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LAWS OF THE ITERATED LOGARITHM FOR CENSORED DATA

BY EVARIST GINE1 AND ARMELLE GUILLOU2´
University of Connecticut and Universite Paris VI´

First- and second-order laws of the iterated logarithm are obtained for
both the Nelson�Aalen and the Kaplan�Meier estimators in the random
censorship model, uniform up to a large order statistic of the censored
data. The rates for the first-order processes are exact except for constants.

ŽThe LIL for the second-order processes where one subtracts a linear,
empirical process, term from the difference between the original process

.and the estimator , uniform over fixed intervals, is also proved. Somewhat
surprisingly, there is a certain degree of proof unification for fixed and
variable intervals in the second-order results for the Nelson�Aalen esti-
mator. No assumptions are made on the distribution of the censoring
variables and only continuity of the distribution function of the original
variables is assumed for the results on the Kaplan�Meier estimator.

1. Introduction. Let X, X , i � �, be independent and identically dis-i
Ž . Ž .tributed i.i.d. random variables with common distribution function df F
Ž .and let � x be its cumulative hazard function. Let Y, Y , i � �, be a secondi

i.i.d. sequence, independent of the first, and let Z � X � Y, � � � , Z �X � Y i
�X � Y , � � � , i � �. We denote by H the df of Z and by � � inf x:i i i X � Y Hi i

Ž . 4 Ž .H x � 1 , the supremum of the support of H. Let � x , �� � x � � ,n H
Ž . Ž .denote the Nelson�Aalen estimator of � x , which is in terms of Z , � ,i i

ˆ� Ž . Ž .� Ž .i � 1, . . . , n, Nelson 1972 and Aalen 1976 and let F x , �� � x � � , ben H
Ž . Ž .the Kaplan�Meier 1958 product limit estimator of F x , also in terms of

Ž . Ž .Z , � . See Section 2 for definitions.i i
Ž �The accuracy of the approximation of � by � uniformly in ��, T orn

ˆŽ �in ��, T and that of F by F have been widely studied as they have obvi-N n
Ž .ous statistical interest. We refer to the interesting articles of Csorgo 1996¨ ˝

Ž .and Stute 1994 for detailed accounts on the history of this subject. In partic-
Ž . Ž .ular, these two authors study the a.s. asymptotic behavior of � x � � xn

ˆŽ Ž . Ž .. Ž Ž ..and F x � F x � 1 � F x uniformly over the data driven intervalsn
Ž � � 4��, Z , where Z is the jth order statistic of Z , . . . , Z and � isnŽ1�� ., n j, n 1 n nn

a nonincreasing sequence such that n� 	 log n and n� is a positiven n
integer. The idea of replacing a fixed end point T by Z comes fromnŽ1�� ., nn

Ž . Ž .Stute 1994 , and Csorgo 1996 contains an extensive study of the subject, in¨ ˝
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particular refining Stute’s results. We refrain from adding to these authors’
comments on the statistical relevance of this type of results.

Ž .Csorgo 1996 proved, among many other results, that, assuming F contin-¨ ˝
uous,

F̂ x � F x 1Ž . Ž .n
sup � OP ž /1 � F xŽ . n�'x�Z nnŽ1�� . , nn

� 4for all n� � 1, 2, . . . , n � 1 and thatn

F̂ x � F x log nŽ . Ž .n
sup � O a.s.(ž /1 � F x n�Ž .x�Z nnŽ1�� . , nn

if n� 	 log n; Csorgo also showed that the first result is best possible and¨ ˝n
conjectured that the second should have log n replaced by log log n. Our first
goal in this article is to prove this conjecture. In Theorem 7 and Remark 3
below we show that, assuming F continuous, and n� 	 9 log n, n� � �,n n

ˆn� F x � F xŽ . Ž .2 n n
1.1 lim sup � 0 a.s.,Ž . (d log log n 1 � F xn�� Ž .x�Zn nŽ1�� . , nn

� 4 Ž .kwhere d is any nondecreasing sequence such that Ý1� kd log k � �n 2
� Ž .1
� �e.g., d � log log log n and that, if we further assume n� 	 Cd log nn 2 n n
for some C � 0 and some d as stated, thenn

ˆn� F x � F xŽ . Ž .2 n n
1.2 lim sup sup � � a.s.Ž . ( log log n 1 � F xŽ .n�� x�ZnŽ1�� . , nn

Ž .Of course, this lim sup is a constant by the 0�1 law. The same rates apply to
� Ž . Ž . � Ž . Ž .sup � x � � x Theorem 6 and Remark 3 below . The rate 1.2x � Z nnŽ1�� ., nn

� Ž . �is best possible Claim in Csorgo 1996 , page 2749 . Our theorems are stated¨ ˝
in terms of variable nonrandom end points T because, as observed by Stuten

Ž .and by Csorgo see also Remark 3 below , the random case reduces almost¨ ˝
trivially to this case. There has been a considerable amount of work on the

ˆŽ . Ž . Ž �LIL for F � F � 1 � F uniform over fixed intervals ��, T , T � � , andn H
Ž .we refer to Csorgo and Horvath 1983 for the final result; except for con-¨ ˝ ´

Ž .stants, these results are recovered by 1.2 .
A second, related, goal here is that of obtaining ‘‘second-order laws of the

iterated logarithm’’ for the Nelson�Aalen and the Kaplan�Meier estimators,
uniform over fixed as well as variable intervals. To describe these results, we

Ž .recall that the statistic � x , which is a symmetric statistic in the variablesn
Ž . Ž .X , Y , . . . , X , Y , admits a von Mises type development of the form1 1 n n

1.3 � x � � x 
 L x 
 Q x 
 D x , �� � x � � ,Ž . Ž . Ž . Ž . Ž . Ž .n n n n H

� Ž . 4 Ž .where L x : �� � x � � is a centered empirical process the linear term ,n H
� Ž . 4 ŽQ x : �� � x � � is a canonical V-process of order 2 the quadraticn H

. Ž . � Ž .�term , and D x is a remainder Stute 1994 , and that this developmentn
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ˆ Ž .induces a similar one for the product limit estimator F x via a decomposi-n
Ž .tion of Breslow and Crowley 1974 . The term ‘‘second-order results’’ refers to

ˆŽ . Ž .result on the behavior of � � � � L and F � F � 1 � F � L . Ourn n n n
results of this kind, which are also optimal up to multiplicative constants,
asserts that

n 1 � H T �Ž .Ž .
1.4 lim sup sup � x � � x � L x � C a.s.Ž . Ž . Ž . Ž .n n 1log log nn x�T

and that, for F continuous,

ˆn 1 � H T � F x � F xŽ . Ž . Ž .Ž . n
1.5 lim sup sup � L x � C a.s.Ž . Ž .n 2log log n 1 � F xŽ .n x�T

Žfor all T � � , where C are finite universal constants respectively, Theo-H i
.rems 2 and 3 below . Concerning the uniformity of the second-order processes

Ž � Ž .over the random intervals ��, Z , we recover Csorgo’s 1996 rates¨ ˝nŽ1�� ., nn
Ž .for the Nelson�Aalen estimator Theorem 4 below and improve his rates for

Ž .the product limit estimator Theorem 8 . It is perhaps interesting to mention
here that our proofs of the second-order results for the Nelson�Aalen estima-
tor for fixed intervals and for variable intervals are basically the same;
actually, in a sense, the result for variable intervals is a corollary from the
one for fixed intervals. This makes us believe that the rates obtained for the

Žsecond-order processes over variable intervals are not best possible although
.they are good enough to imply sharp results for the first-order processes .

In order to obtain the first-order results, we combine the second-order
results for the Nelson�Aalen estimator with a law of the iterated logarithm
for the linear term,

1.6 sup L xŽ . Ž .n
x�ZnŽ1�� . , nn

Ž .Theorem 5 . Perhaps the main technical improvement with respect to previ-
ous work is contained in our proof of this result, which relies on recent

Ž . Ž .important theorems of Montgomery-Smith 1993 and Talagrand 1996 but
is, otherwise, quite standard.

The strategy of proof of the second-order results is also relatively new and
Ž .it closely follows the method of Stute 1993 for truncated data as modified by

Ž . Ž . Ž .Arcones and Gine 1995 . We decompose D x from 1.3 as the product of´ n
the empirical quotient,

� 1 � H Z �Ž .i � 4max , if i � n: Z � x � �,i�1.7 D x �Ž . Ž . 1 � H Z �i�n : Z �x Ž .n , 1 i n i

0, otherwise,

Ž .and an almost degenerate V-process of order 3, say D x , and then we usen, 2
Ž . Ž .Hoeffding’s decomposition on the V-processes Q x and D x and applyn n, 2

� Ž .�the LIL for canonical U-statistics and U-processes Arcones and Gine 1995´
to these components.
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� Ž .4In order to show that the sequence D T is a.s. bounded for veryn, 1 n
Ž .general T , we use an exponential bound from Shorack and Wellner 1986n

based on Doob’s maximal inequality. The bounded LIL for U-statistics and
Ž .processes in Arcones and Gine 1995 is in terms of bounds for moments of´

� Ž .the suprema of the normalized sums an idea originated in Pisier 1975 and
this allows for a unified treatment of both fixed and variable T. In the end,
the proofs reduce to estimating second moments of appropriate kernels, and

Ž .for this we follow Stute 1994 .
Section 2 collects preliminary material, Section 3 is devoted to the LIL

uniform over fixed intervals and variable intervals are treated in Section 4.

2. Preparatory material. We begin with some additional notation from
˜Ž . Ž . � 4Stute 1994 : we set H x � Pr Z � x, � � 1 , �� � x � � , and define HH n

˜ ˜and H to be the empirical counterparts of H and H, respectively, that is,n

n n1 1˜H x � � and H x � � , n � �,Ž . Ž .Ý Ýn Z � x n �Z � x , � �14i i in ni�1 i�1

˜ ˜for �� � x � � . The obvious facts that dH � dH and dH � dH will beH n n
used without further mention. We should recall that, with this notation and
the notation set up in the Introduction,

˜ ˜x xdH dHn
� x � , � x �Ž . Ž .H Hn1 � H 1 � H�� ��� n�

and
n � �j , n Z � xj , nˆ1 � F x � 1 
Ž . Łn n � j 
 1j�1

Ž .for all x � ��, � , where � � � iff Z � Z and H , H are the leftH j, n k j, n k � n�
continuous versions of H and H , respectively.n

We also require the following notation from U-statistics. The symmetriza-
tion sh of a function h: Sr � � where S is any set is defined as

1
sh x , . . . , x � h x , . . . , xŽ . Ž .Ý1 r � �1 rr !

with the sum extended over all the permutations � of 1, . . . , r. Given a
Ž . rprobability measure P on measurable space S, SS and a P -integrable

Ž . rfunction of r variables symmetric in its entries, h x , . . . , x on S , its1 r
Hoeffding projections � h, 1 � m � r, are defined asm

� h x , . . . , x � P � � � ��� � P � � � P r�mhŽ . Ž . Ž .m 1 m x x1 m

and � h � P rh, where we are using functional notation for integrals and0
� Ž .� is unit mass at x then, e.g., for functions of two variables h x, y , we havex

Ž . Ž . Ž . Ž . Ž . Ž .� h x , y � h x , y � Hh x , y d P x � Hh x , y d P y 
2
Ž . Ž . Ž .�HHh x, y dP x dP y ; � h is a canonical or totally centered kernel, that is,m
Ž . Ž .H� h x , . . . , x dP x � 0 for all 1 � i � m. Analogous definitions can alsom 1 m i
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be made for nonsymmetric functions: � is defined exactly in the same waym
for m � 0 and m � r, but there are more than one � h if 0 � m � r and them
definitions in this case become unnecessarily cumbersome.

Ž .As Stute 1994 observes,

2.1 � x � � x � L x 
 Q x 
 D x , �� � x � � ,Ž . Ž . Ž . Ž . Ž . Ž .n n n n H

where

˜ ˜x xd H y � H y H y � � H y �Ž . Ž . Ž . Ž .Ž .n n ˜2.2 L x � 
 dH yŽ . Ž . Ž .H Hn 21 � H y �Ž .�� �� 1 � H y �Ž .Ž .
is the linear term in the von Mises decomposition of � ,n

1
Q x � � � h X , Y , X , YŽ . Ž . Ž . Ž .Ž .Ýn 2 x i i j j2n 1�i�j�n

˜ ˜x x1 dH y 1 dH yŽ . Ž .n n� 
H H2n n 1 � H y �Ž .�� ��1 � H y �Ž .Ž .2.3Ž .
x1 H y � � H y �Ž . Ž .n ˜� dH yŽ .H 2n �� 1 � H y �Ž .Ž .

R xŽ .n
� � � R x 
 R x � R xŽ . Ž . Ž .n , 1 n , 3 n , 42n

is the quadratic term, with
2h x , x � � � 1 � H x �Ž . Ž .Ž .x 1 2 � x � y 	 x , x � y , x � x4 12 2 1 1 1 1

Ž .or its symmetrization; it does not matter and
2

x H y � � H y �Ž . Ž .Ž .n2.4Ž . ˜D x � dH yŽ . Ž .Hn n2
�� 1 � H y � 1 � H y �Ž . Ž .Ž . Ž .n

� Ž .is the remainder term. There is no term R in 2.3 in order to conform asn, 2
Ž . �much as possible with Csorgo’s 1996 notation. Partly inspired by Stute¨ ˝

Ž .1993 , we bound D as follows:n

2H y � � H y �Ž . Ž .Ž .T n
sup D x � D T � D TŽ . Ž . Ž .Hn n n , 1 3

�� 1 � H y �Ž .Ž .x�T

�dH yŽ .n

2.5Ž .

� D T D T ,Ž . Ž .n , 1 n , 2

Ž . Ž .where D is as defined by 1.7 . Now D T is a V-statistic of degree 3n, 1 n, 2
which is degenerate in two of the three coordinates. In order to analyze

Ž . Ž .D T , it is natural although somewhat tedious to decompose it into itsn, 2
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U-statistic components, and then further decompose these, via Hoeffding’s
decomposition, into canonical U-statistics of different orders. If we do this, we
obtain

1
D T � � � H Z � � � H Z �Ž . Ž . Ž .Ž .Ý Ž .n , 2 Z � Z k Z � Z k3 i k j kn 1�i�j�k�n

�ŽZ � T .k� 31 � H Z �Ž .Ž .k

�1 2 ŽZ � T .k
 � � H Z �Ž .Ž .Ý Z � Z k3 3i kn 1 � H Z �Ž .Ž .1�i�k�n k

2

 � � H Z � �H Z �Ž . Ž .Ž .Ý ž /Z � Z j j3 i jn 1�i�j�n

�ŽZ � T .j
� 3

1 � H Z �Ž .Ž .j

�1 ŽZ � T .i2
 H Z �Ž .Ý i3 3n 1 � H Z �Ž .Ž .1�i�n i

1 1
� � f Z , Z , Z 
Ž . Ž .Ý 3 i j k3 2n n1�i�j�k�n

� � H y � � � H y �Ž . Ž .Ž . Ž .Z � y Z � yT i j
� dH yŽ .Ý H 3

�� 1 � H y �Ž .Ž .1�i�j�n

1

 � g Z , ZŽ . Ž .Ý 2 i k3n 1�i�k�n

2
� � H y �1 Ž .Ž .T Z � yi2.6 
 dH yŽ . Ž .Ý H2 3n �� 1 � H y �Ž .Ž .1�i�n

2
� � H y �Ž .Ž .T Z � yi�� dH yŽ .H 3ž /�� 1 � H y �Ž .Ž .

H Z � �1 Ž .k Z � Tk
 Ý2 2n 1 � H Z �Ž .Ž .1�k�n k

H y �Ž .T
� dH yŽ .H 2

�� 1 � H y �Ž .Ž .
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1 H y �Ž .T

 dH yŽ .H 2n �� 1 � H y �Ž .Ž .

2

 � h Z , ZŽ . Ž .Ý 2 i j3n 1�i�j�n

� � H y � �H y �2 Ž . Ž .Ž .Ž .T Z � yi
 dH yŽ .Ý H2 3n �� 1 � H y �Ž .Ž .1�i�n

2H Z � �1 Ž .i Z � Ti
 Ý3 3n 1 � H Z �Ž .Ž .1�i�n i

2H y �Ž .T
� dH yŽ .H 3

�� 1 � H y �Ž .Ž .

1 H 2 y �Ž .T

 dH yŽ .H2 3n �� 1 � H y �Ž .Ž .

10

� D T ,Ž .Ý n , 2, r
r�1

where

f z , z , z � � � H z � � � H z �Ž . Ž . Ž .Ž . Ž .1 2 3 z � z 3 z � z 31 3 2 3

�z � T3� ,31 � H z �Ž .Ž .3

�2 z � T2g z , z � � � H z � ,Ž . Ž .Ž .1 2 z � z 2 31 2 1 � H z �Ž .Ž .2

2.7Ž .

h z , z � � � H z � �H z �Ž . Ž . Ž .Ž .Ž .1 2 z � z 2 21 2

�z � T2� .31 � H z �Ž .Ž .2

The terms R �n2 and R , i � 1, 3, 4, are all U-processes of differentn n, i
Ž .degrees 1 and 2 , D , i � 6, 10, are canonical U-statistics of differentn, 2, i
Ž .degrees 1, 2, 3 and D and D are constants. We will handle all then, 2, 6 n, 2, 10

U-statistics and U-processes in the same way, by applying to each of them a
version of the LIL for degenerate U-statistics and U-processes consisting of
maximal inequalities for moments.

Ž . � Ž .�Regarding D in 1.7 and 2.5 , we will apply to it the followingn, 1
�Ž .exponential inequality from Shorack and Wellner 1986 , pages 416 and 417,

Ž . Ž . Ž . �a and 6 , implemented in analogy with Stute 1993 , page 151 .
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LEMMA 1. For all 	 	 1, we have

log 	 1
2.8 Pr D T 	 	 � exp n 1 � H T � � 1 
 .� 4Ž . Ž . Ž .Ž .n , 1 ž /	 	

The U-process and U-statistic maximal inequalities will be in terms of the
variances of the suprema of the respective kernels over x, and our estimates

Ž .for these variances will be based on the following observation of Stute 1994 .

LEMMA 2. For any distribution function L and real number r � 1, we have

dL y rŽ .T
2.9 � .Ž . H r r�11 � L y ��� Ž .Ž . r � 1 1 � L T �Ž . Ž .Ž .

Finally, in order to describe the maximal inequalities in question it is
convenient to recall two definitions from empirical process theory. Given a

Ž .metric or pseudometric space T, d , and � � 0, the �-covering number of
Ž . Ž .T, d , N T, d, � is defined as the minimal number of open d-balls of radius
� and centers in T required to cover T. A class of measurable functions HH on

ˇŽ . Ž .a measure space S, SS is a Vapnik�Cervonenkis VC class of functions with
respect to the envelope H if there exists a function H measurable and

� �everywhere finite with h � H for all h � HH and numbers A and v finite,
such that

vA
2� � � �N HH , � , � H �Ž .L ŽP . L ŽP .2 ž /�

Ž . Ž .for all � � 0, 1 and for all probability measures P on S, SS for which
2 Ž .HH dP � �. This definition is similar to Nolan and Polard’s 1987 definition

of Euclidean classes. We also say that the class HH is measurable if it can be
Ž .parametrized by a complete separable metric space 
 and the map � , x �

Ž .h x is jointly measurable.�

The classes of functions we will use have a very simple structure and they
will all be obviously measurable. To show that they are VC it will suffice to
apply the next lemma.

Ž . � � � 4LEMMA 3. a If HH is finite, then HH is VC with respect to max h : h � HH .
Ž . � 4 Ž . Ž .b If HH � h : x � J where J is a subset of � and 0 � h s � h s forx x y

� � � 4all x � y, x, y � J and s � S, then HH is VC for H � sup h : h � HH .
Ž . �c If HH and HH are VC, respectively, for H and H , then h 
 h :1 2 1 2 1 2

4 � 4h � HH , i � 1, 2 and h � h : h � HH , i � 1, 2 are VC with respect toi i 1 2 i i
Ž 2 2 .1�2H 
 H .1 2

Ž . Ž r r .d If HH is a class of functions on S , SS with respect to an envelope H
r Ž .which is P -square integrable, P being a probability measure on S, SS , and if

� denotes the mth Hoeffding projection with respect to P, then the classm
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� 4 � � 2 m� sh: h � HH is VC with respect to an envelope K such that K �L ŽP .m
� � 2 rc H , 1 � m � r, where c is a constant that depends on r only.L ŽP .r r

Ž . Ž . Ž .PROOF. a is trivial, c and d are essentially Corollaries 17 and 21 in
Ž . Ž .Nolan and Pollard 1987 and b is well known but we indicate its proof.

2 Ž . Ž �2Given P such that HH dP � � and � � 0, 1 we assume w.l.o.g. that � is
. �Ž . 2 2 � �2an integer , let I � k � 1 � , k� , k � 1, . . . , � , and let us pick up, fork

Ž .2each k for which it is possible, a number x � J such that H h �H dP � I .k x kk
Ž .2Then, for every x there is k such that H h �H dP � I . For any given x letx k

k be such a number; then the fact that either h � h or h � h and bothx x x xk k

are nonnegative, implies

2 2 2h � h h hx x x xk k 2dP � dP � dP � � ,H H Hž /ž / ž /H H H

Ž � � 2 � � 2 . �2showing that N HH, � , � H � 2� . �L ŽP . L ŽP .

Ž .The following result comes from Pisier 1975 for m � 1 and from Arcones
Ž .and Gine 1995 for m � 1. We use the notation of Arcones and Gine, except´ ´

that I m, necessarily for n 	 m, stands here for the set of all vectorsn
Ž . � 4m � Ž .�i , . . . , i � 1, . . . , n such that i � i if k � l. In particular, � h �HH1 m k l

� Ž . �sup � h for any functional � on HH.h� HH

Ž . Ž .LEMMA 4. Let S, SS , P be a probability space, X , i � �, i.i.d. P , S-val-i
ˇued random variables, and let HH be a measurable Vapnik�Cervonenkis class

of functions h: Sr � �, with respect to an envelope H. Assume � H 2 � �.
Then, for all m � r:

Ž .a There exist constants C depending only on HH and r such thatp

p
1 p�22� sup � sh X , . . . , X � C � HŽ .Ž .Ý m i i pm�2 1 m

mn log log nŽ .n Ž .i , . . . , i �I1 m n HH

for all 0 � p � 2, and
Ž .b For all N � �,

2
1

� max � sh X , . . . , XŽ .Ý m i im �2 1 mNn�N mŽ .i , . . . , i �I1 m n HH

2
1

2� C� � sh X , . . . , X � C � H ,Ž .Ý m i i 2m �2 1 mN mŽ .i , . . . , i �I1 m N HH

where C and C are finite constants that depend only on HH and r.2

Ž . Ž .REMARK 1. i If H is bounded which will be our case , then there is also
Ž . pa bound in a for p � 2, namely C � H , and a slightly more complicatedp

�bound for p � 2 this is due to Doob’s maximal inequalities for tail probabili-
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Ž . Ž .ties for p � 2 and for moments for p 	 2 , used in the proof: see Arcones
Ž . � Ž .and Gine 1995 , proof of Theorem 2.5 . ii Because the sums above are over´

Ž m. Ž .parallellepipeds I rather than tetrahedra 1 � i � ��� � i � n , there isn 1 m
no need to symmetrize h and we can take any of the logical possibilities for

Ž .� h. iii More important, we note that, under the hypotheses of Lemma 4,m

1
lim sup � h X , . . . , XŽ .Ý m i im�2 1 m

mn log log nŽ .n�� Ž .i , . . . , i �I2.10Ž . 1 m n HH

1�22� C � H a.s.Ž .1

because, this lim sup being invariant under permutations of the variables
� 4X , it is a.s. a constant by the Hewitt�Savage zero�one law and, by Lemmai

�4, this constant cannot exceed the stated bound actually, this bound is not
Ž .best possible: a compact LIL is also satisfied, Arcones and Gine 1995 , and´

�the best possible bound is the supremum of the limit set .
Ž . Ž .Part a of Lemma 4 is Theorem 2.5 in Arcones and Gine 1995 , and part´

Ž . � Ž .�b follows from decoupling de la Pena and Montgomery-Smith 1995 ,˜
�randomization, iterated Levy’s inequalities Lemma 2.4, Arcones and Gine´ ´

Ž .� �1995 and an entropy bound for measurable VC classes Lemma 2.2 in
Ž .�Arcones and Gine 1995 . This is implicit in the proof of Theorem 2.5 there.´

Ž . Ž . Ž .The proof of b is a subset of that of a . Then b extends an inequality in
Ž .Stute 1994 to general VC collections of kernels and to general m.

For the reader’s convenience, this section ends with the statements of the
above-mentioned results of Montgomery-Smith and of Talagrand.

� Ž .� Ž .LEMMA 5 Montgomery-Smith 1993 . Let S, SS be a measurable space
and let Z , i � �, be i.i.d. S-valued random variables. Let FF be a countablei
class of measurable real functions on S. Then,

k n t
2.11 Pr max f Z � t � 9 Pr f Z �Ž . Ž . Ž .Ý Ýi i½ 5½ 5 301�k�n i�1 i�1 FFFF

for all n � � and t � 0.

� Ž .�LEMMA 6 Talagrand 1996 . Let Z be n independent random variablesi
Ž .taking values in a measurable space S, SS , n � �, and let FF be a countable

n Ž .class of measurable real functions on S. Set W � sup Ý f Z and definef � FF i�1 i

� � � n 2Ž .�U � sup f and V � � sup Ý f Z . Then, for each t � 0, we�f � FF f � FF i�1 i
have

1 t tU
� �� 42.12 Pr W � �W 	 t � K exp � log 1 
 ,Ž . ž /ž /K U V

where K � 0 is a universal constant.
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We are now prepared to prove the announced laws of the iterated loga-
rithm.

( ]3. Moment bounds and the LIL uniform on 	�, T . Our main
Žobject here is to prove the following theorem and its corollaries, which we

.also denote as theorems .

THEOREM 1. For T � � , 0 � p � 2, and universal constants C , C � �,H p

n
a � sup 1 � H T �Ž . Ž .Ž .ž /½ log log nn

p
3�2n 3�2� 1 � H T � sup Q x � C ,Ž . Ž .Ž . n p5ž /'log log n x�T

2n
b � max 1 � H T �Ž . Ž .Ž .½ ž /Nn�N

22n 3�2� 1 � H T � sup Q x � C ,Ž . Ž .Ž . n5ž /'N x�T

n
c � sup 1 � H T �Ž . Ž .Ž .ž /½ log log nn

n3�2
3�2� 1 � H T �Ž .Ž .3�2ž /log log nŽ .

n2
2� 1 � H T �Ž .Ž .ž /log log n

p
5�2n 5�2� 1 � H T � D T � C ,Ž . Ž .Ž . n , 2 p1�2 5ž /log log nŽ .

2 3n n 2d � max 1 � H T � � 1 � H T �Ž . Ž . Ž .Ž . Ž .½ ž / ž /N Nn�N

n3
3�2� 1 � H T �Ž .Ž .3�2ž /N

23n 5�2� 1 � H T � D T � C.Ž . Ž .Ž . n , 25ž /'n
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Ž . Ž .We note that the pth moments, p � 2, in a and c are also finite if we let
Ž . � pthe powers of 1 � H T � be larger due to the bound � H , for p � 2,

Ž 2 . p�2 �instead of � H , in Lemma 4 .

Ž . Ž .PROOF. First we prove a and b : we show that these bounds are satisfied
Ž .by each of the terms in the decomposition 2.3 of Q . Then R requires non n, 3

consideration since

1 1T ˜sup R x � dH � .Ž . Hn , 3 nn 1 � H T � n 1 � H T �Ž . Ž .Ž . Ž .��x�T

˜Since dH � dH , Lemma 2 givesn n

˜1 dH y 1 dH yŽ . Ž .T Tn n
sup R x � �Ž . H Hn , 1 2 2n n�� ��1 � H y � 1 � H y �Ž . Ž .Ž . Ž .x�T

1 d H y � H y 1 dH yŽ . Ž . Ž .Ž .T Tn� 
H H2 2n n�� ��1 � H y � 1 � H y �Ž . Ž .Ž . Ž .
n �1 �Z � T Z � Ti� � �Ý2 2 2ž /n 1 � H Z �1 � H Z � Ž .Ž .Ž .Ž .i�1 i

2

 .

n 1 � H T �Ž .Ž .

ŽWe can now apply Lemma 4 to the first sum for HH equal to a single function
.and m � 1 ; since by Lemma 2,

2
� dH y 4Ž .TZ � T

� � � ,H2 4 3ž / ��1 � H Z � 1 � H y � 3 1 � H T �Ž . Ž . Ž .Ž . Ž . Ž .

Lemma 4 gives

p
3�2n 3�2

� sup 1 � H T � � n 1 � H T � sup R xŽ . Ž . Ž .Ž . Ž .Ž . n , 1½ 5ž /'log log nn x�T

� Cp

for p � 2, and

22 2n n3�2
� max 1 � H T � � 1 � H T � sup R x � C ,Ž . Ž . Ž .Ž . Ž . n , 1½ 5ž /ž /' Nn�N N x�T



´E. GINE AND A. GUILLOU2054

Ž . Ž .showing that the conclusions a and b of the theorem hold for the compo-
nent R of Q . Using Lemma 2 once more,n, 1 n

1 2
sup R x � sup H x � � H x � ,Ž . Ž . Ž .n , 4 nž /n 1 � H T �Ž .x�T x�T

� 4and we can apply Lemma 4 to the kernels � : x � T with envelopeZ � x
Ž .H 
 1 and m � 1 by Lemma 3 b . In this case, the multiplicative constants in

Ž . Ž .a and b for R are, respectively,n, 4

n3�2 1 � H T � n2 1 � H T �Ž . Ž .Ž . Ž .
and ,1�2N'log log n

which are larger than those predicated for Q in the statement of then
Ž . 2theorem because 1 � H T � � 1. Finally, we consider R �n . Since then

Ž .functions h are increasing in x, Lemma 3 b shows that the class of kernelsx
� 4h : �� � x � T is VC with respect to the envelope h and then Lemmax T
Ž . � 43 d implies that the class � sh : �� � x � T is also VC with respect to2 x

an envelope whose second P 2-moment is dominated by a constant times
2 Ž .the second P -moment of h . Since, moreover, the map x, x , x �T 1 2

Ž . Ž� sh x , x is jointly measurable, we can apply Lemma 4 to this class see2 x 1 2
the second remark below Lemma 4 regarding the irrelevance of symmetriz-

. � Ž . �ing . Computations similar to those above Stute 1994 , page 324 yield

C
2� h �T 21 � H T �Ž .Ž .

and, therefore, Lemma 4 for m � r � 2 gives
p

n R xŽ .n
� sup 1 � H T � sup � C , 0 � p � 2Ž .Ž . p2log log n nn x�T

and
22n R xŽ .n

� max 1 � H T � sup � C.Ž .Ž . 2N nn�N x�T

Ž . Ž .Parts a and b of Theorem 1 are thus proved.
Ž . Ž . Ž .Next we prove parts c and d using the decomposition 2.6 for D . Noten, 2

that

2 3
D T � and D T �Ž . Ž .n , 2, 6 n , 2, 10 22n 1 � H T �Ž .Ž . 2n 1 � H T �Ž .Ž .

Ž . Ž . Ž .by Lemma 2, both within the range of c and d . For D T , r � 6, 10, wen, 2, r
will apply Lemma 4 with HH consisting of a single function and m � r � 1, 2, 3.
We only need to evaluate the variances of the kernels involved; only the
computation of one or two of these variances will be given in full size since
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they are all estimated by application of Lemma 2 and the only extra ingredi-
ent used in some of these estimates is the well-known generalized Minkowski
inequality. Here they are, in order:

dH y 4Ž .T2� f Z , Z , Z � � ,Ž . H1 2 3 4 3
�� 1 � H y � 3 1 � H T �Ž . Ž .Ž . Ž .

2
� � H y � � � H y �Ž . Ž .Ž . Ž .T Z � y Z � y1 2

� dH yŽ .H 3
�� 1 � H y �Ž .Ž .

21�22 2
� � � H y � � H y �Ž . Ž .Ž . Ž .Z � y Z � yž /T 1 2

� dH yŽ .H 3
�� 1 � H y �Ž .Ž .

2
dH y 4Ž .T

� � ,H 2 2
�� 1 � H y � 1 � H T �Ž . Ž .Ž . Ž .

˜dH y CŽ .T2� g Z , Z � C � ,Ž . H1 2 5 4
�� 1 � H y � 1 � H T �Ž . Ž .Ž . Ž .

22 2
� � H y � dH yŽ . Ž .Ž .T TZ � y1

� dH y �Ž .H H3 5�2ž /�� ��1 � H y � 1 � H y �Ž . Ž .Ž . Ž .
25

� ,39 1 � H T �Ž .Ž .
2

H Z � � 4Ž . Z � T
� � ,2 3ž /1 � H Z � 3 1 � H T �Ž . Ž .Ž . Ž .

dH yŽ .T 22� h Z , Z � � � � H y �Ž . Ž .Ž .H1 2 Z � y 61�� 1 � H y �Ž .Ž .
5

� ,44 1 � H T �Ž .Ž .
2

� � H y � 25Ž .T Z � y
� dH y �Ž .H 3 3ž /�� 1 � H y � 9 1 � H T �Ž . Ž .Ž . Ž .

and

2
� dH y 6Ž .TZ � T

� � � .H3 6 5ž / ��1 � H T � 1 � H y � 5 1 � H T �Ž . Ž . Ž .Ž . Ž . Ž .
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Applying Lemma 4 for HH consisting of a single function, and using these
Ž . Ž .bounds for the second moments of the kernels, we obtain c and d . �

As a consequence of Theorem 1, here is the LIL for the remainder term
Ž �after linearization of the Nelson�Aalen estimator, uniform over ��, T .

THEOREM 2. There is a universal constant C � � such that

n 1 � H T �Ž .Ž .
3.1 lim sup sup � x � � x � L x � C a.s.Ž . Ž . Ž . Ž .n nlog log nn x�T

for all T � � .H

Ž .PROOF. If we take 	 � 3 in 2.8 , we obtain

Pr D T 	 3 � exp �Cn 1 � H T � � �Ž . Ž .Ž .Ž .Ž .Ý Ýn , 1
n n

ŽŽ . .for C � 1 � 1 
 log 3 �3 � 0, so that

lim sup D T � 3 a.s.Ž .n , 1
n

Ž . Ž .The Hewitt�Savage zero�one law and, respectively, a and c in Theorem 1,
imply

n
lim sup 1 � H T � sup Q x � C a.s.Ž . Ž .Ž . n 1log log nn x�T

and

n
lim sup 1 � H T � D T � C a.s.Ž . Ž .Ž . n , 2 1log log nn

Ž . Ž .Now, the result follows because, by 2.1 and 2.5 ,

� x � � x � L x � Q x 
 D T D T , �� � x � T .Ž . Ž . Ž . Ž . Ž . Ž .n n n n , 1 n , 2

�

This theorem can in fact be proved in an easier way; however, once we
have estimated the second moments of all the components, it seem worth-

Ž . Ž .while to obtain it as a consequence of the stronger statements a and c in
Theorem 1, as well as the easy Lemma 1.

Ž .REMARK 2. Optimality of the LIL in Theorem 2 and a compact LIL . Let
Ž . Ž Ž ..T � � . Then, the class of functions h z � � � 1 � H x � , �� � x �H x z 	 x

� Ž . Ž .�T, is a uniformly bounded measurable VC class by Lemma 3 b and c and
ˇtherefore, for instance by the Vapnik�Cervonenkis law of large numbers
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ˇ� Ž . Ž .�Vapnik�Cervonenkis 1981 but also, e.g., by Lemma 4 a , we have

1 � H x �Ž .n
lim sup � 1 � 0, a.s.,

1 � H x �n�� Ž .x�T

hence, also
1 � H x �Ž .

3.2 lim sup � 1 � 0 a.s.Ž .
1 � H x �n�� Ž .x�T n

Ž . Ž .Because of this we can replace 1 � H x � by 1 � H x � in the definitionn
Ž . Ž .2.4 of D x without changing the pertinent lim sup. This observation andn

Ž . Ž . Ž . Ž .the bounded LIL in Lemma 4 a allow us to conclude, by 2.1 , 2.3 , 2.4 and
Ž .a variation on 2.6 , that

n
lim sup sup � x � � x � L xŽ . Ž . Ž .n nlog log nn x�T

n 1
� lim sup sup � � h X , Y , X , YŽ . Ž . Ž .Ž .Ý 2 x i i j j2log log n n 2n x�T In

� � H y � � � H y �Ž . Ž .x Ž . Ž .Z � y Z � yi j ˜
 dH y .Ž .H 3
�� 1 � H y �Ž .Ž .

Ž .The process within the absolute value signs is a canonical or degenerate
Ž .U-process over a measurable VC class of kernels see, e.g., Lemma 3 above .

Thus, we can apply to it the compact law of the iterated logarithm in Arcones
�Ž . �and Gine 1995 , Theorem 4.7 , and conclude that this lim sup is a.s. strictly´

Ž �positive as long as the cdf H is nondegenerate on ��, T . That is, there
exists c � 0 depending on X, Y, and T, such that

n
lim sup sup � x � � x � L x � c a.s.,Ž . Ž . Ž .n nlog log nn x�T

Ž .showing that the LIL in Theorem 2 is optimal in its dependence on n . It is
easy to obtain an expression for c from the aforementioned compact LIL for
U-processes.

Ž . Ž .The bounds a � d of Theorem 1 can also be used for T � T variable, andn
Ž . Ž . Ž . Ž .a , c , may be better or worse than b , d , depending on the sequence T .n
We will illustrate this observation in the next section for the important case

Ž . Ž .considered by Stute 1994 and Csorgo 1996 . Now we show how Theorem 2¨ ˝
ˆtranslates into an LIL for the product limit estimator F of F as follows.n

THEOREM 3. Assuming the distribution function F of X to be continuous,
Ž . Ž .and with L x , �� � x � � , n � �, as in 2.2 , there exists a universaln H

constant C such that

ˆn 1 � H T � F x � F xŽ . Ž . Ž .Ž . n
3.3 lim sup sup � L x � C a.s.Ž . Ž .nlog log n 1 � F xŽ .n x�T

for all T � � .H
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Ž . Ž Ž ..PROOF. It is well known that 1 � F x � exp �� x if F is continuous.
Ž .In this case, the classical expansion of Breslow and Crowley 1974 , as

�Ž . �described in Csorgo 1996 , pages 2769�2770 , is as follows: for any real¨ ˝
function h and for all x � Z ,n, n

F̂ x � F xŽ . Ž .n
3.4 � h x � � x � � x � h x 
 R x ,Ž . Ž . Ž . Ž . Ž . Ž .Ž .n n , 61 � F xŽ .

where
21R x � � x � � x 
 l x exp l xŽ . Ž . Ž . Ž . Ž .Ž .n , 6 n n n2

3.5Ž .
� exp � x � � xŽ . Ž .Ž .n

and
ˆ3.6 l x � �log 1 � F x � � x .Ž . Ž . Ž . Ž .Ž .n n n

Ž . Ž . Ž .If we take h x � L x in 3.4 , it follows from this expansion, by applicationn
of Theorem 2 to the first term at the right side of the obvious identity,

� x � � x � � x � � x � L x 
 L x ,Ž . Ž . Ž . Ž . Ž . Ž .n n n n

that we only have to obtain appropriate rates for each of the two sequences,

ˆ3.7 sup L x and sup log 1 � F x 
 � x .Ž . Ž . Ž . Ž .Ž .n n n
x�T x�T

ŽL is the sum of two centered empirical processes canonical U-processes ofn
.degree 1 that can be estimated using Lemma 4, as in Theorem 1. Each of the

Ž .two summands in the definition 2.2 of L can be estimated just as inn
Ž . Ž Ž ..Theorem 1, as follows. The class of functions l z � � � 1 � H z � ,x z � x

Ž .�� � x � T, is measurable; it is VC with envelope l by Lemma 3 b , andT
2 Ž Ž .. Ž .� l � 2� 1 � H T � by Lemma 2. Then, Lemma 4 a for m � 1 givesT

p
˜ ˜xn 1 � H T � d H y � H yŽ . Ž . Ž .Ž . Ž .n

� sup sup H(ž /3.8 log log n 1 � H y �Ž . Ž .��n x�T

� C , p � 2.p

Ž .The second summand in 2.2 is a centered empirical process over the class of
functions

x �z 	 y ˜k z � dH y , �� � x � T ,Ž . Ž .Hx 2
�� 1 � H y �Ž .Ž .

Ž .which is also measurable, and is VC by Lemma 3 b . Since
22

� dHT TZ 	 y
� dH y �Ž .H H2 3�2ž /�� �� 1 � H1 � H y � Ž .Ž .Ž . �3.9Ž .

9
�

1 � H T �Ž .
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Ž .by generalized Minkowski and Lemma 2, it follows from Lemma 4 a that

n 1 � H T �Ž .Ž .
� sup(ž log log nn

3.10Ž . p
x H y � � H y �Ž . Ž .n ˜� sup dH y � C , p � 2.Ž .H p2 /�� 1 � H y �Ž .Ž .x�T

Ž . Ž . Ž .Using the bounds 3.8 and 3.10 in 2.2 results in a bound for L which,n
by the Hewitt�Savage zero�one law, implies the LIL for L uniform overn
Ž ���, T ,

n 1 � H T �Ž .Ž . ˜3.11 lim sup sup L x � C a.s.Ž . Ž .n( log log nn x�T

˜for some universal constant C.
ˆŽ . � Ž Ž .. Ž . �For the second term in 3.7 , sup log 1 � F x 
 � x , we use Lemmax � T n n

Ž .1 in Breslow and Crowley 1974 , which asserts that if x � Z then, withn, n
probability 1,

H x �Ž .nˆ3.12 0 � �log 1 � F x � � x � .Ž . Ž . Ž .Ž .n n n 1 � H x �Ž .Ž .n

Ž .Since T is eventually a.s. smaller than Z we can apply inequality 3.12n, n
and obtain

ˆsup log 1 � F x 
 � xŽ . Ž .Ž .n n
x�T

1 1 � H T �Ž .
�

n 1 � H T � 1 � H T �Ž . Ž .Ž . n
3.13Ž .

1
� O a.s.ž /n 1 � H T �Ž .Ž .

Ž .by the law of large numbers 3.2 .
Ž . Ž . Ž .Now the theorem follows by substituting the limits 3.1 , 3.11 and 3.13

Ž . Ž . �into equations 3.4 � 3.6 note that the exponentials in these identities tend
Ž . Ž . �to 1, by 3.13 , 3.11 and Theorem 2 . �

Ž . �By directly using the expansion in Breslow and Crowley 1974 instead of
Ž .�its consequence 3.4 and Remark 2 above, it can be shown that the lim sup

Ž .in 3.3 is a.s. a strictly positive constant, that is, that Theorem 3 is optimal.

( ]4. Logarithmic laws uniform on 	�, T and applications to first-n
order LILs. As in the previous section we begin with a result for the
Nelson�Aalen estimator. In what follows we denote the quantile function of Z

�1 �1Ž . � Ž . � Ž .by H , that is, H x � inf z: H z 	 x for x � 0, 1 , and recall that
Ž �1Ž . . Ž �1Ž ..H H x � � x � H H x .
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� Ž . Ž .� �1Ž . � 4THEOREM 4 Csorgo 1996 , Stute 1994 . If T � H 1 � � �8 and �¨ ˝ n n n
is a nonincreasing sequence of positive numbers satisfying

4.1 n� 	 9 log nŽ . n

for all n � n and some n � �, then0 0

n�2 n
4.2 lim sup � x � � x � L x � 0 a.s.,Ž . Ž . Ž . Ž .n n1�2n�� c log nŽ . x�Tn n

� 4where c is any nondecreasing slowly varying sequence of positive numbersn
Ž . � Ž .1
� Ž .Žksuch that Ý1� kc � � such as c � log log n , c � log log n log log2 n n

.1
� �log n , etc. .

PROOF. The definition of T implies thatn

�n
4.3 1 � H T � 	 .Ž . Ž .n 8

k
1 k k
1 Ž . Ž .If N � 2 and 2 � n � 2 , inequalities 4.1 and 4.3 imply that

n2 n2 n2
3�21 � H T � � 1 � H T � � 1 � H T �Ž . Ž . Ž .Ž . Ž . Ž .n n nž / ž /'N NN

Žfor all n large enough; since moreover T is nondecreasing as � is nonin-n n
. Ž .creasing , Theorem 1 b then gives

22
k� 1n 1 � H T �Ž .Ž .2

� max sup Q x � C ,Ž .nk
1k k
1ž /22 �n�2 x�Tn

2Ž Ž .. k
1 Ž k .k
 1where we note that n 1 � H T � �2 	 n� �16 for n � 2 . Hence,2 2 n
Ž 2 .kif 
 � 0 is such that Ý1� 
 kc converges, then, by Chebyshev,k k 2

kPr max n� sup Q x � 
 kc � �,Ž . 'Ý 2 n n k 2½ 5
k k
12 �n�2 x�Tk n

and therefore, by Borel�Cantelli,
n�2 n

lim sup Q x � 0 a.s.Ž .n
n�� c log n' x�Tn n

Ž .Similarly, Theorem 1 d implies
n�2 n

lim D T � 0 a.s.Ž .n , 2 n
n�� c log n' n

Ž . Ž .Finally, if we take 	 so that 1 � 1�	 � log 	�	 � 8�9 in Lemma 1, for
Ž .instance, 	 � 50, we have, by 4.3 and Lemma 1, that

9 1 log 50
Pr D T 	 50 � exp � 1 � � log n � �,� 4Ž .Ý Ýn , 1 n ž /ž /8 50 50n n

Ž . Ž .showing that lim sup D T � � a.s. The theorem now follows from 2.1n�� n, 1 n
Ž .and 2.5 . �
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REMARK 3. The situation considered in the previous theorem is important
Ž .because assumption 4.1 on � implies that the variable end points T �n n

�1Ž . �1Ž .H 1 � � �8 are eventually a.s. larger than H 1 � � , hence thann n n
�Z , so that then one can choose T based on the observations StutenŽ1�� ., n nn

Ž . Ž .�1994 and Csorgo 1996 .¨ ˝
�1Ž .Here is a quick way to see this: if we set T � H 1 � p� for somen n

Ž . Ž .0 � p � 1 and let ‘‘Bin r, q ’’ stand for a binomial r, q random variable,
� Ž . �then the properties of quantile functions imply Stute 1994 , Lemma 2.4

� �1Ž . �1Ž .4 � Ž . 4that Pr H 1 � � � H 1 � p� � Pr Bin n, p� � n� , which is dom-n n n n n
Ž .n� n Ž .n� n � Ž . �inated by enp� �n� � ep Gine and Zinn 1984 , Remark 4.7 ; if´n n

Ž .n� np � 1�8 and n� 	 log n then the series Ý ep converges.n
The proofs of Theorems 1, 2 and 4 provide a unified treatment for the cases

Ž � Ž �of fixed and variable, even data driven, intervals, ��, T and ��, Z ,nŽ1�� ., nn

and basically establish the Csorgo�Stute results on data driven intervals for¨ ˝
the remainder term after linearization of the Nelson�Aalen estimator as a

�corollary of the result for fixed T. In fact, if we wanted to obtain only Stute’s
Ž . Ž .1994 result, which is weaker than Csorgo’s 1996 , then we could as well¨ ˝

Ž . Ž .have used a and c in Theorem 1, since the extra log log n does not change
� Žthe rate in Stute’s paper. It can be argued that Theorem 4 variable inter-

. Ž .vals is somewhat more elementary than Theorem 2 fixed intervals : the
Ž . Ž . Ž .estimates in b and d of Theorem 1 used for Theorem 4 are simpler than
Ž . Ž . Ž .the estimates a and c there used for Theorem 2 . On the other hand,

Theorem 2 is essentially best possible whereas we do not know if Theorem
4 is.

ŽThe way L is handled in the proof of Theorem 3 fixed intervals for then
.Kaplan�Meier product limit estimator is suboptimal in the sense that there

Ž .are more precise exponential bounds for empirical processes than those used
�Ž . �in that proof. This was also observed by Stute 1994 , Lemma 2.8 for

Ž . �Ž . �the first summand in 2.2 and by Csorgo 1996 , proof of Proposition 4¨ ˝
for the second. Here we will derive a law of the iterated logarithm for

� Ž . �sup L x , T as in Theorem 4, that will have several consequences, bothx � T n nn

for the second-order law of the iterated logarithm for the product limit
estimator and the first-order law of the iterated logarithm, thereby improving

Ž .some results in Csorgo 1996 . This is achieved by combining Montgomery-¨ ˝
Ž .Smith’s maximal inequality Lemma 5 with Talagrand’s exponential inequal-

Ž .ity Lemma 6 .

Ž . Ž . Ž .THEOREM 5. Let L x , x � � , n � �, be the linear term of � x � � x ,n H n
Ž .as defined in equation 2.2 , and let � and T , n � �, be as in Theorem 4.n n

Then,

n�2 n
4.4 lim sup sup L x � � a.s.Ž . Ž .n( log log nn�� x�Tn

Ž .PROOF. We only give the details of the proof of 4.4 for the second
Ž .summand in the definition 2.2 of L , since the proof for the first summandn
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is completely analogous. To this end we define
x �z 	 y ˜f z � dH y , x , z � T ,Ž . Ž .Hx n2

�� 1 � H y �Ž .Ž .
� 4and set GG � GG � f , �f : �� � x � T . Then, we can rewrite the secondn x x n
Ž .term at the right of 2.2 as

x H y � � H y �Ž . Ž .n ˜W � sup dH yŽ .Hn 2
�� 1 � H y �Ž .Ž .x�Tn

n1
� sup f Z � � f ZŽ . Ž .Ž .Ý in f�GG i�1n

4.5Ž .

n1
� f Z � � f Z .Ž . Ž .Ž .Ý in GGi�1 n

Obviously, there is a countable set A in � such that W can be obtained asn
Ž �the sup of the absolute values of the same integrals over x � A � ��, Tn

and, to be strict, we should define GG as the set of functions f and �f forn x x
Ž �x � A � ��, T , so that GG is countable and we can apply to it the theoremsn n

of Montgomery-Smith and Talagrand.
Montgomery-Smith’s maximal inequality in Lemma 5 shows that, for

k 	 4 and all u � 0,

n�2 n
Pr max W � un(½ 5k�1 k log log n2 �n�2

n

� Pr max f Z � � f ZŽ . Ž .Ž .Ý x i x
k�1 k½ 2 �n�2 GG ki�1 2

k�1 k�12 log log 2
� u) 5k�2

4.6Ž .

k k k2 u 2 log log 2
� 9 Pr f Z � � f Z � .Ž . Ž .Ž .Ý )x i x½ 5k60 �2GG ki�1 2

To ease notation, we set 2 k � N.
� Ž .We now apply Talagrand’s inequality from Lemma 6 with FF � f � � f Z :

4 �f � GG . For this, we estimate the quantities involved in what follows � fN
Ž .�should be understood as � f Z :

Ž . Ž . Ž .1. By Lemma 3 b and d , we can apply Lemma 4 b , which, using the
Ž . Ž .estimate 3.9 , and then 4.3 , gives

1�21�23C N N1�2 21�2 24.7 �W � C N � f � � CŽ . Ž .2 T 1�2N ž /�1 � H T �Ž . NŽ .N

for a universal constant C � �.
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� � x Ž .2 Ž .2. Since f � � f � H dH� 1 � H , Lemma 2 and 4.3 givex x �� �

dH 2 16TN� �4.8 U � sup f � � f � � � .Ž . Hx x 2 1 � H T � �Ž .�� 1 � HŽ .x�T N N�N

Ž . Ž .3. Again by 3.9 and 4.3 ,

� � 2 2V � N� f � � f � 4N� fGGx x TN N

2
� NT Z � yN� 4N� dH y � 288 .Ž .H 2 ž /ž / ��� 1 � H y �Ž .Ž . N

4.9Ž .

Then, taking L � u�60 � C with u smooth such that L � 0, Talagrand’s
Ž . Ž . Ž .inequality 2.12 and the estimates 4.7 � 4.9 give, by monotonicity of the
Ž .exponent in 2.12 ,

k k k2 u 2 log log 2
Pr f Z � � f Z �Ž . Ž .Ž .Ý )x i x½ 5k60 �2GG ki�1 2

u N log log N
� Pr W � (½ 560 �N

N log log N
� �� Pr W � �W � L(½ 5�N

4.10Ž .

L N� log log N1 ' N� K exp �ž K 16

4L log log N
�log 1 
 ( /57 N�N

� Ž . � Ž . Ž .see 4.5 for the first identity . Since, by 4.1 , log log N� N� � 1�9, if weN
set L � rK for r to be chosen below, using the fact that the graph of

Ž . Ž . Ž Ž ..y � log 1 
 x , x � 	, is above the chord joining 0, 0 and 	, log 1 
 	 , it
Ž .follows that the last term in 4.10 is dominated by

3r log 1 
 4rK�171Ž .
k4.11 K exp � log log 2 ,Ž . ž /16

which, for r large enough, is the general term of a convergent series.
Ž . Ž . Ž .Combining 4.10 and 4.11 with 4.6 and applying Borel�Cantelli, we obtain

n�2 n
lim sup W � 60 rK 
 C a.s.Ž .n( log log nn��

Ž .To complete the proof, one submits the first summand in 2.2 to the same
Ž . Ž Ž ..treatment: taking f x, y � � � 1 � H x � y � , �� � t � T ,t � x � y � t, x � y4 n

it follows rather trivially that the corresponding parameters �W, U and V
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enjoy the same bounds as those above, except for multiplicative constants,
Ž . Ž .and that this gives 4.4 for the first summand in the definition 2.2 of L .n

We skip the details in order to avoid repetition. �

As a corollary of Theorems 4 and 5, we obtain an improvement on the
first-order law of the logarithm for the Nelson�Aalen estimator given in

�Ž . � Ž .1�2
�Csorgo 1996 , Theorem 1 , and fall short by log log log n from proving¨ ˝
one of the conjectures on page 2749 of the same article, or, what is the same,

� 4the conjecture is settled under a mild additional condition on � .n

THEOREM 6. For n � �, let � and T be as in Theorem 4 and letn n
� ��1

kc � d log log n for a sequence d � � such that Ý kd log k � �. Thenn n n 2
we have

n�2 n
4.12 lim sup � x � � x � 0 a.s.Ž . Ž . Ž .n(d log log nn�� x�Tn n

If, moreover, for some C � 0, n � � and d as stated,0 n

4.13 n� 	 Cd log nŽ . 2 n n

for all n 	 n , then0

n�2 n
4.14 lim sup sup � x � � x � � a.s.Ž . Ž . Ž .n( log log nn�� x�Tn

PROOF. Direct application of Theorems 4 and 5 gives

sup � x � � xŽ . Ž .n
x�Tn

� sup � x � � x � L x 
 sup L xŽ . Ž . Ž . Ž .n n n
x�T x�Tn n4.15Ž .

1�2 1�2c log n log log nŽ .n� o 
 O a.s.ž /ž /n� n�2 n 2 n

' Ž .'Since n� � 3 log n � 2 by 4.1 , we have' 2 n

1�2 1�2'd log log n log n 2 d log log nŽ . Ž .n n� ,
n� 3 n�2 n 2 n

Ž . Ž . Ž . Ž .and inequality 4.15 gives 4.12 note d � � . Under hypothesis 4.13 ,n

1�2 1�2d log log n log n 1 log log nŽ . Ž .n � ,'n� n�C2 n 2 n

Ž . Ž .and 4.14 also follows from 4.15 in this case. �

The following theorem improves the first-order law of the logarithm in
Ž .Theorem 2 of Csorgo 1996 and comes close to proving a second conjecture on¨ ˝



LIL FOR CENSORED DATA 2065

Žpage 2749 of the same article the comments about Theorem 6 apply here as
.well .

THEOREM 7. Assuming F is continuous and letting, for n � �, � and Tn n
be as in Theorem 4, and c � d log log n be as in Theorem 6, we haven n

ˆn� F x � F xŽ . Ž .2 n n
4.16 lim sup � 0 a.s.Ž . (d log log n 1 � F xn�� Ž .x�Tn n

Ž .and, under hypothesis 4.13 , also

ˆn� F x � F xŽ . Ž .2 n n
4.17 lim sup sup � � a.s.Ž . ( log log n 1 � F xŽ .n�� x�Tn

Ž . Ž . Ž .PROOF. From the decomposition 3.4 � 3.6 with h x � 0 it follows that
ˆ�Ž Ž . Ž .. Ž Ž .. � � Ž . �the rate of sup F x � F x � 1 � F x is the largest of sup l xx � T n x � T nn n

� Ž . Ž . �and sup � x � � x . We can apply the Breslow�Crowley inequalityx � T nn
Ž . Ž .3.12 to the first sequence and obtain, as in 3.13 ,

ˆsup l x � sup log 1 � F x 
 � xŽ . Ž . Ž .Ž .n n n
x�T x�Tn n

8 1 � H TŽ .n� sup a.s.
n� 1 � H T �Ž .x�Tn n nn

4.18Ž .

Now, if we apply Prohorov’s inequality, or, for convenience, Talagrand’s
�1 n Ž Ž ..exponential inequality for a single function to n Ý I � 1 � H T ,i�1 Z 	 T ni n

Ž .�1with U � V � n� , we obtain

1 � H T � log log nŽ .n n � 4Pr � 1 � C � K exp �2 log log n(½ 51 � H T � n�Ž .n 2 n

for some finite constant C and all n. Then, proceeding as in the proof of
Ž .Theorem 5, but using this inequality instead of 4.10 , we obtain that

1 � H T � log log nŽ .n n � 1 � O � 0 a.s.(ž /1 � H T � n�Ž .n 2 n

Ž . � Ž . �Replacing this estimate into 4.18 shows that sup l x is a.s. of thex � T nn
Ž .�1order of n� , dominated by the rate prescribed for the Nelson�Aalen2 n

estimator in Theorem 6. Theorem 7 then follows from this and Theorem 6. �

Ž . Ž .We note that Theorems 6 and 7, concretely the limits 4.14 and 4.17 ,
contain bounded LILs for fixed T, best possible up to constants, both for the
Nelson�Aalen and the Kaplan�Meier estimators; in particular, we recover,

� Ž .�up to constants, part of Theorem 1 concretely the limit 1.5 in Csorgo and¨ ˝
Ž .Horvath 1983 . It is clear that the methods from Section 3, including Remark´

2, give the Csorgo�Horvath results for fixed T and best constants, as well as¨ ˝ ´
the ‘‘compact’’ or Strassen-type LIL, with a proof that dos not depend on
strong approximations.
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Finally, we consider the second-order law of the logarithm for the product
Ž .limit estimator and improve on the rates in Theorem 1.4 from Stute 1994

Ž .and in part of Proposition 5 from Csorgo 1996 .¨ ˝

THEOREM 8. Assuming F continuous and letting c , � and T , n � �, ben n n
as in Theorem 4, we have

ˆn� F x � F xŽ . Ž .2 n n
4.19 lim sup � L x � 0 a.s.Ž . Ž .n1 � F xn�� Ž .c log n' x�Tn n

Ž .If d is as in Theorem 6 and � , T as above thenn n n

n�2 n
lim sup

d log log nn�� n

F̂ x � F xŽ . Ž .n
� sup � � x � � x � 0 a.s.Ž . Ž .Ž .n1 � F xŽ .x�Tn

4.20Ž .

� 4 Ž .and if, moreover, the sequence � satisfies condition 4.13 , thenn

ˆn� F x � F xŽ . Ž .2 n n
4.21 lim sup � � x � � x � � a.s.Ž . Ž . Ž .Ž .nlog log n 1 � F xn�� Ž .x�Tn

PROOF. The theorem follows immediately by combining the rates in Theo-
� Ž .� Ž . Ž .rem 4, Theorem 6 including 4.15 and 4.18 with the decomposition 3.4 �

Ž . Ž . Ž . Ž . Ž . Ž .3.6 , respectively, for h x � L x and h x � � x � � x . �n n

REMARK 4. We note that, by Remark 3, the nonrandom end points T inn
Theorems 4 to 8 can be replaced by the random Z , and it is with thesenŽ1�� ., nn

random endpoints that Stute and Csorgo state their results.¨ ˝
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