagree at least 1/8
of time. (If the number of processes would remain fixed, then this fraction
would eventually go to 0.) Also notice that instead of four groups that we
started out with we have now 1000 groups to work with in the next stage.
Observe that with very high probability each block from every group contains
many repetitions of all the blocks from the previous stage. This will ensure
the ergodicity of the resulting process.

Step 2n + 1: At stage 2n we will have constructed a collection of blocks of
length 1,,, divided into f(n) groups G?",...,G2", (each group G?" contains
at least 2n elements) with the property that any two /,,-blocks from distinct
groups will differ in at least «,/,, places and moreover any initial segment of
length % greater than ¢,,l,, from one group differs in at least a,k places
from any final segment of length % of any block from a different group. As we
proceed we must make certain that «,, is bounded away from 0, and to do this
we will need &5, — 0.

For each group G2" we form a process X{™ by concatenating independently
the blocks from G2". These processes will satisfy

d(X™, X)) > a, — 3,

by our assumption, and therefore the scheme S will yield that with probability
tending to 1 if w;, w; are representative I-blocks of the processes X{™, X}"),
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then
S(l)(wi, wj) > an - 4871,‘

As before this gives for any desired § > 0 and r,, and classes R{™, 1 < i < f(n),
of blocks of length 7, from the processes X{™ such that

@ Pr(R™) > 1 - §;
(i) for all U, €R,, j # i,

Pr{u € R{™: SC™(u,,u) > a, — 4e,} =1 — 2.

Apply now the ergodic theorem to each of these f(n)-processes to get some
15,1 so that most blocks of length [,,,; from the X{™-process have at least a
(1 — 28§)-fraction of their ry,-blocks belonging to R{™ and having distribution
(1 — 25) close to dist R{™. The new groups G2"*D, 1 <i < f(n), consist
precisely of those I,,,,-blocks of the X{™-process that have this last-men-
tioned property. It is also easy to arrange at this point that all of these groups
have the same number of elements.

The key feature that we get from this part of the construction is that in our
ultimate process, when we pick two R,,-blocks u,u’' at random, then with
high probability they come from different processes and will cause S2»)(n, n')
to be sure to be at least « — 4¢,,. To be sure, we still have the property that
blocks from different groups are at least a,, — 4¢,, = a,,,, apart, and the
new &,,,; can be made as small as we please by having /,,_.; long enough.

Step 2n + 2: Once again we want to merge together the blocks from
different groups to get ergodicity. Define now

n+1

a;=M', 1<i<f(n+1), N, ,=M?"",

where M is taken to be larger than max, |G®"* V)% and f(n + 1) will be
specified below.
As before, form G#"*? in two steps:

(1) First form all possible concatenations of a,l,, . -blocks chosen from
within each group G *V to get f(n)|G{*"*P|% distinct I,, ,a -blocks.

(ii) Now concatenate N, ,,/a; times in some cyclic order the elements
from (i).

These new blocks, with high probability, contain the blocks of the previous
level with equal probability. This justifies our remark above that the joint
distributions defined by assigning equal probability.to all possible [,-blocks
converge to a limiting distribution. To check the disagreement between blocks
from different groups we now use the fact that because of the great differences
in”the periodicity between the appearances of the old groups in the ‘newly
formed groups the loss in a,, ., is now proportional to 1/f(n), so &,, . }/can be
taken to be as small as we please by enlarging M if necessary. It is easy to see
how to choose f(n + 1) so that limit a, = a > 0.
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Continuing in this way, we complete the definition of our stationary process
which can easily be seen to be ergodic. It has the property that if two r,-blocks
are chosen at random from the process, then with high probability they will
come from different processes and S will say that they are from processes that
are at least 3« apart in d.

ReEMARK 1. The infinite processes produced at the even stages could be
modified to make them Bernoulli. This implies that if S is a scheme that
works for Bernoulli-processes, then there is a process such that with probabil-
ity 1 if we choose two outputs independently, then S will infinitely often say
that the outputs come from a process greater than a > 0 apart. a could be
taken close to 1/2 and close to 1 if we consider processes on more than two
states.

The modification needed for Bernoulliness is to insert between any two
blocks an extra space with probability 1/2 and independently. The result is a
1, + 1-step Markov process (/,, being the length of the block being concate-
nated), which is easily seen to be mixing and therefore Bernoulli.

REMARK 2. The process that we construct in Remark 1 that confuses S can
be made K. (It obviously has positive entropy.) One way to achieve this is the
following: Whenever we concatenate blocks we first enlarge each block by
adding f, extra terms, e, of them to the beginning and f, — e, to the end,
f,, will be fixed but e, will be random and will take values between 0 and f,
with equal probability and independently of everything else. If f, — « but
Y*f./L, < =, then it is easy to see that the resulting process is K (we need to
show that for any fixed k&, the output of the process between time 0 and % is
independent of the distant past). Pick n so the distribution of k-sequences in
most ,-sequences look like the unconditioned distribution. Then (0, k) will lie
in some n-block and knowledge of the distant past will not tell us the e, at the
beginning of the n-block. This means that we are sampling the k-sequences in
our [ ,-sequence uniformly. Details of this kind of construction can be found in

[8].

REMARK 3. The construction as it stands gives an example with the prop-
erty that

limsup S(ny,..., M, €1,---,6,) 2B >0

for a.e. pair (n,,)7, (¢,)7 of realizations of the process. In order to get a stronger
result, namely that along a sequence of n’s of positive upper density one has
lim... > B, one has to modify the construction at even n’s. Then one takes
l,,1> M, large enough so that with high probability most indices i €
{1,1,,,) are such that (¢, ¢,,,...) falls in the set described above (that had
probability greater than 1 —§,).
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5. Non-B-processes. (The results in this section are written in the nota-
tion of discrete time but hold also for continuous time.) The scheme we gave in
Section 2 for guessing the process was shown to converge in d to the process if
and only if the process itself was B. It is natural to ask what would happen if
{x,}] is a stochastic process that is not B but is close to a B-process. It might
be, for example, that we are observing a B-process {y,}7 to which some noise
has been added, producing {x,); with d({x,};,{7,)7) < . What we shall see is
that our scheme is robust in the sense that although S(¢,,...,¢,) will not
converge in d to {x,} it will eventually get into an e-ball (in the d- metric)
surrounding {x,}7. In fact a sharper theorem is true, namely, the distance in d
between S (")(51, &s,...,&,) and the fixed B-process {y,} converges to the
d-distance between {x,} and {y,}.

THEOREM 1. If {y,}] is a B-process, then for a.e. realization (¢,)7 of {x,);
we have that

where S is the scheme of Section 2, Theorem 4.

Proor. As we saw in Section 2, the finite distributions of S(¢,,...,¢,)
converge to the finite distributions of the {x,}} process. For that weak conver-
gence one only needs ergod1c1ty Because of that, for any fixed 2 and n large,
one can read from a d-joining between S(¢,,... ,€,) and {y,}; a d-joining
between (x, ..., x,) and (y,,...,,). Going to the limit gives us the following
general fact:

d({x,)7> 9}7) < liminf d(S(£y,..., €,), (27)

for a.e. realization (¢;)7, and any process {y,}}.
Conversely, for almost every (¢£,,)7 we can find a realization {7, )} for Y that
satisfies two properties

(i) F(S™(na,..-1,0), ¥) =0,
(i) S =61~ 3(Y, X).

By the nature of our scheme (ii) implies d(S™X(n,, ..., n,), S®X(&,,. .., &) >
d(Y, X) which together with (i) proves the theorem.

We can also establish a converse to Theorem 1. Namely, if we know that the
distance between {x,} and any process that is either B or the direct product of
B and a rotation is greater than or equal to some constant B, then for a.e.
realization (¢,)7 the scheme S(¢,...,¢&,) will oscillate by at least B in the
sense that the diameter of the set {S(¢,,...,&,), ny < n < n,} cannot become
smaller than B for each n, as n; — n, tends to «.
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Here is the proof. As in the proof of Theorem 1 we have the following fact:
d({%,)5, (¥a)o) < liminf d(S(&, -, £.),{vi}o)-

This fact is now applied with {y,}] equal to S(¢,,..., ¢, ) which is the direct
product of a B and a rotation. A slight variation of the definition of the
scheme S will produce B-processes for every value of n without changing any
of the earlier results. What we have in mind is simply to add a random spacer
with probability 1/2 after each block in the independent concatenation. A
more intrinsic way of doing this would be to keep at every stage the distribu-
tion of both N-blocks and N — 1-blocks and concatenate them independently
where one first chooses independently with probability 1,/2 which of the two
types of blocks to place and then fills that in independently with the empirical
distributions. None of these variants affects finite distributions or entropy as
N — » and they all give processes that are certainly B. (By the B theory it is
enough to check *very weak Bernoulli” and this is very easy.) The scheme S
in the next theorem is one of these above variants. We will denote the class of
B-processes by #.

TureoreMm 2. If d({x,);, #) > B, then for a.e. realization {¢,); for all n
there is some ny > n, with

A(8(&1s- .2 €0.), 8(Ers- 0 E0)) = B

This pair of theorems that shows how the behavior of S on a particular
output depends upon the distance between the underlying process and the
class of B-shifts raises the following questions: Can one determine in any
effective way, i.e., via some sequence of functions f,(&,,...,¢,), what the’
distance is between the underlying process and the class of B-processes? More
precisely, we would like ideally

’}ii'[}o fn(fl’ ] §n) = 3({xn}:}’ '@)

for a.e. realization (¢,)7 of the process {x,}7.

It turns out that this is impossible and indeed much weaker desiderata
cannot be fulfilled. Suppose, for example, that f, is a sequence of functions
that have the property that for a.e. realization (¢,) of a B-process

’}l_lgofn(fla’gn) =O

Then we will construct a zero-entropy process {y,}7 such that, almost surely,
its realizations (n,)7 will satisfy

liminf f,(n¢,...,m,) = 0.

Thiis not only can we not get a good estimate for the distance to the class of
B-processes, we cannot even tell that we do not belong to the class.

Begin by considering the independent [0, 1]-valued process with Pr(x, = 0) =
P(x,=1)=1/2. If m, is sufficiently large, then for a set of strings
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Vi=1{(&,,..., &)} of length m,, with probability 1 — 1,/100, fnlépsees )
will be less than 1,/100.

For n, sufficiently large, there is now a set of strings of length n,, say W,,
such that if (§;,...,¢,) € W, for a set of i € (1,n; — m,) of relative fre-
quency at least 1 — 2/100 we have that

(&€t §i+m1—1) € V.

We will begin by having this set of words W, for the n,-blocks of our
construction. In order to drop the entropy, we form n2-blocks by repeating
each block n, times. Next we form a B-process by concatenating indepen-
dently the (1 + n%)-blocks and the set of (n% + 2)-blocks formed by adding one
and two 2’s, respectively, to each block in our earlier set. [This is to make sure
that the (n% + 1)-step Markov process so formed is mixing and hence B.] Once
again since we have a B-process {Z,}], if m, is sufficiently large there is a set
of strings of length m,, say V,, such that for all (¢,..., &) m, € V, we have
that f,,(¢1,...,¢&,,) < 10~*. Applying the ergodic theorem as before, there is
an n, and a set W, of strings of length n, such that for every (¢,...,¢,, ) € W,
for a set of, i.e., (1, n, — m,) of relative frequency at least 1 — 2/10* we have
that

(& &t §i+m2—1) €V,

To drop the entropy even more, we repeat each word in W, n, times and get
our set of n2-blocks for the second step in the construction. Continuing in this
way, we get our {y,}}.

6. Nonstationary processes and concluding remarks. Up to now we
have considered only stationary stochastic processes where the subtlety of the
" questions lies in the fact that we would like to draw conclusions based on finite
observations. For nonstationary processes the ergodic theorem is no longer
available and already it is not clear that observing the infinite string of outputs
(é9y---5&,,...) teaches us a good deal about the process. Now we place a
natural restriction on the kind of functions of infinite strings (¢,)5 and require
that they be Borel functions in the natural Borel structure. Blackwell has
given a beautiful example [2] that shows that one cannot even distinguish
between two quite disparate families of processes by Borel functions. Let P,
be the class of 0—1-valued processes such that

limit in probability of x, = 0,
ie, lim P(x,=0) =1,

n—oo
and P, the class where lim, _,, P(x, = 1) = 1. We think of P,, P, as being
measures on X = {0, 1}"V. Then Blackwell shows that there is no Borel parti-
tion of X into sets A, U A, such that for every measure u € P, we have
u(A;) = 1, and this in spite of the easily verifiable fact that for any fixed pair
u; € P;, i = 0,1, we do have a partition of X into Borel sets A, U A, s.t.

ro(Ag) = ni(4;) = 1.
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Our contribution to this circle of ideas consists in pointing out that this
phenomenon of not being able to distinguish two families depends upon the
noncompactness of the families P,, P, or putting it another way is a truly
infinite phenomenon. Observe that if two families could be separated by a
single pair of sets A,, A;, then convex combinations of the elements in each
family would also be separated by A, A;. We will prove the following theorem.

TueOREM 1. If P,, P, are compact convex sets of measures on X = {0, 1}V
such that for each u; € P, i = 0,1, there is a partition of X into sets A, A,
with (*) puo(Ay) = (A =1, then there exists a single Borel partition
(A, A)) such that () holds for all u;, € P, i =0,1. :

This is essentially equivalent to a finite result where X is replaced by a
finite set and () is replaced by an approximate kind of separation, say
> 1 — ¢ instead of = 1. In that case the compactness of the P, is no longer
relevant and this is the sense in which Blackwell’s phenomenon is a feature of
the infinite.

It is a little more transparent to begin with the case in which P; consists of
a single probability measure, say A. Fixan ¢ > 0andlet ®, = {0 < ¢ < 1: ¢ is
continuous and [¢ dA < &}. We set our first goal to find a ¢ € &, such that

fqﬁd/.l,z 1—¢ forall u €P,.

For sucha ¢, A, = {x: ¢ (x) > 1/2} will satisfy A(A,) < 2¢, and u(A,) > 1 —
2¢ for all u € P,

Then

A= N U A
n=1k<n
will satisfy A(A) = 0, u(A) = 1 for all u € P, and (A, X \ A) will give us the
required partition.

Now since u L A for all u € P,, for each fixed u we can find a continuous
function ¢ € &, with [¢du > 1 —¢/2. We find a single such ¢ by the
following procedure. Consider elements of ®, to define continuous functions
on P, by setting for ¢ € ¢, ‘

$(n) = [¢du,

and denote by ®, the subset of C(P,) that we get in this way. Let ¥ c C(P,)
denote those functions on P, that are everywhere greater than or equal to
l1-&eIf¥n <i>e would be empty by the Hahn-Banach theorem (note that ¥
has an interior point) there would be a linear functional on C(P,), ie., a
measure on P,, m, such that

fpt/f(u)dm(ﬂ) Zazle<5(M)dm(M), alyev,ded,.
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Since dm is bounded from below on ¥ it is a positive linear functional; hence
we can normalize it so as to be a probability measure. Then since 1 — ¢ € ¥
we have a < 1 — ¢ and thus

(%) f(l;(u)dm(u)sl—s forall¢;€(f>5.

But if i denotes the barycenter of m in P, (recall that P, was compact
convex), then (*) becomes

f(ﬁ(x) du(x) <1—¢ forall p € D,
b'¢
which contradicts the fact that for & € P, there is some ¢ € ®, with

fX¢>(x) da(x) =21 —-¢/2.

Thus ¥ N (f>g is nonempty and we have the required continuous function ¢
and we have completed the proof of Theorem 1, in case P; reduces to a single
point. For the general case one can use this special case and now repeat the
argument above using for @, the set

{0 < ¢ < 1: ¢ continuous such that f ¢(x)dr(x) <€ forall A € Pl}.
X

The special case we have just established shows that for every fixed u € P,
there is some ¢ € &, with

f¢duz 1-¢/1

and the argument continues as before. This concludes the proof of Theorem 1.
Note that the set obtained is a nice set in the sense that not only is it Borel, it
can even be made to be a G;.

REMARKS. 1. By examples similar to the ones in Sections 4 and 5 one can
show that no scheme of the type that we have been considering can distinguish
between K-automorphisms and Bernoulli-processes. We do not know of any
general discrimination between types of processes that can be done by finite-
valued schemes.

2. Ziv [16] has given another method of estimating the entropy of a process
from a sequence of observations. It has a simpler algorithmic form than our
method but does not give the type of information that we needed and so we
were not able to use it. ’

3. The results we have presented show what is possible in principle. It is
worth investigating to what extent these ideas can lead to ‘‘practical” algo-
rithms. We hope to return to this issue in the near future.
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