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ASYMPTOTIC SHAPES FOR STATIONARY
FIRST PASSAGE PERCOLATION

BY OLLE HAGGSTROM AND RONALD MEESTER

Chalmers University of Technology and University of Utrecht

This paper deals with first passage percolation where the usual i.i.d.
condition is weakened to stationarity (and ergodicity). The well known
asymptotic shape result is known to extend to this case. It is easy to give
necessary conditions for a compact set B C R? to arise as the asymptotic
shape for some stationary measure on the passage times. Our main result
says that these conditions are also sufficient.

1. Introduction and main result. First passage percolation was intro-
duced by Hammersley and Welsh (1965) and can be viewed as a model for the
spread of a fluid through a porous medium. Let Z? be the set of all d-tuples
x = (x(1),...,x(d)) such that x(1),...,x(d) are integers. Let 0 denote the
origin. Consider the nearest neighbor graph on Z¢, d > 2, that is, the graph
whose vertex set is Z¢ and where there is an (undirected) edge connecting x
and y for every pair (x, y) such that |[x — y| = 1 (here and throughout | - |
denotes the Euclidean norm). The edge joining x and y is denoted e(x, y).
Each edge e is associated with a nonnegative random variable T'(e) which is
interpreted as the time it takes for the fluid to pass through e. A connected
sequence r of edges (e(xo, x1),e(x1,x2),...,e(x,_1,%,)) is called a path, and

D(r)=x, — xg

is the total displacement as one moves along the path. If ry,...,r; are paths
such that for i = 1,...,k2 — 1, r; ends where r;;, starts, then we define the
concatenation r = (ry,...,r) in the obvious way. The passage time T'(r) of r
is defined

T(r) = 3 T(e(xio1, %:)-
=1

The travel time from x to y is
T(x,y) =inf{T(r): r is a path from x to y}.
Clearly,
(1 T(x,y)=T(y,x), Vax,yeZ
We also have that travel times are subadditive, that is,
(2) T(x,y) < T(x,2)+T(z,y), Vax,y,zeZe
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Suppose fluid enters the medium at the origin at time zero. The random set
B(t) = {x € 2% T(0,x) < t}

is interpreted as the set of sites reached by the fluid by time ¢. One of the
main objects of interest in first passage percolation is the limiting behavior of
B(t) as t — co. To describe this behavior, it is convenient to replace B(t) by

Bt)={x+y: x€ B(?), yeU},
where

U={y=(y1),...,y(d): ly() <} 1<i=<d}

is the closed unit cube centered at the origin. Thereby, the lattice structure of
B is “smoothed out.” For x ¢ 7%, T(0, x) will be interpreted as inf {¢: B(t) > x}.

In the case when the passage times T'(e) are stationary [i.e., for any n the
distribution of (T'(e(x1 + 2z, y1+ 2)),..., T(e(xn + 2, yn + 2))) does not depend
on z € Z%] and ergodic (i.e., any event that is invariant under all translations
has probability 0 or 1) with finite first moment, the subadditive relation (2)
implies that

exists for any x € R%. It then follows from Kingman’s subadditive ergodic
theorem [Kingman (1973)] that
3) lim 207 _ (2) as.
r—oo r
This is referred to as the existence of an asymptotic speed.

The majority of attention has been focused upon the case when the passage
times are i.i.d., the main result being that B(¢), under suitable moment condi-
tions, has an asymptotic shape. This is made precise in the following theorem,
proved in the case d = 2 by Cox and Durrett (1981) and for higher dimensions
by Kesten (1986). See also Durrett (1988).

THEOREM 1.1. Let F be a nonnegative probability distribution such that if
T.,...,Teq are i.i.d. with distribution F, we have

E(min{T$¢,...,T3,}) < cc.

Suppose the passage times T(e) are i.i.d. with distribution F. Then there exists
a nonrandom convex set By € R¢ with nonempty interior such that either (a)
or (b) holds:

(a) By is compact and for all ¢ > 0 we a.s. have

(1—-¢)By C ——EQ C (1+&)By eventually;
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(b) for all M > 0 we a.s. have

@ D> {xeR? |x| <M} eventually

(this corresponds to By = R?).

This means that the a.s. convergence in (3) holds in all directions simulta-
neously. Due to the subadditivity of the travel times, we have that By must
be convex. By symmetry, By must also be invariant under permutations of the
coordinate axes as well as under reflections in the coordinate hyperplanes. A
precise condition on F distinguishing the cases (a) and (b) is known (see Sec-
tion 2). In case (a), the exact shape of By seems extremely difficult to compute;
it is only known in the trivial case when F is a one-point distribution. Consult
Kesten (1987) for a nice review of i.i.d. first passage percolation.

Recently some attention has been drawn to non-i.i.d. cases as well. Fontes
and Newman (1993) consider certain dependent models of possible relevance
to physics. Boivin (1990) considers the general stationary and ergodic case,
and proves the following theorem.

THEOREM 1.2. Let F4,..., F 4 be nonnegative probability distributions such
that for i = 1,...,d there is an ¢ > 0 such that F; has finite moment of order
d + &. Suppose the passage times are stationary and ergodic, and that an edge
oriented in the ith coordinate direction has distribution F;. Then there exists
a deterministic, continuous and nonnegative function w on {x € R%: |x| = 1}

such that
lim (M — ,u(i>> =0 a.s
=00 x| [x|

xeZ

This is the stationary case analogue of Theorem 1.1. In the special case
where the T'(e)’s are also bounded, this was first noted by Derriennic [see
Kesten (1986), page 259]. The quantity w(x/|x|) is the inverse asymptotic
speed in the direction x/|x|. To phrase the result in terms of asymptotic shapes,

let
By = {x e R%: |x|,u,<i> < 1}.
[x]

If w(x/|x|) > 0 everywhere, then By is compact with nonempty interior, and
conclusion (a) of Theorem 1.1 holds. Since isotropy is not assumed, B does
not have the invariance properties of the i.i.d. case, except for the fact that

(4) xe By & —xc¢€ By,

which can equivalently be stated w(x/|x|) = u(—x/|x|) and which follows eas-
ily from (1). We will use the word symmetric to indicate that (4) holds. Con-
vexity follows as in the i.i.d. case. Hence, symmetry, convexity and nonempty
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interior are necessary conditions for a set B € R? to arise as limiting shape
in stationary first passage percolation.

If w(x/|x]) = 0, we have infinite asymptotic speed in all directions, and
situation (b) in Theorem 1.1 applies.

There is a third case, however: when u takes on both zero and strictly pos-
itive values. Then neither of the two scenarios of Theorem 1.1 apply. A trivial
example in two dimensions is when all horizontal edges have passage time
0 and all vertical edges have passage time 1. For more interesting examples,
see Section 2.

Our main theorem concerns the first of these three cases. It says that the
conditions of symmetry and convexity are not only necessary but also sufficient
conditions for a compact set with nonempty interior to arise as a limiting shape
for some stationary measure on the passage times.

THEOREM 1.3. Let € be the set of all subsets of R? that are compact, convex
and symmetric with nonempty interior. Let €* be the set of all compact subsets
of R? with nonempty interior that can arise as limiting shapes for stationary
first passage percolation. Then €* = €.

If the edges are thought of as microscopic, we thus have a precise condition
telling us which kinds of macroscopic linear spread can be modelled by station-
-ary first passage percolation. The problem of determining a similar condition
for i.i.d. first passage percolation seems to be difficult.

From the above discussions €* C ¢ is clear so we only need to prove € C
€*. The proof will be by construction. That is, for any B € € we construct a
stationary measure up which will yield B as a limiting shape. We remark that
wp has the following very nice properties. First, passage times are bounded.
Second, wp is Bernoulli, which means isomorphic (in the ergodic-theoretical
sense) to an .i.i.d. measure and implies mixing. Our measure also has trivial
tail o-fields.

The rest of this paper is organized as follows. In Section 2 we discuss the
possible finiteness of the asymptotic speed and the related issue of compact-
ness of the asymptotic shape, while in Section 3 we prove Theorem 1.3.

2. On the compactness of By. For i.i.d. first passage percolation, a pre-
cise condition for compactness of the asymptotic shape By was given in Kesten
(1986): By is compact if and only if

F(0) < p(Z?, bond),

where p.(Z%, bond) is the critical value for standard d-dimensional bond per-
colation [see Grimmett (1989) or Kesten (1987)]. This is to say that B(t) grows
faster than linearly if and only if the expected distance which can be travelled
from the origin along edges with zero passage time only is infinite.

Moving on to the stationary case, one might hope to find some similar con-
dition guaranteeing compactness of By. However, as we shall see, it is possible
to get superlinear growth of B(¢) even if a.s. no edges have zero passage time.



STATIONARY FIRST PASSAGE PERCOLATION 1515

In fact, it is not possible to give any condition on the marginal distributions
F4,..., F4 of the passage times which is sufficient for the compactness of By,
except for the rather obvious fact that By is compact if there is a § > 0 such
that F;(6)=0fori=1,...,d.

EXAMPLE 2.1. Let F4,..., F4 have finite moments of order d + & for some
£ > 0, so that Theorem 1.2 applies. Suppose furthermore that at least one of
the F;’s (F, say) supports the interval [0, §] for all § > 0 (note that this does
not imply that F; has a point mass at 0). We construct a stationary measure on
the passage times, with marginals Fy,..., Fy, as follows. Let { X;};cz be i.i.d.
random variables with distribution F;. Let each edge e oriented in the first
coordinate direction have passage time X;, where i is the second coordinate of
the vertices joined by e. Finally, let all other edges have passage times which
are independent (and distributed according to their respective marginals). The
measure obtained in this way yields infinite asymptotic speed in the first
coordinate direction. To see this, note that for any ¢ > 0 it is possible to travel
at asymptotic speed at least 1/¢ by first moving along the second coordinate
axis until a vertex incident to some edge e oriented in the first coordinate
direction with T'(e) < ¢ is encountered, and then turning and moving in the
first coordinate direction.

EXAMPLE 2.2. Let the passage times be as in the previous example, with
the extra assumption that the distributions F, ..., F; are bounded away from
0. Then the asymptotic speed is clearly finite in all directions except in the
first coordinate direction. By an obvious modification we can get, for any i €
{1,...,d}, infinite speed in exactly i of the d coordinate directions.

The next example shows that finite asymptotic speed in each of the d coordi-
nate directions is not a sufficient condition for compactness of the asymptotic
shape.

ExaMPLE 2.3. Let X = 0 or 1, each with probability % Let d = 2 and let
the passage times be given by
if x(1) + x(2) is even,
if x(1) + x(2) is odd,
if (1) + x(2) is even,
if x(1) + x(2) is odd;

X
T(e((x(1),x(2)), (2(1) + 1,%(2)))) = { -

T(e((x(1), %(2)), (x(1), x(2) + 1)) = l x

see Figure 1. It is easy to check that the measure on the passage times thus
obtained is stationary and ergodic and that the asymptotic speed is infinite in
the directions
1,1
x _ L1

|| V2

and finite in all others.
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F1G. 1. All bold edges have the same passage time X; all dotted edges have the same passage
time 1 — X.

None of these examples is mixing, but measures with similar properties
and which, in addition, are mixing (even Bernoulli) can be constructed using,
for example, the technique of Section 3.

3. Proof of Theorem 1.3. We begin with some preliminaries.

LEMMA 3.1. Let BC R? be convex, let x1,...,%, € R? and let ay, ..., a, be

positive numbers such that for i =1,...,n we have ai’lxi € B. Then
X1+ +Xn c B.
ai+---+ay

PROOF. We have

X1+ +Xp a X1 an anB
a1+...+an a1+...+ana1 a1+...+anan

by convexity. O

For a set
E ={e(x1,y1),...,e(xn, yn)}
-6f edges and z € Z¢, let

T,E ={e(x1+2z,y1+2),:..,e(xn+ 2,y +2)}.



STATIONARY FIRST PASSAGE PERCOLATION 1517

In words, T, E is E shifted over the vector z. If n: E — R* is a configuration
assigning passage times to E, we write T, for the configuration on T, E given
by T n(e(x; + 2, y: + 2)) = n(e(x;, ¥;))-

We now turn to the construction which will prove Theorem 1.3. Let B € ¢
be the desired asymptotic shape, Let

h = inf{|x|: x € R?\ B},
and note that
h>0

due to the fact that B is symmetric with nonempty interior whence it has 0
in its interior.

Let (x1, x2,...) be a dense sequence of points on the boundary of B. What we
will construct is a stationary measure which yields something which at first
sight looks like a complete mess of finite chains of fast edges in an environment
of slow edges, but whose asymptotic shape is surprisingly tractable. The chains
will be fairly straight (more like sticks, perhaps) and oriented in directions
x1/]%1l, x2/ %2, . ... .

For each i, let z; denote the integer point closest to 2'(x;/|x;|), in the
Euclidean norm and with some arbitrary convention in case of ties. Let r;
be a path from 0 to z; such that the following hold:

- (i) The path r; is as short as possible, in that it consists of exactly |z;(1)|+
<o+ +2;(d)| edges.

(ii) No vertex in r; is further away than +/d units from a straight line
through 0 and z;.

The reader may easily check that such a path exists. Let E; be the set of edges
given by

E; = {e: e is an edge either in r; or incident to some vertex in r;};

see Figure 2.
Define for i = 1,2,..., the configuration n;: E; — R of passage times by

l2; (1)]/) %12, if e is in r; and oriented in the
first coordinate direction,

ni(e) = :
lx;(d)|/|x: 12, if e is in r; and oriented in the

dth coordinate direction,
A~ 1(1+2/d), ifeisnotin r;.

The reason for these choices will hopefully become clear later, but a few words
can be said immediately. The reason for the choice of passage times for the
‘edges in r; is that |x;(j)|/ |x;|? equals 1/|x;| times the length of the projection
of the jth unit vector onto x;. These are designed for yielding fast asymptotic
speed (close to |x;|) in direction x;/|x;|. The other edges are designed for pre-
venting higher speed than what is allowed by B. An edge in itself is of course
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0.0

FIG. 2. Thepath r; is formed by the bold edges and the dotted edges are the slow edges surrounding
r,. Together the bold and the dotted edges form the set E;.

within the “speed limits” of B if it has passage time at least A~1. The term
h~12/d is for compensating for sideways displacements (perpendicular to |x;|)
in r;; these displacements can be of length up to 2+/d.

" Now, let {X,},cz¢ and {Y .}, .z« be arrays of random variables such that

1

. s . . 29 for j = O’
{Xx}erd are iid. with P(X, = J) = {;-1, for J =12,...,

{Y},czq are ii.d. with Y, uniformly distributed on [0, 1]
and
{Xx}icze is independent of {Y ,},czq.

The passage times will be determined from {X,},cz« and {Y ,},cz« in the
following way. For every x € Z% and whenever X, # 0, the edges in T, E;
will be assigned passage times according to T'ym;, where i = X,. This will
of course lead to contradictions, because the different T, E;’s will sometimes
overlap. This is resolved in the following way. Whenever two or more T E;’s
try to determine the passage time of the same edge, the one with the largest
value of X, (i.e., of i) wins. In case of a tie here, the one with the largest value
of Y, wins. This works because a.s. only finitely many T', E;’s will compete for
each edge: the expected number of competitors is less than or equal to

[e e} . . o0 . .
> 3 id2t! = 2d Y'(3) <00
i=1 i=1
sihce each E; contains at most d2i*! edges in each coordinate direction by (i)

above. Finally, let all remaining edges have passage time A~1(1 + 2v/d). This
is our construction. .
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The passage times are bounded by 2~1(1 + 2+/d), and they are stationary
and Bernoulli since they are obtained in a translation invariant way from
an ii.d. process [see Ornstein and Weiss (1987)]. Given a realization of the
process, we call an edge e slow if T'(e) = A~1(1 + 2+/d), and fast otherwise.

Let B° denote the interior of B. What we need in order to show that B is
the asymptotic shape for our process is the following:

(a) (B(t))/t ¥ y eventually a.s. for any y € R?\ B;
(b) (B(t))/t > y eventually a.s. for any y € B°.

Statement (b) is equivalent to

- i L7012

t—o00

<1 for any y € B°.

We have existence of the limit in (b’) and equivalence with (b) due to the a.s.
convergence in (3), the boundedness of the passage times and Theorem 1.2.
We will prove (a) and (b').

We first prove (a). For y € Z%, let r be a path from 0 to y. The path r can be
written as the concatenation (r{, rs, rg, R r,’i, r$), where r{, ré, ey rﬁ consist
of fast edges only and rl, rs,...,r; consist of slow edges only (r{ and r may
be empty). We call r1 s r2, . r,’; fast subpaths and r{, r3, ..., r; slow subpaths.
It is clear from the construction that each fast subpath gets its values from
one T.m; only (this is due to the “layer” of slow edges that surround the fast

ones in each ;). The displacement D(rf ) travelled by a fast subpath (whose
edges are in T, E;) can be written

D!y = Dy(r!) + Do (rD),

where D"(r ) is the component of D(rf ) obtained by projecting it on the
straight hne associated with T',m;, and D l(rf ) is the component perpendicu-
lar to this line. We have, by the choice of passage times for the fast edges,

_Du(";)
T(r)

::!:xi € B.

We also have

ID.(r))] < 2Vd.

Hence,
D, (r})
2h-1vd
and Lemma 3.1 implies
D(rl)

T(rf)+2h W’
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For each slow edge e we have
D(e)
e e B,
T(e) — 2h-1V/d

Since the number of fast subpaths of r exceeds the number of slow edges in r
by at most 1, we have, again using Lemma 3.1,

b _p
T(r)+2h-1Jd

Pick y € R? and ¢ € R. Taking infimum of the passage times of all paths from
0 to ¢y, we get (using the fact that B is closed)

Ly
€eB
T(0,ty) +2h-1/d

and letting ¢ — oo, the term 2A2~1+/d can be neglected, so that if y ¢ B,

limsu —t— <1
t—o00 P T(O, ty)

(again using closedness of B). By (3) the limsup is in fact a limit, so we have

lim 100, ty)

t—o00 t

>1

and (a) follows.
We proceed to prove (b’). For any x € B° and any i, we can find ¢ > 0, %

and iy,...,i; such that { < i; < ... < i; and x belongs to the convex hull of

(14 &) 1xi),...,(1+ &) 1x;,. Hence it suffices to show that, for any & > 0,
E[T(0,¢tx;

(5) , tlim ——[—it—’—x-ﬂ <l+e¢

for all sufficiently large i. For fixed i, (5) follows by subadditivity once we can
show that

te; |E[T(0, 2;) ]
e <
The idea now is to give an upper bound for the left-hand side of (6) by suggest-
ing a specific choice of path from 0 to z;. Due to the choice of passage times
for the fast edges in T, E;, the left-hand side would equal 1 if (a) a T',r; path
would start at 0 (and thus end at z;) and (b) this path were not interrupted
by other configurations. Both (a) and (b) fail (with high probability). However,
the time lost is reasonably small if we adopt the following strategy:

First find the T, r; path whose starting point x is closest to the origin (in the

'Ll-norm with some arbitrary convention in case of a tie) and move to x using
as few edges as possible. Then move along T,r; (regardless of whether the
edges are covered by configurations other than 7'.7;) until it ends, at x + z;,
and finally go from x + z; to z; using as few edges as possible.

(6) 1+e.
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We have that

(7 E[T(0,z)] <

2'| +2ah™ (1 +2vd) + bh7 (1 +2Vd),

|x

where a is the expected L!-distance from 0 to the nearest starting point of a
T.r;-path (the 2 in front of a comes from the movement back to z; at the end
of the path) and b is the expected number of edges in T,r; which are covered
by another configuration of higher priority.

Since each integer point is the starting point of a T',r; path with probability
3!, independently of all other points, it is easy to see that

a < C3i/d

for some constant C = C(d). To get an upper bound for b, note that 7',r; has
at most d2’ edges and that each edge is covered by a configuration of higher
priority with probability at most

> 37id2 = 2d 3 (3)’ = 6d(})
Jj=i j=i
so that

b< 6d2(§)i.
Substituting a and b in (7) we get

E[T(0,2)] < =

Xi

+ (203“‘1 + 6d2(§) )h-1(1 +2Vd),
so that

%}(M <1+ (20@;)1 + 6d2(§)i)h‘1(1 +2vd)

<1+(2C+ 6d2)(§)lh‘1(1 +2vd),

which is smaller than 1 + &£ whenever

(2C + 6d2)(?)lh‘1(1 +2Vd) < e,

that is, whenever

. log(((2C + 6d?)(1 + 2v/d))/he)
> .
log(2/+/3)

So (6) holds for all such ¢, and the proof of Theorem 1.3 is complete. O
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