The Annals of Probability
1994, Vol. 22, No. 3, 1121-1139

THE THRESHOLD VOTER AUTOMATON AT A CRITICAL POINT!

BY JEFFREY E. STEIF

]
Chalmers University of Technology

We consider the threshold voter automaton in one dimension with
threshold r > n/2, where n is the number of neighbors and where we start
from a product measure with density % It has recently been shown that
there is a critical value 6, ~ 0.6469076, so that if = 6n with @ > 6, and n
is large, then most sites never flip, while for 6 e (%, 6.) and n large, there
is a limiting state consisting mostly of large regions of points of the same
type. Using a supercritical branching process, we show that the behavior at
6. differs from both the 6 > 6, regime and the 6§ < 6, regime and that, in
some sense, there is a discontinuity both from the left and from the right at
this critical value.

1. Introduction. In this paper we will consider a discrete-time model, the
threshold voter automaton, in which the state at time ¢ is &: Z — {0, 1} (or
equivalently {0, 1}%) and we think of &(x) as giving the opinion of the voter at
location x at time ¢. See [5] for recent results concerning this model and for a
continuous-time analogue.

The threshold voter automaton is a two-parameter (» and ) deterministic
discrete-time process with state space {0, 1}% in which at each time 7, the voter
at x examines the opinions of her neighbors {y: |y — x| < r} and changes her
opinion if and only if at least v neighbors have the opposite opinion (» and ¢
here are nonnegative integers). More precisely, we have a transformation 77 *
from {0, 1}% to itself given by

x+r
Tr"n(x) =1- n(x) if and only if Z I{n(y) #n@x) = T.

y=x-—-r

Here n denotes a typical element of the state space {0, 1}%. Throughout this

paper, we always start the system with a product measure with density % and

want to investigate what happens after many iterations of 77 7. This system is

an example of what is called a cellular automaton. (If 7 is not an integer, 77 *

will be taken to mean T 71)) '
The first result we mention is due to Fisch and Gravner [6].

THEOREM 1.1. Ift =r+ 1ort > 5r/4, then the system fixates a.s. (in that
each point changes its value only finitely many times).
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1122 J. E. STEIF

The main result of [5] gives qualitative properties of this “limiting state.” We
put the phrase limiting state in quotes since the limit is not known to exist if
r+1 <1t <br/4.

To formulate this result, let

c(a) =log2+aloga+ (1 —a)log(l — a).

(All logs in this paper are natural.) The reason for our interest in this quantity

is that if S, is the sum of n independent random variables that are 0 or 1 with

equal probability, then for a > %,

(1.1) nli)ng()%logP(Sn > na) = —c(a)
and
(1.2) P(S, > na) <e*@" for all n.

For this large deviations result, see, for example, Section 9 in Chapter 1 of [4].
The main result of [5] is the following theorem.

THEOREM 1.2. Let By, be the event that the voters at all sites x with |x| < k
never change. Let Ay be the event that all the voters at all sites x with |x| < k
fixate in the same state. Suppose T = 6(2r + 1). Let 6, be the unique solution in
(%, %) of the equation 2c(9) = c(26 — 1) and let P" -9 denote probabilities with
respect to the T™ %%+ D dynamics.

(i) If 0 > 6., then for all k, P"%(B,) - 1lasr — co.
(i) If0 € (3,6.), then for all k, P"%(Ay) — lasr — oo.

(Note that the events By, and A, depend implicitly on the parameters r and 6.)
It is easy to see that for any r, 6 and k, P"?(A,NB;) < 2/2%, which implies that
for any 0, lim, _, o, limsup, _, ., P"%(Ax N B;) = 0. This together with Theorem
1.2 easily implies that

(1.3) klim limsupP"%(A;) =0 for6 > 6,
—> 0 r—o0
and
(1.4) lim limsupP"?(B,) =0 for6 € (1,6.).

k—>00 rooo

Theorem 1.2 together with (1.3) and (1.4) tells us that the system behaves
differently above and below 6,.

The reason for interest in this result is that it is a prototype for conclusions
that one would like to prove for related systems with more than two states and
in higher dimensions. See [7]. Theorem 1.2 can be explained on the basis of the
following heuristic arguments. Suppose 6 < %. Call an interval of 1’s of length
greater than r a 1-blob, and call an interval of length r + 1 in which there are
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less than (2r + 1)0 — r 1’s a 1-blockade. It is easy to check that 1-blobs tend to
grow but that a 1-blockade will stop a 1-blob. To prove (i), it suffices to observe
that in order for a blob to form we need a point to be I-unsatisfied, that is, to
have at least 6(2r + 1) 1I’s in its neighborhood. We think of a point as satisfied
if the density of 1’s (and hence of 0s) in its r-neighborhood lies in (1 — 6, ), for
this guarantees that the point will not change its value at the next iteration. Of
course, most points will (by the weak law of large numbers) be satisfied initially.
If a point is unsatisfied, either the density of 1’s or of 0’s is larger than 6. The
1 in front of “unsatisfied” refers to the fact that it is the 1’s whose density is
larger than 6. Finally, if 2c() > ¢(20 — 1), then as r — oo blockades are much
more numerous than unsatisfied points and P™¢(B;) — 1.

To prove the converse in (ii), one needs to show that if 2¢() < ¢(20 — 1), then
(a) for large r, blobs are more numerous than blockades and (b) blobs grow until
they run into each other. To prove (a), one observes that unsatisfied points are
more numerous than blockades and one shows that if o > 0 and there are at
least (6 4+ 0)(2r + 1) 1’s in the neighborhood of a point, then a 1-blob will form
with high probability. To prove (b), one shows that if a collection of unsatisfied
sites does not grow into a blob, then the number of sites that flip-is sufficiently
small with high probability so that a blockade does not form.

The main result of the present paper gives information as to what happens
at the critical value 9,.

THEOREM 1.3. Let Ay and By, be as in Theorem 1.2. Then there is a universal
constant y > 0 (independent of r and k) so that:

(1) for all k, liminf,_, ., P"%(B}) > y and
(i) for all k, liminf, , ., P™%(A;) > y.

Theorem 1.3 immediately gives

lim infliminf P"%(A;) > y

k—>oo0 Tr—>o0
and
liminfliminf P % (B;) > y.

k—>o00 Tr—>o0

Comparing these with (1.3) and (1.4) tells us that the behavior at 6, distin-
guishes itself both from the 6 > 6, regime and the < 6, regime and is rather a
“convex combination” of these two types of behavior. Moreover, this result says
that in a certain sense, there is a discontinuity both from the left and from the
right at the critical value.

One of the key lemmas in this analysis is that there is a § which does not
depend on r so that a 1-unsatisfied point makes a 1-blob with probability at
least 8. This result, which is of interest in itself, is proved by extracting a certain
process from the system which dominates a supercritical branching process.
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LEMMA 1.4. Let 6 € (0.5,0.68). Then there is a § > 0 such that for all r,
P"°([—r,r] is a 1-blob by time 2r|0 is I-unsatisfied) > 5.

The definitions of 1-unsatisfied and 1-blob are given more precisely in the
next section.

Once one has this, using the fact (obtained by Stirling’s formula) that unsat-
isfied points and blockades have more or less the same probabilities [in that the
ratio of these probabilities is bounded (uniformly in r) away from 0 and oc], one
has that blobs and blockades also have more or less the same probabilities. One
then uses the Chen—Stein method to show that both blobs and blockades are
“independently and evenly distributed” in space and then (modulo a number of
details) one has obtained Theorem 1.3.

In Section 2, we prove the main theorem, Theorem 1.3, assuming Lemma 1.4.
In Section 3 we prove Lemma 1.4.

2. Proof of Theorem 1.3. In this section we prove Theorem 1.3 assuming
Lemma 1.4. We first introduce some notation and conventions which will be
used throughout this paper. If 2, £ € Z, we use [k, £] to denote [k, 2] NZ. {X;}icz
will always denote the initial (random) element of {0, 1}2. Therefore, {X;};cz
areiid. withP(Xy=1) = -;— =P(Xy =0). Wewill alsolet S, , = Efszi be the
number of 1’s in [k, £]. In addition, P™? will denote probabilities with respect
to the T7-?@+1D dynamics. Finally, a number x which might not be an integer
but only makes sense as an integer will always be interpreted as the greatest
integer less than or equal to x, [x]. Of course, [x] will denote the smallest integer
greater than or equal to x.

We begin with some definitions.

DEFINITION 2.1. We say z € Z is 1-unsatisfied for n if

z+r

Z Iiyyy=1) = (2r+ 1)6;

y=z-r
O-unsatisfied for 7 if

z+r
Z Iyiy=0) = (2r+ 1)0;

y=z-—r
and unsatisfied if it is either 1-unsatisfied or 0-unsatisfied.
DEFINITION 2.2. We say z € Z is a 1-blockade for 7 if 33517 I 1) =1y < 2r +

1)6 —r; a 0-blockade for n if 3317 I(;4)=0) < (2r+ 1)0 —r; and a blockade if it is
either a 1-blockade or a 0-blockade.

Note that these definitions also depend implicitly on the parameters r and
0. The point of a 1-blockade (and similarly a 0-blockade) can be seen in the
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following easily verified fact:

Ifz € Z is a 1-blockade for 7, then (under the 77-@*+D dynamics)
every 0 in [z,z + r] remains O for all time independent of what

(2.1) happens outside. Conversely, if z is not a 1-blockade and all sites
in [z — r,z — 1] are 1, then (under the 77-@*+D dynamics) z will
flip to 1 in the next iteration.

An analogous statement holds for 0-blockades by just interchanging the 0’s
and 1’s. It follows from the large deviations result quoted in the Introduction
that

(2.2) lim (%) log P9 (z is unsatisfied at time 0) = —2c(9)
and
(2.3) lim (%) log P™%(z is a 1-blockade at time 0) = — c(26 — 1)

ife < %. Condition (2.3) fails when 6 > % for then (20 — 1) > %

We know that at 9, blockades and unsatisfied points have the same proba-
bilities on an exponential scale (this is the defining property of 6.). Our first
lemma gives us the stronger fact that their ratios are bounded away from 0
and oo. If {u,} and {v,} are sequences, we write u, ~ v, if there exist positive
constants ¢ and C such that

for all n.
Throughout this paper, phrases such as “0 is 1-unsatisfied” will mean 0 is
l-unsatisfied at time 0.

LEMMA 2.3. Let a, = P"%(0 is 1 — unsatisfied) and b, =P"% (0 is a 1 —
blockade). Then a, ~ b,.

Proor. It suffices to prove that if {X;}° , are ii.d. with P(X; =1) = % =
P(X; = 0), then for 6 € (3, 1),

n
1
P(Z){z > n@) ~ me—f(m”,
i=1

where c(8) = log2 +61log6 + (1 — 9) log(1 — 8). However, this result is a simple
case of the main theorem in [2]. O

DEFINITION 2.4. Aninterval I oflength at least r+1isa 1-blob for nifn =1
on I. A 0-blob is defined similarly and a blob is either a 1-blob or a 0-blob.
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DEFINITION 2.5. We say x € Z is a 1-UB point (UB stands for unsatisfied
and blobified) if x is 1-unsatisfied at time 0, [x — r, x + r] is a 1-blob at time 2r
(and therefore from that time onwards) and there are no 0-unsatisfied points
in [x — % x +r°] at time 0. A 0-UB point is defined similarly and a UB-point is
either a 1-UB point or a 0-UB point.

LEMMA 2.6. Let a, = P"%(0 is a I-UB point) and b, = P"%(0 is a 1-
blockade). Then a, ~ b,.

ProoOF. In view of Lemma 2.3, it suffices to show that
P"%(0is a 1-UB point|0 is 1-unsatisfied) >
for some y which is independent of r. Lemma 1.4 tells us that
prt ([—=r, ] is a 1-blob by time 2r|0 is 1-unsatisfied ) > §

for some § which is independent of r. Lastly, letting L be the event that there
are no O-unsatisfied points in [—r%, r] at time 0, Harris’ inequality (see page
129 in [3]) gives us that

P"%(L|0 is 1-unsatisfied) > P™% (L),
which goes to 1 as r — co. The result follows. O

We now know that UB points and blockades have relative densities which
are bounded away from 0 and co as r - oco. We want to know that they are
“independently and evenly distributed” in space so that starting from the origin,
the probability that one sees a blockade before seeing a blob or vice versa is
bounded away from 0. The following proposition assures this. It takes a fair
amount of work to prove this proposition and we therefore delay its proof until
the end of this section.

PROPOSITION 2.7. Let N, = |r¥/2e2¢@) |, Let By, be the event that there are no
unsatisfied points in [-N,, N,], there is both a 0-blockade and a_I-blockade in
[—=N,, —k] and both a 0-blockade and a 1-blockade in [k, N,]. Let A}, be the event
that there are no blockades in [—N,, N,], there is either a 1-UB or a 0-UB point
(or both) in [—N,, —k] and either a 1-UB or a 0-UB point (or both) in [k, N,].
Then there is a universal constant ¢ > 0 independent of r and k such that

liminf P"%(B,) > ¢

and -
liminf P™%(A;) > «.
r— oo

At this point, one can go directly to the proof of Theorem 1.3 (i). For Theorem
1.3 (ii), the following development is needed.
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The point of blockades is that they stop blobs from expanding. Proposition
2.7 tells us that there is positive probability (not going to 0 as r — o) that
there will be blobs surrounding the origin and no blockades between them and
the origin to stop them. A problem which one needs to deal with is that perhaps
a blockade will form (which was not there originally) but will not blobify.

To show that this problem does not occur (with high probability), we need to
show that unsatisfied sites which do not turn into blobs do not produce blockades
(with high probability). Let

= {no point in [-2r, —0.01r) U (0.01r, 2] changes by time r},
Dy = {Sy x4r < (1.97 — 20)(r + 1) for all x € [, 0.01r1},
D3 ={noxe|— 4r?, 4r2] is O-unsatisfied}

and D = ﬂl.3= 1D;i. To see the reason for interest in D, observe that (a) D3 guar-
antees that no 1 in [—2r, 2r] will flip to 0 by time 2r and (b) on D; N Dy each
interval [x,x + r] with x € [-r, 0.017] has fewer than (1.99 — 26)(r + 1) 1’s at
time r. Statement (b) says that there is no 0-blockade, and (a) says that there
is no 1-blockade (unless there was one at time 0).

Let

={S_,»> (2r+ 1)6} = {0 is 1-unsatisfied}
and
= {[-r,r]is a 1-blob at time 2r}.

LEMMA 2.8. Let 6 € (0.50,0.65) be fixed. Then there are constants 0 < A,
C < oo (depending on 6 but independent of r) so that

P"*(EUDHH) > 1—Ce™.

REMARK . If HN(EU D) occurs, then we say that the unsatisfied site at 0 is
well behaved. In words, this says that at 6., points which are not well behaved
have exponentially smaller probability than unsatisfied points (or equivalently
blockades). We give no proof of this since this is Lemma 5.3. in [5].

ProoF oF THEOREM 1.3. Let N, be as in Proposition 2.7.

(i)_Fix k. By Proposition 2.7, it suffices to show that for any r > &, we have
that B, C By. Let C be a 1-blockade in [—N,, —k] and let D be a 1-blockade in
[k, N,]. Since all 0’s in C U D remain O forever [in view of (2.1)] and no point in
[—N,, N,] is unsatisfied, it follows that no 0 in between C and D (and hence in
[—%, k]) ever changes to a 1. Similarly, no 1 in [—£, k] ever changes to a 0.

(ii) Fix k. Letting F, be the event that [x — &, x + ] fixate in the same state,
we want to show that for large r, P™%(Fy) > y for some universal constant
y > 0 independent of r and k. It suffices to show that there exists an event G
such that for large r, P"%(G) > ¢ for some universal constant ¢ > 0 and if G

occurs, then, under the 7% +1 dynamics, (1/2r%)57 ~ ! Ip > 1— 6/r.

x=—r3
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Let G = Zk N G1 NGy N Gs, where Zk is given in Proposition 2.7,

G = [all points in [—N,, N,] that are unsatisfied are well behaved},
G = {there are not two unsatisfied sites x and y in [-N,., N,]

with2r+1<|x—y| < 2r3+4r}
and
Gs = {all x € [-r*, r*] are satisfied}.

Lemma 2.8 tells us that G; has probability approaching 1 as r — co.

The event Go has probability approaching 1 since, when |x —y| > (2r + 1),
the events that x and y are unsatisfied are independent. Hence the expected
number of unsatisfied pairs satisfying the indicated inequalities is at most

(2r® + 4r)(2N, + 1) exp(—4c(8.)r) > 0 asr — oo.

The event G3 has probability approaching 1 since the expected number of
unsatisfied sites in [—r%, r4] is at most

@r* + 1) exp(—2c(8.)r) > 0 asr — oo.

Finally, Proposition 2.7 together with the above implies that for large r,
Pr%(@) > ¢ for some universal constant ¢ > 0. The last step is to show that
if G occurs, then (1 /2r3)2;3=__1r31 F, > 1 —6/r. We skip this, however, since this
argument is essentially that which is carried out on pages 245 and 246 in [5]. O

The rest of this section is devoted to proving Proposition 2.7. The outline
of this proof is as follows. We will show that if we divide space into blocks of
size r®, then the number of blocks (in a suitably sized region) which contain
1-UB points (or 1-unsatisfied points) and the number of blocks which contain
1-blockades become asymptotically independent Poisson random variables. If
we can do this in such a way that the parameters for these Poisson random
variables remain bounded away from 0 and oo, Proposition 2.7 will follow. We
first show that the relevant probabilities are of the same order of magnitude.

PROPOSITION 2.9. Let a, be the probability that some x € [1,r%] is a 1-
unsatisfied point, a.. be the probability that some x € [1,7%] is a 1-UB point
and b, be the probability that some x € [1,r%] is a 1-blockade. Then a, ~ a, ~
b, ~ r'l/2exp[—2rc(6,)).

This result essentially says that the probability of the given event is of the
same order of magnitude as the expected number of points in the interval with
the property.

PrOOF. We first prove that a. ~ r1/2exp[—2rc(6.)]. The proof of Lemma 2.3
together with the statement of Lemma 2.6 tells us that

P"%(0is a 1-UB point) ~ r~Y2exp[—2rc(8,)].
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Since a,. < r®P"%(0 is a 1-UB point), we have that
al. < Cr''2exp[—2re(6,)]

for some constant C. We need, of course, a bound in the other direction. The
first step for this is the following lemma which we prove later.

LEMMA 2.10. Let Y; be the indicator function for the event that i is a 1-UB
point. Then for some universal constant T and large r,

Pr.&(Yi =0Viel[-rS -TIUIT, 7‘6]|Yo _ 1) > %

Consider the points x, = 1+ Tk for k = 0,1,...,r%/T — 1 and let A;, be the
event that x;, is a 1-UB point. Then

r$/T-1
a;zP”’"( U Ak>
k=0
=Pr%(Ag) + P % (A1 NAY) + -+ P % (Ap 1 NAGN - NAY + -
=P"%(Ag) + P % (A§| A1) P % (A + -
+P"%(AGNAS - NAG Ary1)P" % (Apr) + - -

Using Lemma 2.10 together with the fact that P7-%(A) > cr~Y/2exp[—2rc(6,)]
gives us that for large r each summand is > (c/2)r~Y/2exp[—2rc(8.)]. As the
number of summands is r®/7, we have

rfe
alr > Tér—1/2e—2rc(95)
and we have shown that a. ~ r'¥/2exp[—2rc(6,)].

Showing the same asymptotics for a, is now trivial. The trivial argument
thata, < Cr!l/2exp[—2rc(6.)] works also to givea, < CrlY/2exp[—2rc(6,)]. On the
other hand, a, > a, and so we are done. Finally, the proof that these asymptotics
also hold for b, can be carried out exactly as they were for a, and the proof is
somewhat simpler. O

ProOF OF LEMMMA 2.10. Let Y| be the indicator function of the event that
i is 1-unsatisfied. So Y; = 1 implies that Y] = 1 while the converse is, of course,
false. By the proof of Lemma 2.6 (which, of course, uses Lemma 1.4), P™%(Y; =
1]Y] = 1) > y for some constant y > 0 independent of r. If we can show that for
some constant 7',

(2.4) PO (Y, =0Viel—rS—TIUIT,r¥)[Y;=1) > 1— g
for large r, then

Prl(Y;=0Viel-r% —TIUIT,r%1Y, = 1)
>PrO%(Y,=0Vie[-r% ~TIUIT, 1Y, = 1),
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which must be at least % for large r since otherwise

Pr»oc(Yi/ = 0 V I, € [_re’ _T] U [T’ rG”Y(/) — 1)
<P (Y =0Vie[—r® —TIUIT, Yo = 1)P"% (Yo = 1]Y} = 1)
+ Pr’oc(Y{ =0Viel[-rS —TIUIT, Y, = 0,Y, = 1)Pr.9c(Y0 =0y, = 1)

oy oy

< -2—+(1—a,)=1—551—§,
where o, = P-% (Y, = 1|Y; = 1), contradicting (2.4). This would prove the
result.

To prove (2.4), we first need the fact that

Pr%(Y/=0Vie[-r%—-0.01r]U[0.01r,7]Y; =1) > 1 asr— oo.

To do this, it suffices to show that there are positive constants « and ¢ so that
for all i € [-r%, —0.017] U [0.01r, 9],

2.5) Pro(Y] = 1Y, = 1) <ce™,

which is, of course, obvious for |i| > 2r. We leave this fairly elementary calcu-
lation to the reader. One can use the methods in the proofs of Lemmas 5.1 and
5.2 in [5] to do this.

The proof of (2.4) will be complete if we can show the more difficult fact that
for some constant 7' and for large r,

Pro(Y! =0Vie[-0.01r, ~TIUI[T,0017Y;=1) > 1- 2,

2
which follows from
(2.6) Pro(Y/=0VielT,0017Yy=1)>1- %
for large r.

We first note that if {X;)°2 , are iid. with P(X; = 1) = 3 = P(X; = 0), then
foro € (3, 1),

2.7 P(iXi > nG) NP(iXi = me]),
i=1 i=1

since both are ~ (1/n!/2)expl—c(8)n] [where c(8) = log 2+6log6+(1—-6)log(1—
)], the former by the result in [2] mentioned in the proof of Lemma 2.3 and the
latter by Stirling’s formula. In proving (2.7), one can actually show that there
exists an integer m independent of r so that

P"oc( Z Xi<@r+1)6.+m

i=-r

Y X =@+ 1)9c> =1-%.

i=-r
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Next, an easy calculation shows that conditioned on ¥]__ X; > (2r + 1)6,,
{X;};77H00 dominates {W; }_'+°°1' where the W;’s are i.i.d. w1th P{W, =1} =

l=-r i=-r

6, —0.01 = 1 — P{W; = 0}. This means that {X;};”+%%'" conditioned on ¥/_ _X;

l=-r l=-r
> (2r + 1)6, and {W; }:’“Lr0 017 can be defined on the same probability space so
that X; > W, for all i. This calculation is done by simply noticing that when
conditioningon ¥/ _ _ X; > (2r+1)é,, for anyj € [-r, —r+0.017], the probability
that X; = 1, given any values for X_,, ..., X;_,,is at least . — 0.01. Next let T
be such that a random walk with step size distribution
0. 20.01(5_1 4 %80 4 1 (902 0.01)(Sl

starting from 0 will with probability > 1 — /8 stay at or below —m from time
T onwards.

Since conditioning on ¥]__ X; > (2r 4+ 1)6. does not affect the distribution
of {X;41,..., Xryo001-}, the way we have chosen T together with the domination
above guarantees us that, conditioned on ¥]__ X; > (2r + 1)6., we have, with
probability > 1 — /8,

S_ritrse <SS, ,—m

fore=T,T+1,...,0.01r. In view of the way m was chosen, we have that condi-
tioned on ¥]__ X; > (2r + 1)6., we have that with probability > 1 —y /4,

S_rier+e <(@r+ 16
fore=T,T+1,...,0.01lr, which proves (2.6). O

To show that certain objects we are looking at asymptotically become in-
dependent Poisson random variables, we will use the Chen—Stein method as
described in the paper by Arratia, Goldstein and Gordon [1].

PROOF OF PROPOSITION 2.7. We first show that liminf,_, o P™%(By) > ¢
for some universal constant ¢ > 0. After this we mention the easy modification
needed to prove that liminf, _, ., P"%(A.) > & for some universal constant ¢ > 0.

For all i € Z, let J! be the interval [r6(i — 1) + 1, r%] of length r8. Introduce
the following random variables. Let H} | (H] ,) be the event that some point
in J7 is a l-unsatisfied (0-unsatisfied) pomt ‘Let H;  (H] ;) be the event that
some point in J7 is a 0-blockade (1-blockade). Let Yr be the indicator function
for H .

Let N' = |r~W2exp[2rc(®,)]] Forj = 1,2,3,4, let S; = Zl 1Y’ For j =
5,6,7,8, let S’ = 2?__ N Yl j_a The Chen—Stein method will allow us to
obtain the fact that there are two universal constants ¢ and C such that

(2.8) (81, 83,85, 8%, S5, S6, 57, Sg)

are within d, in total variation norm of eight independent Poisson random
variables with means between c and C with d, — 0 asr — oco. This implies that
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with probability bounded (in r) away from 0,

which corresponds to the event that there are no unsatisfied points in [-N,, N,],
there are both a 0-blockade and a 1-blockade in [—N,, 0] and both a 0-blockade
and a 1-blockade in [1, N,]. Finally, noting that for fixed % the probability that
there is an unsatisfied point or a blockade in [k, k] goes exponentially to 0
as r — oo, the above implies that liminf,._, ., P"%(B;) > & for some universal
constant ¢ > 0. Actually, smce r~1/2exp[2rc(6.)] need not be an integer, N'r6
might be as small as N, — r® 1n which case we only know that there are no
unsatisfied points in [-N, + 7%, N, — r8]. However, since unsatisfied points (as
well as blockades) are contained in an interval of length r® with exponentially
small probability, there is no problem and we can therefore always ignore this
correction.

We now state Theorem 2 contained in [1], which we shall need. We actually
state a weaker version which will suffice for our purposes.

THEOREM 2.11. Let I be a finite index set and assume that for each o € I,V,,
is a Bernoulli 0-1 random variable equal to 1 with probability p,. Assume that
for each « € I, we have a subset B, C I such that for all a € I, V, is independent
of the o-algebra generated by {V,},¢B,. Let 21 = Yyc1XuecB,PaPu and let zo =
YaelXa #ueB, EIV,V,]. Next let W = {W,}qc1 be independent Poisson random
variables with W, having mean p,. Letting V = {V,}qe1 and ||L(V) — L(W)|| be
the total variation distance between these two random vectors, we have that

IL(V) — L(W)|| < 421 + 4z2.

To apply this result, we take our index set I, to be [-N/,N/] x {1, 2, 3, 4}
and for (i, j) € I, we have the Bernoulli random variable Y’ Thls defines for
us a random vector Y = {Y]}yec(-n. N1x (123, 4)- Let a, be the expectation of
Y], (or equivalently of Y7 ,) and let b, be the expectation of Y7 3 (or equivalently
of Y’ '4)- These are exactly as they were defined in Propos1t10n 2.9, where

they were shown to be asymptotic to r!'/2exp[—2rc(d,)]. We next let
W = {Wl}ael-N.N1x(1.2 3 4 be independent Poisson random variables with
W; j having mean a, for j = 1,2 and with W; j having mean b, for j = 3, 4.
Letting F; = {(i, 1), (i, 2), (i, 3), (i, 4)}, we let B'(; N bel, N(F;_1 UF; UF;4).

We want to apply Theorem 2.11 to Y" and W". The independence assumption
is obvious. We also want to show that 2} (= Yye1, Xuep EIYL1E[Y]]) and 2j(=
Yoel, Yo #uecB EIY Y, ]) — 0 as r — oo. The fact that 2] — 0 is trivial. For 2},
it suffices to show that E[Y]Y7] is of smaller order than a,.

There are several cases to check. Let @« = (i, ) and u = (', j). If {j, '} €
{{1, 2}, {1, 4}, {3, 2}, {3, 4}}, then this follows immediately from Harris’ inequal-
ity since the two events are negatively correlated.

Now assume {j, j/} = {1, 3}, the case {2, 4} being similar. In this case, we
show that

E[Y,Y]] < r'2expl—2r(c(6:) + o))



THRESHOLD VOTER AUTOMATON 1133 .

for some constant o, which clearly implies that E[Y]Y]] is of smaller order than
a,. To see this, it suffices to show that for any x and y in Z,

(2.9) P"%(x is 1-unsatisfied| y is a 0-blockade) <e™"”

for some constant ¢ which does not depend on x and y (and, of course, is inde-
pendent of r also).

Itis clear that this conditional probability is largest when the blockade [y, y+
r] € [x — r,x + r]. In this case, large deviation theory tells us that the density
of I’s in [y, y + r] is less then or equal to 2 — 26, + 0.01 with exponentially
high probability. Similarly, the density of 1’s in [x — r,x + rI\[ y, y + r] is at
most 0.51 with exponentially high probability. It follows that the density of 1’s
in [x—r, x+7] is less then or equal to (2—26,+0.01)/2+0.51/2 with exponentially
high probability. Since this quantity is less than 6., (2.9) follows.

The last four cases to be taken care of are {(Z, 1), ¢ + 1, 1)}, {(Z,2), ¢ + 1, 2)},
(@, 3), ¢+ 1,3)} and {(, 4), ¢ + 1, 4)}. Without loss of generality, we consider
only {(Z, 1), (i + 1, 1)}. Let Uy be the event that there existx, y € J; U J], | such
that [x —y| > r and both x and y are 1-unsatisfied. Let U; be the event that there
exists x within the r rightmost points in J] with x being 1-unsatisfied. Clearly,
E[Y!,Y"] < P"%(U;) + P"%(Uy). By an earlier argument [(2.5)], P"%(U,) has
exponentially smaller probability than a,. Next, while U, does not have expo-
nentially smaller probability than a,, we still have that P"%(Uy) < rCr—1/2
expl[—2rc(6,)], which is of smaller order than a,, as desired.

Theorem 2.11 now tells us that for large r, Y and W™ are very close in total
variation distance which implies that

(S1, S5, S5, Sy, S5, Sg, S7, S3)
and
(T4, T3, T, Ty, Ty, T, T3, Tg)

are very close in total variation distance, where
N,
T" = ngj, j=1,23 4,
i =1

and

0
Tr = Z W’ j=5,6,7,8.

J Lj—4
i=-N,+1

By Proposition 2.9, there are positive constants ¢ and C such that the eight
Poisson random variables

(T3, T3, T4, T3 T, T, T5. T)
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have means between ¢ and C. This proves the statement involving (2.8), finish-
ing the proof that lim inf, _, ., P™%(B}) > ¢ for some universal constant ¢ > 0.

In order to also show that liminf,_, ., P"% (Zk) > ¢ for some universal con-
stant ¢ > 0, we proceed exactly as above, the only modification being that
H; | (H] ,) is now the event that some point in J7 is a 1-UB (0-UB) point. The
rest of the proof can then be carried out in the same way. O

3. Proof of Lemma 1.4, blob formation. In this section we prove Lemma
1.4 using a branching process argument. The argument is somewhat technical
and so we first describe in words the idea involved.

Let I, = [-r,—r+0.01r — 1], I, = [0,0.017], I3 = [r+ 1,r + 0.01r] and
I =1, UI; UI;. First, one has that the distribution on I conditioned on 0 being
1-unsatisfied is more or less i.i.d. with density 6 in I; U I and density % in
I (this is made precise by Lemma 3.1 below.) Assuming that this is the exact
conditional distribution, then as we move from the origin one step at a time to
the right until reaching 0.01r, the density profile changes randomly according
to a random walk with step size distribution

O s+ 15y 120
g 71T % T g

d1,

since each time we move over one lattice point, the density changes by adding
some new point from I3 and deleting some point from ;. The number of steps
to the right that we need to take until the density is one less than it was at the
origin is now simply the amount of time it takes the above random walk to reach
—1 starting from 0, which has expected value (by Wald’s theorem) 1/(6 — %). All
of this depends only on the configuration in I; UI;. If T denotes the position at
which the density falls one below that at the origin, then after one iteration all
the 0’s in [0, T — 1] become 1’s and so the expected number of 0’s which turn to
1’s after one iteration is (1 —8)/(8 — %) which is larger than 1 since § < 0.75. If
we look at the number of 0’s which turn to 1’s at each iteration, this description
looks like a supercritical branching process which then might, as we iterate,
sustain itself until all points in [0, 0.017] are 1. We now turn the above ideas
into a proof. Before beginning the proof of Lemma 1.4, we need the following
lemma. A related but much simpler fact was previously used in the proof of
Lemma 2.10.

LEMMA 3.1. Let {X;} be i.i.d. with P(X; = 1) = % = P(X; = 0) and let
6 € (0.5,0.68). Then for large n the conditional distribution of {Xi}?ﬂ)" given
(X! "0 Xi = nb} is stochastically dominated by {Wi}?f})”, where the Wi’s are i.i.d
with P{W; = 1} = 6 + 0.07 = 1 — P{W; = 0}. [This means that we can define
{Xi}?f(l)" (conditioned on {Z;’;OIX;‘ > nb}) and {Wi}?ﬂ)" on the same probability
space as X; < W; for all i.]

Proor. Recall that S, , denotes Zf= »Xi. It suffices to show that for large
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n, we have that for all 0 < < 0.01n and all (io, i1, ...,4;_1) € {0, 1},
P{)(J =1So.n-1>n0, Xo=ip, X1 =11, ... ,Xi_1= ij_l} <6+ 0.07.

We first choose o« > 0 such that ¢(1.036) + o < ¢(6 + 0.03), where cla) =
log2+aloga+ (1 —a)log(l —a) as in the Introduction. Next let C be such that

P(So,n-1>n(1.030)) > (1/C)expl—n(c(1.036) + )] for all n.
We then have
P{X; =1|Son-1>n0, Xo =io, X1 =11,..., Xj_1 = ij-1}

1 J+1 Jj-1
(§> P(Sj+1,n-1 >no —1-— Zis>

s=0

1\ Jj-1
(—) P(Sj,n—l >né — Zis)
2 s=0

1 n(9+§:3)—1 n—1—j\/1\* 17
14 2
=

DN

t=no-1-%'"Y

s=0"%

n(@+0.03) n—j 1 n—j
2 ( ¢ )(§>

_ J-1;
l_n0—25=0t5

%P(Sj+1,n—l >(mn-1)(00+ 0.03))

+
P(S,gjv"_1 > n9)
The first term equals
1 m0+009 ¢
n—j L ln—j—=0)!
g o3, BT O 003)
<
n( +0.03) 1 - n—j
(n—7— o)
t=no-x'"%4 tn =y - ot

Since j < 0.01n, n/(n —j) < 1.03 and so this last term is less than 6 4+ 0.065.
As for the second term, the numerator is bounded by %exp[ —(n—-1—jec@® +
0.03)]. For the denominator, using the fact that n/(n —j) < 1.03, we have

P(Sjn-1>=n6)=P(Sjn_1> (n -N1.036) > (1/C)expl—(n — j)(c(1.036) + a)].
The resulting fraction is then at most

1Cexple(d + 0.03)lexp[—(n — j)(c(® + 0.03) — ¢(1.036) — )],
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which is less than 0.005 for large n since j < 0.01n and by the definition of «.
Together with the above, this gives us the desired bound of 6+0.07 for largen. O

ProoF oF LEMMA 1.4. Let6 €(0.5,0.68) be fixed. It clearly suffices to prove
that there is a § such that

P"?([-r, 1] is a 1-blob by time 2r|0 is 1-unsatisfied) > &

for all large r. To analyze the blob formation process, we first need to introduce
a branching process as follows. Let 6/ = 6 + 0.07. We choose the offspring
distribution for our branching process to be

0’80+ (1 —06")F,
where F is the distribution for the time it takes a random walk with step
size distribution
0’ 1 1-¢

Zo 1+ =8
go-1t g0+ —5

81

to reach —1 starting from 0. Since 6’ > 2, the mean waiting time for the above
random walk is finite and, moreover, Wald’s theorem tells us that the mean of ¥
is1l/(6'— %) and hence the mean offspring size is (1—6")/(6’ — %). Since §’ < 0.75,
the above branching process is supercritical, which means that starting from
one individual, the branching process survives forever with positive probability.
We let {Y,,}°_, denote this branching process where the initial size Y also has
the distribution 6’8y + (1 — 8")F. (So Y,, is the number of individuals alive at
time n.) Let o > 0 denote the probability that a single particle survives and so
the probability that {Y,}>°_ ; survives is at least (1 — 6")c.

For each integer r > 1, we introduce a modified branching process {IN/"}C’<>
as follows. These will s1mply be functions of the branching process {Y,}. Let

=inf{n: ¥}_,Y, > 0.01r}. If T' = oo, let Y’ Y, for all n. IfT < 00, we let

Y =Y, forn <T, Y’ chosen such that 2 = 0.01r and Y’ =0forn>T.
Note that whether T' < 0o or = o0, Y’ =0 for large n and ¥7° OY’ exists and is
less than or equal to 0.01r. Note also that survival of {Y,} implies that for any
r, ¥ Y, =.01r.

The next lemma, whose proof is given later, explains the connection between
blob formation and the modified branching processes introduced above.

LEMMA 3.2. For all integers r > 1, there exists a stochastic process {Z}>_,
which is measurable with respect to {Xi}ic(—r —r+0.01r—11U0.0.011U[r+1.r+0.017]
with the following properties:

(@) If {Xi}ie—r.—r+0.01r—11U0,0.01-1U [+ 1. 7+ 0.017] IS chosen according to a prod-
uct measure with density 0’ in the first two intervals and density % in the last
interval, then {Z}}>°_ = {Y}}*°_, in distribution where {Y}}>°_ is the rth modi-
fied branching process defined above.



THRESHOLD VOTER AUTOMATON 1137

o) IfS_,,>602r+1), Y52 oZ, = 0.01r and there are no 0-unsatisfied z in
73,73, then under the T"°@+D dynamics, we will have that at time 0.01r,
[0, 0.01r] will be all 1’s.

(c) If n and 0’ are configurations on [—r, —r + .01r — 1] U [0, .01 U [r + 1,
r+ 0.01r] withn > n and n =1n', on [r + 1,r + 0.01r], then Y52 0 Zy(n) =0.01r
implies that ¥.3° | Zj(n') = 0.01r.

Note that parts (b) and (c) are nonprobabilistic statements. Let, as above,
Iy =[-r,—r+0.01r-1], I, = [0,0.01r], Is = [r+1,r+0.01r]l and I = I1UIl,UIs.
Let {*Z", o°_o denote the above process {Z],}°°_, when {X;};<; is chosen ac-
cording to a product measure with density 6’ in I; and I> and with density
% in I3. By (a) above together with the fact that survival of {Y,} implies that

DIyl 0?{ = 0.01r for any r, we have

o0 (o)
(3.1) P[ > 0z, = 0.0Ir} = P[ Y= 0.0Ir} > (1-6)a.
=0 n=0

Let {W;}icr be iid. with density ¢’ on I; U Is and density -;— on I3.
Next, Lemma 3.1 tells us that for large r, {X;}ics,ur, conditioned on {S_, , >
0(2r + 1)} (i.e., conditioned on 0 is 1-unsatisfied) is stochastically dominated by
{Wi}ier,ur,- Using independence, we have that for large r, {X;}; s conditioned
on {S_, , > 6(2r+ 1)} can be coupled with {W;}; ;s such that X; < W, for all { and
X; =W, for i € I3. Combining this with (3.1) and Lemma 3.2(a) gives us

[e o]
(3.2) P[ >z, =0.01r | S_,,>6@r+ 1)} > (1-60)a
L=0
for large r. We also choose r sufficiently large so that
P"?{no O-unsatisfied z in [-*, r*] at time 0S_, , > 6(2r + 1}
(3.3) -9
> 1-— (1%’

which follows from a simple application of Harris’ inequality together with the
fact that unsatisfied points have exponentially small probability. Combining
(3.2) and (3.3), it follows from Lemma 3.2 that for large r,

1-6'
(3.4) P"°{n=10n[0,0.01r] at time 0.01r | S_, , > 6(2r + 1)} > —%.

At this point, we can follow the proof of Lemma 5.2 in [5] and obtain

Pr?{[—r,r] is a 1-blob at time 2r|S_,, , > 6(2r + 1)}
(3.5) (1 -6
> 77
- 4

for large r, as desired. O
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Proor oF LEMMA 3.2. Fixr > 1. We first define the auxiliary random vari-
ables G =X,.; —X_,;;_1fori=1,...,0.01r. We now define the process {Z,}
inductively.

Let Uy = I[X0=O}- Let ag =inf{0 <m < 0.01r: E;n=1Gj = —Uy}. Let ZB = aop.

Let Uy = |{i € [1,a0]: X; = 0}|. Let a; = inflag < m < 0.01r: Eyl:a0+lGj =
—Ul}. Let Z; =aj] — ap.

LetU; = |{i € lap+1, a1]: X; = 0}|. Letas = infla; <m < 0.01r: Z}j’.”= al+1Gj =
—Uz}. Let Z = as —aj.

We continue by induction with two requirements to satisfy. First, if some U; is
0, then we take er tobe 0 forj > i. (This also follows from the above construction
as long as the empty sum is defined to be 0.) Second, note that a; has not been
defined if U; > 0 and Ej'.”: ai_1+lGj > —U; for all m € [a;_1, 0.01r]. In this case,
we define a; to be 0.01r, Z7 to be a; — a; 1 and ZJT to be 0 for j > i. Note we
will then have ELOZZ = 0.01r. This finishes the inductive construction of the
process {Z7}. (The reader should note the similarity between this last part of
the construction and the way we defined the modified branching processes.)

The fact that these processes satisfy property (a) is straightforward and left
to the reader.

For property (b), because there are no 0-unsatisfied points in [-73, r3], we
need not worry about a 1 switching to a 0 for the first r units of time. Let a} | ; =
infla, < m < 0.01r: Z}n:ak_'_lGj = —1}. Clearly, if ax+1 > a; (or equivalently
Ur4+1+#0), then

ar <ay,q <api1.

It is easy to see that after one iteration, [0,a¢ — 1] will all be 1’s, after two
iterations, [0, a} — 1] will all be 1’s, after three iterations, [0, a} — 1] will all
be 1’s, and so forth. Hence after & iterations, [0, a;_2] will be all 1’s, which
proves (b).

Property (c) follows from the following two observations. The first observation
is that if n > n’ and n = ' on [r + 1, r 4+ 0.01r], then G;(n") > G;(n) for all j. The
second is that

oo
> %
=0

can be alternatively expressed as

m
inf{O <m<00lr: Y Gj=—|jel0,m:X;= o;].

j=1
where the latter is taken to be 0.01r if equality holds fornom. O
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