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Let ξ1� ξ2� � � � be a sequence of i.i.d. random variables, and consider the
elementary symmetric polynomial S�k��n� of order k = k�n� of the first n
elements ξ1� � � � � ξn of this sequence. We are interested in the limit behavior
of S�k��n� with an appropriate transformation if k�n�/n → α, 0 < α < 1.
Since k�n� → ∞ as n→ ∞, the classical methods cannot be applied in this
case and new kinds of results appear. We solve the problem under some
conditions which are satisfied in the generic case. The proof is based on the
saddlepoint method and a limit theorem for sums of independent random
vectors which may have some special interest in itself.

1. Introduction. In this paper the following problem is investigated: let
ξ1� � � � � ξn be i.i.d. random variables with some nondegenerate distribution
functionF�x�; that is, we assume that the distribution of the random variables
ξj, j = 1� � � � � n is not concentrated in a single point. Define the elementary
symmetric polynomials,

�1�1� S�k��n� = S�k��n� ξ1� � � � � ξn� =
∑

1≤i1<i2<···<ik≤n
ξi1 · · · ξik �

We are interested in the limit behavior of the random variables S�k��n� if
n→ ∞, k = k�n� and α�n� → α∗, P�ξ = 0� < α∗ < 1, where α�n� = 1−k�n�/n.
The expression defined in (1.1) is a special U-statistic of order k.

The limit behavior of U-statistics for fixed k is fairly well understood (see,
e.g., [1]). These results imply in particular that if Eξ = 0, then for fixed
k the random variables n−k/2S�k��n� have a limit distribution which can be
expressed by means of a k-fold multiple Wiener integral. But in our case the
number k = k�n� tends to infinity simultaneously with n. Hence the classical
results cannot be applied, and a different kind of limit theorems appears. The
problem we discuss here was investigated in earlier papers in some special
cases (see [2], [3] and [6]). In paper [2] a law of large numbers was proved if
the random variables ξj are nonnegative, and in paper [3] the limit behavior of
S�k��n� was described in the special case when P�ξj = 1� = P�ξj = −1� = 1/2.
Paper [6] contains a generalization of paper [3] when the distribution of ξj
is concentrated in three point, 0 and ±1, and P�ξj = 1� = P�ξj = −1� =
1/2P�ξj �= 0�. But the method of this paper is not strong enough to handle
more general distributions.
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The proof of the above papers was based on the saddlepoint method. In
this paper also this method is applied. Several technical difficulties had to be
overcome to make this method work in the general case. It shows a strong
similarity with the technique applied in the theory of large deviations.

We also want to understand whether the limit distribution of the appropri-
ately transformed statistics S�k��n� shows some universality, that is, whether
it depends only on α∗ = limn→∞ α�n� or it strongly depends on the sequence
k�n� and the distribution function F�x� of the random variables ξj. We prove
that in the generic case, although the normalization depends on α�n�, the limit
distribution depends only on α∗.

The investigation is based on the following observation. Define the polyno-
mial

Zn�x� = Zn�x� ξ1� � � � � ξn� =
n∏
j=1

�x+ ξj��

Then

Zn�x� =
n∑
k=1
S�k��n�xn−k�

hence

�1�2�

S�k��n� = 1
�n− k�!

d�n−k�

dx�n−k�
Zn�x� =

1
2πi

∮

ζ
=r

Zn�ζ�
ζn−k+1

dζ

= 1
2π

∫ π
−π

∏n
j=1 
reiϕ + ξj


rn−k

× exp
{
−i�n− k�ϕ+ i

n∑
j=1

arg�reiϕ + ξj�
}
dϕ

for arbitrary r > 0. We investigate the expression S�k��n� in the form de-
fined in (1.2). To handle this integral it is natural to choose the constant r,
the radius of the circle where the integration is taken, in the way the sad-
dlepoint method suggests. Hence it is natural to look for a point �r� ϕ̄� =
�r�ξ1� � � � � ξn�� ϕ̄�ξ1� � � � � ξn�� where the partial derivatives of the (random) ex-
pression

n∑
j=1

log 
reiϕ + ξj
 − �n− k� log r

disappear. In papers [2], [3] and [6] such an approach was applied. We shall
slightly modify this method by looking for an approximative solution, for an
asymptotic but nonrandom approximation of the saddlepoint. The laws of large
numbers suggests that

n∑
j=1

log 
reiϕ + ξj
 ∼ nE log 
reiϕ + ξ
 = nH�r�ϕ�
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with

�1�3� H�r�ϕ� =H�z� = E log 
reiϕ + ξ
 = 1
2E log�r2 + ξ2 + 2rξ cosϕ��

where ξ is an F-distributed random variable and z = reiϕ. Because of the
parity properties of the integral at the right-hand side of (1.3) it is enough to
look for the (asymptotic) saddle point for 0 ≤ ϕ ≤ π, that is, for a solution in
the upper half-plane. We will show that under general conditions there is a
point �r� ϕ̄�, ϕ̄ = ϕ̄�r�, such that the relations

∂

∂ϕ
�H�r� ϕ̄� − α�n� log r� = 0�

∂

∂r
�H�r� ϕ̄� − α�n� log r� = 0

hold. We rewrite these equations in the equivalent form

�1�4� ∂

∂ϕ
H�r�ϕ� = 0

∣∣∣∣
ϕ=ϕ̄
� r

∂

∂r
H�r�ϕ�

∣∣∣∣
ϕ=ϕ̄

= α�n��

and also require that the solution �r� ϕ̄� satisfy the relation

�1�5� ϕ̄ is the place of maximum of H�r�ϕ� �as a function of ϕ, 0≤ϕ≤π��

Let us remark that the solution of (1.4) [together with the property (1.5)]
depends on n through the function α�n�. Although this dependence on n will
turn out to be weak in the case when limn→∞ α�n� = α∗, we need to investigate
carefully the dependence of the solution on n. This problem will appear first
in Section 4, and in that section we shall indicate explicitly the dependence
on the parameter n.

We shall prove under general conditions that (1.4) has a unique solution
�r� ϕ̄� 0 ≤ ϕ̄ ≤ π which also satisfies relation (1.5). This result enables us
to give a good asymptotic expression of (1.2) and to approximate S�k��n� by
a function of sum of independent random vectors. In such a way the limit
behavior of S�k��n� with an appropriately normalization can be described by
means of a limit theorem for sums of independent random vectors. Since some
technical conditions appear in the formulation of the results about the limit
behavior of S�k��n� we formulate them only in Section 2.

The limit theorem for sums of independent random vectors needed in this
paper may be interesting in itself. In this limit theorem, such a limit dis-
tribution appears whose coordinates are independent. This independence is
not because of some uncorrelatedness property of the coordinates of the sum-
mands. It has a structural reason. It appears because the partial sums of such
random vectors are considered whose first coordinates take values in a non-
compact and the second coordinates in a compact space. (We consider such
random vectors whose first coordinates, the absolute value of random complex
numbers, take their values in the real line, and the second coordinates, the
angle of these complex numbers, take their values in the unit circle.) Similar
results in more general spaces were proved in [5].
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This paper consists of six sections. In Section 2 we explain the method of the
paper, formulate some technical results and the main theorems. In Section 3
we prove that under general conditions the asymptotic saddlepoint equation
(1.4) together with relation (1.5) can be solved. In Section 4 we give a good
asymptotic approximation ofS�k��n� by means of an expansion of the integrand
in (1.2) around the solution of the saddlepoint equation (1.4). In Section 5 a
limit theorem for sums of independent vectors needed in this paper is proved.
Finally in Section 6 the main results of the paper are proved.

2. The strategy of the proof. Consider the functionH�r�ϕ� =H�z� de-
fined in �1�3�. First we want to prove that under general conditions for the
distribution of F�x� of the random variables ξj (1.4) has a unique solution
which also satisfies (1.5). In the proof we investigate the differentials of the
function H�r�ϕ�. In these calculations the order of differentiation and expec-
tation will be changed several times. To legitimate such steps some conditions
will be imposed on the distribution of the distribution function F�x�.

It is simple to justify these calculations in the neighborhood of such points
z = reiϕ for which the number z has a nonzero imaginary part, that is, for
which ϕ �= 0 and ϕ �= π. On the other hand, for ϕ = 0 or ϕ = π such a cal-
culation is allowed only under fairly restrictive conditions. However, we shall
differentiate only in the neighborhood of a point which can appear as the solu-
tion of (1.4) with some α�n�; therefore we do not have to impose too-restrictive
conditions. We shall formulate such a condition on F�x� which probably can
be weakened, but which is satisfied by all “nice” distribution functions. To
formulate this condition let us introduce the functions

�2�1� K±�r� = E ±ξ
�ξ ± r�2 � r > 0

and sets

�2�2� � ± = �r� r > 0 and K±�r� ≥ 0��
where ξ is an F�x�-distributed random variable. Let us remark that the inte-
gral (2.1) is always meaningful, although the relation E�±ξ/�ξ ± r�2� = −∞
is possible, since the integrands in these expressions have an upper bound
depending only on r. As later calculation will show, it is enough to justify the
change of order of expectation and differentiation only in a small neighborhood
of the real numbers r, r ∈ � + ∪� −.

We formulate the following property.

Property A. If r ∈ � +, then there is a number h = h�r� > 0 such that
the interval �−r− h�−r+ h� has zero F measure. If r ∈ � −, then there is a
number h = h�r� > 0 such that the interval �r−h� r+h� has zero F measure.

This property can be formulated in the following equivalent form. Let �
denote the support of the distribution of ξ, that is, the smallest closed set
on the real line R1 such that P�ξ ∈ �� = 1. (Such a set exists. See, e.g., [4],



1984 P. MAJOR

Chapter 2, Theorem 2.1.) Then for all r ∈ � + d�r�−�� > 0 and for all r ∈ � −

d�r��� > 0.

Property A is less restrictive than it may seem in the first moment, because
the sets � ± are small. Thus for instance, r /∈ � ± if the distribution function
F has a nonzero density function in a neighborhood of the point ∓r, or more
generally if F�∓r + h� − F�∓r� > Cη2 or F�∓r� − F�∓r − h� > Cη2 with
some C > 0, h > 0 and 0 < η < h. Indeed, K±�r� = −∞ in this case. Thus
Property A holds if for all x F�x + h� − F�x − h� ≥ const� h2 or F�x + h� −
F�x−h� = 0 if h < h0. Here both h0 and const� may depend on x. Let us also
remark that also Property A holds if an F distributed ξ random variable is
symmetrically distributed, since the sets � ± are empty in this case. Indeed,
in this case,

K±�r� = E ±ξ
�r± ξ�2 = 1

2
E

( ±ξ
�r± ξ�2 + ∓ξ

�r∓ ξ�2
)
= −E 2rξ2

��r2 − ξ2�2 < 0

for all r > 0.
We also assume that

�2�3� E
ξ
 <∞ and E
1

ξ
I�ξ �= 0� <∞�

We shall assume in the sequel that the distribution function F satisfies Prop-
erty A and (2.3). The following three lemmas which will be proved in Section 3
imply that if P�ξ = 0� < α�n� < 1, then (1.4) has a unique solution which sat-
isfies (1.5).

Lemma 1. Fix some r > 0 and consider the function H�r�ϕ�, defined in
(1.3) as a function of ϕ, 0 ≤ ϕ ≤ π. [The function H�r�ϕ� can also take the
value −∞ in the end points 0 and π.] The function H has a unique maximum
at a value ϕ̄ = ϕ̄�r� defined by

ϕ̄�r�=




0� if E
ξ

�r+ ξ�2 ≥ 0�

π� if E
ξ

�r− ξ�2 ≤ 0�

the unique solution of

the equation

E
ξ

r2 + ξ2 + 2rξ cosϕ
=0 if E

ξ

�r+ ξ�2 <0<E
ξ

�r− ξ�2 �

�in the variable ϕ� 0≤ϕ≤π�

(2.4)

The relation

�2�5� ∂H�r�ϕ�
∂ϕ

∣∣∣∣
ϕ=ϕ̄

= 0

holds.
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Define the function E�r�ϕ� = r�∂/∂r�H�r�ϕ� and G�r� = E�r� ϕ̄�r��.

Lemma 2. G�r� is a continuous and strictly monotone increasing function.

Before the proof of Lemma 2 we prove the following technical Lemma A.

Lemma A. The functionH�z� defined in (1.3) is analytic in the set C\�−��
and the functions K±�z�, the analytical continuation of the functions defined
in (2.1), are analytic in the set C \ �∓��, where C is the space of complex
numbers, and � is the support of the distribution of the random variable ξ. In
particular,K±�r� is continuous in the points r ∈ � ±. The numbers r satisfying
the equation E�ξ/�ξ ± r�2� = 0 have no strictly positive condensation points.

Lemma 3.

limr→∞G�r� = 1�

limr→0G�r� = P�ξ=0� �=0 if the distribution of ξ has no atom in 0).
(2.6)

The second derivative of H�r�ϕ� with respect to the variable ϕ is nonpositive
in the point ϕ̄�r�, and it can be zero only if either E�ξ/�r+ ξ�2� = 0 [in which
case ϕ̄�r� = 0] or if E�ξ/�r− ξ�2� = 0 [in which case ϕ̄�r� = π]. More explicitly,

�2�7�

− 2E r2ξ2 sin2 ϕ
�r2+ξ2+2rξ cosϕ�2 � if 0 < ϕ̄�r� < π�

∂2

∂ϕ2
H�r�ϕ�

∣∣∣∣
ϕ=ϕ̄�r�

= − E rξ
�r+ξ�2 �= −K+�r��� if ϕ̄�r� = 0�

E rξ
�r−ξ�2 �= −K−�r��� if ϕ̄�r� = π�

The above relations imply that the saddlepoint equation (1.4) [together with
property (1.5)] has a unique solution for P�ξ = 0� < α�n� < 1, since a pair
�r�ϕ� is a solution if and only if ϕ = ϕ̄�r�, where ϕ̄�r� is defined in Lemma 1,
and G�r� = α�n�.

Let us rewrite formula (1.2) in the form

�2�8� S�k��n� = �
(
1
π

∫ π
0
exp�Zn�r�ϕ��dϕ

)

with

�2�9� Zn�r�ϕ� =
n∑
j=1
βj�r�ϕ�
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and

�2�10�
βj�r�ϕ� =

1
2
log�r2 + ξ2j + 2rξj cosϕ�

+ iarccos r cosϕ+ ξj
�r2 + ξ2j + 2rξj cosϕ�1/2

− α�n��log r+ iϕ��

where r is the first coordinate of the solution �r� ϕ̄� of the fixed point equation
(1.4) and (1.5). We shall give a good approximation of S�k��n� in Section 4. To
get it we impose the following

Property B. Let �r� ϕ̄� = �r�α∗��� ϕ̄�r�α∗�� be the solution of the fixed
point equation (1.4) [together with relation (1.5)], if α�n� is replaced by α∗ =
limn→∞ α�n�. Then

E
ξ

�r± ξ�2 �= 0 for r = r�α∗��

The integral in (2.8) can be well estimated. To do this we apply a Taylor
expansion for βj�r�ϕ� in the variable ϕ around the saddle point ϕ̄ and then
sum it up to get a good estimate for Zn�r�ϕ� defined in (2.9). The coefficients
of this Taylor expansion are random. But since the random functions βj�r� ϕ̄�
are independent, their sum can be well approximated, because of the laws
of large numbers, by their expected values multiplied with n. The expected
value of the first Taylor coefficient is zero because of (1.4). Indeed, the real
part equals ∂H�r�ϕ�/∂ϕ = 0, and the imaginary part equals

�2�11� ∂

∂ϕ
Earccos

r cosϕ+ ξ
�r2 + ξ2 + 2rξ cosϕ�1/2 − α�n� = r∂H�r�ϕ�

∂r
− α�n� = 0

in the point of solution �r� ϕ̄� of (1.4). The identity (2.11) can be obtained by
standard calculation. However, it is worth mentioning that this identity has a
deeper reason. There are identities between the partial derivatives of the real
part and analytic part of a complex analytic function, and the identity (2.11)
expresses such properties formulated in a polar coordinate system.

By Lemma 3 the expected value of the second partial derivative of the real
part of βj�r�ϕ� with respect to the variable ϕ is nonpositive in the asymptotic
saddlepoint �r� ϕ̄�r��, and it is strictly negative if Property B holds. In this
case the integral (2.8) is essentially concentrated in a small neighborhood of
the point ϕ̄�r� with probability almost 1 (depending on n). In this small neigh-
borhood of the point ϕ�r�, a small error is committed if all terms βj�r�ϕ� in
(2.8) are replaced by their Taylor expansion around the point ϕ̄ up to the
second term. In such a way the integral in (2.8) can be approximated by a
Gaussian integral which can be explicitly calculated. The above indicated cal-
culation will be worked out in Section 4. Some additional technical difficulties
arise if we want to show that the error term obtained in this calculation is
negligible also if the real part of the integral in (2.8) is considered. To prove
this fact we have to know that the integral in (2.8) with probability almost
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1 is such a complex number whose angle with the imaginary axis is not too
small. We can prove this only under some additional restriction formulated
a bit later. We introduce a condition which we shall call the stability of the
level α∗ = limn→∞ α�n�. In Proposition B of Section 5 we prove a limit theo-
rem which helps us to overcome the above difficulties if the above-mentioned
stability condition holds. The proofs in Section 5 are independent of the rest
of the paper. The arguments formulated above lead to a result formulated in
Lemma 4.

Before its formulation let us remark that, by the last statement of Lemma A,
Property B is not a strong restriction. The exceptional set of the numbers
α∗ where it does not hold has no condensation points in the open interval
�P�ξ = 0��1�. Moreover, in certain cases we know that this set is empty. This
is the case for instance if ξ has a symmetric distribution, since under this
condition ϕ̄�r� = π/2 for all r > 0. If Property B does not hold, then a more
complicated picture arises. In this case not only the first but also the second
derivative of the function H�r�ϕ� − α log r disappears in the saddle point.
Hence a more sophisticated method has to be applied and only weaker results
can be obtained in this case. We shall not discuss this question in the present
paper.

Lemma 4. Let the distribution of ξ satisfy Property A and (2.3). Beside this,
let Property B be satisfied with r∗ = limn→∞ rn, where rn is the solution of the
asymptotic saddlepoint equation (1.4) [together with (1.5)] with the parameter
α�n�. Let us also assume that the level α∗ = limn→∞ α�n� is stable. (This notion
will be introduced a bit later.) Put

S̄�k��n�=




√
2√

Knπ
exp

{
nA0 +

√
nS0 −U1

}
cos

(
nB0 +T0 −U2 −

ω

2

)
�

if 0 < ϕ̄�r∗� < π�

= 1√
2
A2
πn

exp
{
T2

1

2A2
+ nA0 +

√
nS0

}
� if ϕ̄�r∗� = 0�

=�−1�k�n� 1√
2
A2
πn

exp
{
T2

1

2A2
+ nA0 +

√
nS0

}
�

if ϕ̄�r∗� = π�

(2.12)

where the random variables S0 = S0�n�, T0 = T0�n�, S1 = S1�n�, T1 = T1�n�
which are sums of independent random variables are defined in (4.8), (4.9) and
(4.1), (4.2), the random variables U1 = U1�n�, U2 = U2�n� which are their
transforms in (4.14). The constants A0 = A0�n�, B0 = B0�n�, A2 = A2�n�, K
and ω = ω�n� are defined in (4.3), (4.4) and �4�14′�. Then

S�k��n�
S̄�k��n� ⇒ 1�

where ⇒ denotes convergence in probability.



1988 P. MAJOR

Lemma 4 plays a crucial role in our investigation, because it enables us
to replace the expression S�k��n� introduced in �1�1� by S̄�k��n� defined in
(2.12) when we are interested in its limit behavior. The expression S̄�k��n� is a
functional of the random variables S0�n�, S1�n�, T0�n� and T1�n� which are
normalized sums of independent random variables. The asymptotic behavior
of S0�n�, S1�n� and T1�n� is described by the central limit theorem while
that of T0�n� by limit theorems for sums of independent random variables
on the compact group �0�1� mod 1, where the group action is summation
modulo 1. However, these classical results are not sufficient for our purposes,
we also want to control the limit of the joint distribution of the above random
variables. Hence we formulate the following Proposition A whose proof will be
given in Section 5. It implies that T0�n� is asymptotically independent from
the other partial sums, because it takes values on a compact group, while the
other partial sums take values on a noncompact group. Before formulating
this result we introduce some notations and make some remarks.

We shall identify the group G = �0�1� with summation modulo 1 with the
unit circle. Let us remark that the closed subgroups G0 of G are the group
G itself and the discrete groups of the form G0 = �j/p� j = 0� � � � � p − 1�
with some positive integer p. A coset of a finite subgroup G0 is of the form
G0+α with some 0 ≤ α < 1. For all probability measures µ on �0�1�, there is a
smallest closed set, called the support of the measure, whose µ measure is 1.
For all probability measures µ there is a minimal coset G0+α which contains
the support of µ. This means that the µ measure of this coset is 1, and all
cosets with this property contain this coset. If no coset of a finite subgroup of
G has this property, then we call the whole group G the minimal coset which
contains the support of the measure µ. Now we formulate the following.

Proposition A. Let �Xn�Yn�, n = 1�2� � � �, be a sequence of i.i.d. random
vectors such that Xn is a random vector in Rk with expectation zero and co-
variance matrix �, Yn is a random variable on the unit circle G = �0�1�. Let
G0 + α be the minimal coset which contains the support of the distribution of
Yn. Put Un = �1/√n�∑n

s=1Xs, Vn = ∑n
s=1Ys−nα. Then the joint distribution

of �Un�Vn� tends to the distribution of a random vector �U�V�, where U has
normal distribution with expectation zero and covariance �, V is uniformly
distributed on the subgroup G0 of G, and the random variables U and V are
independent. In the case G0 = G, α can be chosen in an arbitrary way, for
example, α = 0.

The result of Proposition A is not sufficient in itself for our purposes. The
reason for this is that the distributions of the random variables we are in-
vestigating depend on a parameter α�n�. This parameter satisfies the relation
α�n� → α∗, but it may depend on n. Hence we need such a version of Propo-
sition A where the distribution of the random variables Xj = Xj�n� and
Yj = Yj�n�, j = 1� � � � � n, may weakly depend on n. Let us remark that, in
the limit theorems for sums of independent random variables on a compact
group G, no normalization is taken; hence even a small perturbation of the
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summands may radically change the limit distribution of their sums. Nev-
ertheless, we show that in the case when the distribution of Yn is close to a
measure which is not concentrated in a coset of a closed finite subgroup, a ver-
sion of Proposition A can be proved where the distribution of the summands
may depend on n. To formulate this result first we introduce the following
definition.

Definition. We call a probability measure µ on the group G = �0�1�,
mod 1 stable if for all finite cosets K = �j/p + c� j = 0� � � � � p − 1�, with a
positive integer p and 0 ≤ c < 1, µ�K� < 1, or in other words, the minimal
coset which contains the support of the measure µ is the whole group G.

This terminology for stable distribution differs from the traditional one, but
since we apply it on a different space, hopefully it causes no confusion. Now
we formulate the following result.

Proposition 2. For all n let �Xj�n��Yj�n��, j = 1�2� � � � � n, be a sequence
of i.i.d. random vectors with the following properties: Xj�n� are i.i.d. ran-

dom vectors in Rk, EXj�n� = 0, the relation E X1�n� − X 2 → 0 holds

with a random variable X in Rk, EX = 0, which has a covariance matrix
�, Yj�n� is a random variable on the unit circle �0�1� with a distribution µn
on �0�1� such that µn ⇒ µ and µ is a stable probability measure on �0�1�,
where ⇒ denotes weak convergence of measures. Define the random variables
Un = �1/√n�∑n

s=1Xs�n� and Vn = ∑n
s=1Ys�n� mod1. Then the joint dis-

tribution of �Un�Vn� tends to the distribution of a random vector �U�V�,
where U has normal distribution with expectation zero and covariance �, V
is uniformly distributed on G = �0�1� and the random variables U and V are
independent.

Propositions A and B hold because one of the coordinates of the random
vectors we are summing up takes value in a compact group while the other
component takes value in a noncompact group. Results similar to Proposi-
tion A can be found in [5] in a more general setting, but to find the right
generalization of Proposition B seems to be an interesting open question.

The above results enable us to investigate the limit behavior of the ran-
dom variable S�k��n� defined in (1.1). But because of the conditions we had
to impose in the limit theorem formulated in Proposition B, we can prove
these results only under certain restrictions. Let us introduce the following
terminology.

Definition. We call the level α∗ stable if one of the following conditions
are satisfied:

(i) Either E�±ξ/�r± ξ�2� > 0 for r = r�α∗�, that is, either ϕ̄�α� = 0 or
ϕ̄�α� = π if α is in a small neighborhood of α∗;
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(ii) or 0 < ϕ̄�α∗� < π, and the distribution of the random variable,

Y = 1
2π

arccos
r cos ϕ̄+ ξ

�r2 + ξ2 + 2rξ cos ϕ̄�1/2 �

where r = r�α∗� and ϕ̄ = ϕ̄�α∗� is a stable distribution on the unit circle �0�1�.

We can give a good asymptotic of the symmetric statistics S�k��n� if
�n− k�/n = α�n� → α∗ with a stable level α∗.

If 0 < ϕ̄�α∗� < π, then the second condition of the stability of α∗ holds in
the generic case, but the description of the exceptional numbers α∗ and distri-
butions F seems to be a hard number theoretic problem. Now we formulate
the following theorem.

Theorem 1. Let Property A and relation (2.3) hold, and let α∗ be a stable
level. If α�n� = �n− k�/n→ α∗ as n→ ∞, then the random variables

�2�13� log 
S�k��n�
 − nA0�n�√
n

[with S�k��n� defined in (1.1)] converge in distribution to the normal law with
expectation zero and variance Varη, where η = η�ϕ̄� = 1

2 log�r�α∗�2 + ξ2 +
2r�α∗�ξ cos ϕ̄�α∗��, �r�α∗�� ϕ�α∗�� is the solution of the saddlepoint equation
(1.4) if the number α�n� is replaced by α∗ = limn→∞ α�n�, and A0 = A0�n� is
defined in (4.3). 
S�k��n�
 can be replaced by S�k��n� in the case ϕ̄�α∗� = 0, by
�−1�kS�k��n� in the case ϕ̄�α∗� = π in (2.13), while in the case 0 < ϕ̄�α∗� < π
P�signS�k��n� → 1� = 1/2 and log 
S�k��n�
 and signS�k��n� are asymptotically
independent.

Theorem 1 does not contain the result of [3], where the limit theorem is
given for a normalized version of S�k��n� (without logarithm) if the random
variables ξj have the distribution P�ξj = 1� = P�ξj = −1� = 1/2. In this
case the random variable η is constant, Varη = 0, and the limit (2.13) is
degenerate. In the following Lemma 5 we describe those distributions F and
levels α∗ for which the limit distribution in Theorem 1 is degenerate. Then we
shall describe the limit behavior of S�k�

n in such cases.

Lemma 5. The random variable η=η�α∗�= 1
2 log�r�α∗�2+ ξ2+2rξ cos ϕ̄�α∗��

appearing in Theorem 1 is constant, if an F distributed random variable ξ is
concentrated in two points, that is, there are two numbers x1, x2 such that
P�ξ = x1� = p, P�ξ = x2� = q = 1− p, and one of the following conditions is
satisfied:

(a) 0 < ϕ̄�α∗� < π, in which case Eξ = px1 + qx2 = 0, α∗ > 1− 4pq.
(b) ϕ̄�α∗� = 0, in which case α∗ = −��p− q��x1 + x2�/x1 − x2�, Eξ = px1 +

qx2 ≥ 0 and x1 + x2 < 0.
(c) ϕ̄�α∗� = π, in which case α∗ = −��p− q��x1 + x2�/x1 − x2�, Eξ = px1 +

qx2 ≤ 0 and x1 + x2 > 0.
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In Theorem 2 we describe the limit behavior of S�k��n� in case (a) of
Lemma 5. It contains the result of [3].

Theorem 2. Let the distribution of the random variable ξ have the form
P�ξ = x1� = p, P�ξ = x2� = q = 1 − p, px1 + qx2 = 0, that is, Eξ = 0. Let
�n− k�/n = α�n� → α∗ with some stable level α∗ such that 1 > α∗ > 1 − 4pq.
Then the random variables

√
Kπn√
2

exp�−A0�n��S�k��n�

converge in distribution to the random variable

exp
{
A2�S2 −T2� + 2B2ST

2�A2
2 +B2

2�

}
cosZ

as n → ∞, where the constants A0, A2, B2 and K are defined in (4.3), (4.4),
(4.14′), more precisely, they are the limits of these quantities depending on n
as n → ∞, �S�T� is a Gaussian random vector with expectation zero, Z is
a random variable, uniformly distributed in �0�2π� and independent of the
vector �S�T�, and

�2�14�

ES2 = Var
−rξ sin ϕ̄

r2 + ξ2 + 2rξ cos ϕ̄
�

ET2 = Var
rξ cos ϕ̄+ r2

r2 + ξ2 + 2rξ cos ϕ̄
�

Cov�S�T� = Cov
( −rξ sin ϕ̄
r2 + ξ2 + 2rξ cos ϕ̄

�
rξ cos ϕ̄+ r2

r2 + ξ2 + 2rξ cos ϕ̄

)
�

where r = r�α∗�, ϕ̄ = ϕ̄�α∗�.

Finally, in Theorem 2′ we describe the limit behavior of S�k��n� in the case
when the conditions of part (b) of Lemma 5 hold. The case when the conditions
of part (c) hold can be obtained by applying this result for the random variables
−ξj which satisfy part (b).

Theorem 2′. Let the distribution of ξ satisfy the following conditions:
P�ξ = x1� = p� P�ξ = x2� = q = 1 − p with some x1� x2 and p such that
px1 + qx2 > 0 and x1 + x2 < 0� x1 > x2. Put

α∗ = �p− q��−x1 − x2�
x1 − x2

�



1992 P. MAJOR

If �n− k�/n = α�n� → α∗� then the symmetric polynomial S�k��n� satisfies the
following limit theorem:

exp
{
T2

A2

}
� if

√
n�α�n� − α∗� → 0�

exp
{
T2

A2
+ cLV

}
�

if
√
n�α�n� − α∗� → c� 0 < 
c
 <∞�

where L = �√pq�x1 − x2�/px1 + qx2�, T = −�x1 + x2/x1 − x2�V, and V is a
standard normal random variable.

If 
√n�α�n� − α∗�
 → ∞, there is not such a natural scaling of S�k��n� as in
the previous cases.

3. The solution of the fixed point equation. In this section we prove
Lemmas 1, 2 and 3 which imply that there is a unique solution of (1.4), 0 ≤
ϕ ≤ π, which also satisfies relation (1.5).

Proof of Lemma 1. Let us define the function L�r�ψ� = 1
2E log�r2 + ξ2 +

2rξψ�, −1 ≤ ψ ≤ 1. This function is obtained if ψ is written instead of cosϕ
in the function H�r�ϕ�. It is a concave function of the variable ψ in the open
interval −1 < ψ < 1 for all r > 0, since its second derivative is negative. The
behavior of the function L�r�ψ� in the end point ψ = 1 can be investigated by
means of the following observation. There is a sufficiently small ε > 0 such
that in the interval 1− ε < ψ < 1 either L�r�ψ� is monotone decreasing and
the derivative ∂L�r�ψ�/∂ψ is negative or L�r�ψ� is monotone increasing and
the derivative ∂L�r�ψ�/∂ψ is positive. In the first case,

L�r�1� −L�r�ψ� = 1
2
E log

(
1+ 2�1− ψ�rξ

r2 + ξ2 + 2rξψ

)

≤ E �1− ψ�rξ
r2 + ξ2 + 2rξψ

= �1− ψ�∂L
∂ψ

< 0�

and L�r�1� < supL�r�ψ�.
In the second case it follows from (2.3) and Fatou’s lemma that

0 ≤ lim sup
ψ→1

∂L

∂ψ
= lim sup

ψ→1
E

rξ

r2 + ξ2 + 2rξψ
≤ E rξ

�r+ ξ�2 = rK+�r��

where the function K+�r� is defined in (2.1). Hence r ∈ � +, and Property A
can be applied. This implies in particular that L�r�1� = limψ→1L�r�ψ� =
sup0≤ψ≤1L�r�ψ�. Similarly, ψ = −1 is the maximum of L�r�ψ� if and only if
the function L�r�ψ� is monotone decreasing in the interval �−1�−1+ ε� with
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a sufficiently small ε > 0, and r ∈ � −, that is, K−�r� ≥ 0. In particular, the
function L�r�ψ� is continuous in the point ψ = −1 in this case.

The above results imply that the function H�r�ϕ� has a unique maximum
in the interval 0 ≤ ϕ ≤ π. The maximum is in the point ϕ = 0 if the function
L�r�ψ� has its maximum at ψ = 1 which holds if K+�r� ≥ 0. It has its maxi-
mum at ϕ = π if L�r�ψ� has its maximum at ψ = −1 and K−�r� ≥ 0. These
statements are equivalent to the first two lines of (2.4). The maximum is in the
open interval 0 < ϕ < π if −K−�r� < 0 < K+�r�. In this case ∂H�r�ϕ�/∂ϕ = 0
in the place of maximum, and since the order of differentiation and expecta-
tion can be changed, this fact implies the third line of (2.4). Finally, relation
(2.5) also holds for ϕ̄ = 0 and ϕ̄ = π. To see this, observe that since r ∈ � − if
ϕ̄ = 0, r ∈ � + if ϕ̄ = π, ∂H�r�ϕ�/∂ϕ = 0 in the place of maximum ϕ̄, and the
order of differentiation and expectation can be changed in this case, too.

Let us introduce the notation U = U�r� ξ� ϕ� = r2 + ξ2 + 2rξ cosϕ. Now we
turn to the following proof.

Proof of Lemma A. If z0 = r0exp�iϕ0� /∈ −�, and ξ ∈ �, then for all
z = reiϕ in a sufficiently small neighborhood of z0 the number 
z + ξ
2 =
U�r� ξ� ϕ� ≥ C > 0 with an appropriate number C = C�z0�. Hence the func-
tion logU�r� ξ� ϕ� is analytic in such a small neighborhood of z0, and it is
separated from −∞ (independently of ξ ∈ �). Then, since logU�r� ξ� ϕ� ≤
const� �
ξ
 + r�, and relation (2.3) holds, we get by taking expectation that
H�z� = 1

2E logU�r� ξ� ϕ� is analytic in a small neighborhood of z0.
Similarly, if z0 /∈ ∓�, ξ ∈ � and z is in a small neighborhood of z0, then


ξ/�ξ ± z�2
 ≤ C <∞, and taking expectation we get that the functions K±�z�
are analytic in the domain C\�∓��. In particular, Property A implies that the
function K±�r� is continuous in the points r ∈ � ±.

Moreover, the functionK±�r� defined for all r > 0 is upper semicontinuous,
hence the sets � ± defined in (2.2) are closed subsets of the positive numbers.
We show that there is no sequence rn, n = 1�2� � � � � with a limit 0 < r =
limn→∞ rn < ∞ such that K±�rn� = 0 for all n. Indeed, the limit r would
be also in the set � ±, and because of Property A, the relation d�r�∓�� > 0
would hold. This would imply that K±�z� ≡ 0 in the domain of analyticity of
the function K±�z�. This relation also would imply that E�ξ/ξ ± z� = 0 on
the set "z > 0, since the derivative of this function is K±�z� ≡ 0, and as a
consequence it is a constant function. Then choosing z = iu, u → ∞ we get
that this constant is zero. On the other hand, we get with the choice z = iu,
u→ 0 that this constant is P�ξ �= 0� �= 0, and this is a contradiction. ✷

Now we turn to the proof.

Proof of Lemma 2. We shall prove that

�3�1�
dG�r�
dr

> 0 if E
ξ

�r+ ξ�2 < 0 < E
ξ

�r− ξ�2
(or equivalently, if 0 < ϕ̄�r� < π),



1994 P. MAJOR

and also

�3�2� dG�r�
dr

> 0 if E
ξ

�r+ ξ�2 > 0 or E
ξ

�r− ξ�2 < 0�

Finally, we show that the function G�r� is continuous for all r > 0. This
continuity, the last statement of Lemma A, together with (3.1) and (3.2) imply
that in an interval �a� b�, 0 < a < b < ∞, G�r�/dr > 0 with the possible
exception only of finitely many points. Lemma 2 follows from this fact.

To prove relation (3.1) observe that in this caseE�ξ/r2+ ξ2+2rξ cos ϕ̄�r��=
0. This identity determines the function ϕ̄�r� in the small neighborhood of
a point �r� ϕ̄�r��. The implicit function theorem enables us to calculate the
function ϕ̄′�r�. We get that

�3�3� ϕ̄′�r� = E�2ξ�r+ ξ cos ϕ̄�/U2�
E�2ξ2r sin ϕ̄/U2� = cos ϕ̄

r sin ϕ̄
+ E�ξ/U2�

sin ϕ̄E�ξ2/U2� �

Exploiting again that the third line of (2.4) holds in this case, we get that

�3�4�
G�r� = E�r� ϕ̄�r�� = Er

2 + rξ cos ϕ̄�r�
U�r� ξ� ϕ̄�r��

= E r2

U�r� ξ� ϕ̄�r�� = 1−E ξ2

U�r� ξ� ϕ̄�r��
and

dG�r�
dr

= E2ξ2�r+ ξ cos ϕ̄�r��
U2�r� ξ� ϕ̄�r�� − ϕ̄′�r�E 2rξ3 sin ϕ̄�r�

U2�r� ξ� ϕ̄�r��

= E 2rξ2

U2�r� ξ� ϕ̄�r�� − E�ξ/U2�r� ξ� ϕ̄�r���E�2rξ3/U2�r� ξ� ϕ̄�r���
E�ξ2/U2�r� ξ� ϕ̄�r��� �

if 0 < ϕ̄�r� < π. Hence relation (3.1) is equivalent to the inequality

E
r2ξ

U2
E
ξ3

U2
<

(
E
rξ2

U2

)2

�

or since the third line in (2.4) implies that

E
rξ2

U2
= 1

2 cos ϕ̄
E
2rξ2 cos ϕ̄− ξU

U2
= − 1

2 cos ϕ̄

(
E
ξ3

U2
+Er

2ξ

U2

)
�

it is also equivalent to the inequality

�4 cos2 ϕ̄− 2�E ξ
3

U2
E
r2ξ

U2
<

(
E
ξ3

U2

)2

+
(
E
r2ξ

U2

)2

�

The Cauchy–Schwarz inequality implies that the last inequality and hence
relation (3.1) holds. To see that this formula holds with a strict inequality it
is enough to observe that 
4 cos2 ϕ̄ − 2
 < 2 for 0 < ϕ̄ < π, and the equations
E�ξ3/U2� = 0 and E�r2ξ/U2� = 0 cannot hold simultaneously. Indeed, they
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would imply together with the third line of (1.4) for r > 0 and 0 < ϕ̄ < π that
E�ξ2/U2� = 0, and this is impossible.

To prove relation (3.2) let us observe that if E�ξ/�r+ ξ�2� > 0, then ϕ̄�r� =
0, and because of Property A the order of differentiation with respect to the
variable r and expectation can be changed when G�r� and dG�r�/dr are
calculated. Simple calculation shows that G�r� = E�r� ϕ̄�r�� = E�r/ξ + r�,
dG�r�/dr = E�ξ/�r+ ξ�2� > 0, and if E�ξ/�r− ξ�2� < 0, then ϕ̄�r� = π, and
dG�r�/dr = −E�ξ/�r− ξ�2� > 0. These formulas imply (3.2).

The above arguments also show the continuity of the function G�r� except
the points r such that E�ξ/�ξ ± r�2� = 0. To prove the continuity in these
points it is enough to show that the function ϕ̄�r� defined in Lemma 1 is
continuous in these points. To prove this observe that in these points either
ϕ̄�r� = 0 or ϕ̄�r� = π. If ϕ̄�r� = 0, then, as we showed in the proof of Lemma 1,
the expression in the third line of (2.4) is strictly negative for this r and
0 < ϕ ≤ π. This function is uniformly continuous (analytic) and separated
from zero in a small neighborhood of the set �z � z = reiϕ�, with this r and
ε ≤ ϕ ≤ π for arbitrary ε > 0. This implies that ϕ̄�r� is continuous in this
exceptional set if ϕ̄ = 0. The case ϕ̄ = π can be handled similarly. Lemma 2
is proved. ✷

Proof of Lemma 3. Since G�r� is a monotone increasing function it is
enough to prove the formulas in relation (2.6) for a special sequence rn → ∞
and rn → 0. To prove the first relation, let us first consider the case when
there is a sequence of numbers rn → ∞ such that 0 < ϕ̄�rn� < π. By relation
(3.4), Fatou’s lemma and the observation r2n/U → 1, ξ2/U → 0, ξ2/U ≥ 0,
r2/U ≥ 0 imply that

lim inf
r→∞ G�r� = lim inf

r→∞ E
r2

U
≥ 1�

lim sup
r→∞

G�r� = 1− lim inf
r→∞ E

ξ2

U
≤ 1�

hence the first line of relation of (2.6) holds in this case. Similarly if rn → 0,
0 < ϕ̄�rn� < π, then r2/U → I�ξ = 0� and ξ2/U → 1 − I�ξ = 0�. Then a
similar argument proves the second line of (2.6) in this case.

In the remaining cases, we have, because of the continuity of the function
ϕ̄�r�, either ϕ̄�r� = 0 and E�ξ/�ξ + r�2� ≥ 0 or ϕ̄�r� = π and E�−ξ/�ξ − r�2� ≥
0 for all r ≥ r0 with some r0 > 1 if the case r → ∞ is considered. We claim
that −� ∩ �r� r > r0� is empty for r > r0 in the first case, and � ∩ �r� r > r0�
is empty for r > r0 is empty in the second case, where � denotes the support
of the distribution of the ξ. Indeed, if this relation did not hold, then in the
first case one could find by a halving procedure a sequence of intervals �an� bn�
such that bn > an > r0, bn − an = 2−n, F�−bn� −F�−an� ≥ K2−n with some
appropriate K > 0 for all n = 1�2� � � �, where F is the distribution function
of the random variable ξ. Let R be the intersection of the intervals �an� bn�,
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n = 1�2� � � � � Then R > r0, and we claim that E�ξ/�ξ +R�2� = −∞ which is
a contradiction. This equation holds, because for all n > 0,

�3�5� E
ξ

�ξ+R�2 ≤
∫ −an

−bn

x

�R+ x�2F�dx�+EξI�ξ≥0�≤ − const�2n+ const��

and we get the above relation as n → ∞. The proof in the case ϕ̄ = π for
r ≥ r0 is similar.

It follows from the above proved statement, the relation limr→∞�r/r± ξ�=1
with probability 1 and the Lebesgue convergence theorem that limr→∞G�r�=
limr→∞E�r/r± ξ� = 1 in this case too.

The limit behavior in the case r→ 0 can be handled similarly. If there is no
sequence rn → 0 such that 0 < ϕ̄�rn� < π, then there is a number 1 > r0 > 0
such that either ϕ̄�r� = 0 or ϕ̄�r� = π for all 0 < r < r0. In the first case
−� ∩ �r� 0 < r < r0� = �, and in the second case � ∩ �r� 0 < r < r0� = �.
This can be proved similarly to the case r → ∞ with an estimate similar to
(3.5) with the difference that in this case the relation E�ξ/�R+ ξ�2�I�ξ > 0� ≤
E�ξ/ξ2�I�ξ > 0� ≤ E�I�ξ �= 0�/
ξ
� <∞ holds.

Finally, as limr→0�r/r± ξ� = I�ξ = 0�, the Lebesgue dominated conver-
gence theorem implies that limr→0G�r� = limr→0E�r/r± ξ� = EI�ξ = 0�.
Relation (2.6) is proved.

We have proved that the saddlepoint equation (1.4) and (1.5) has a unique
solution if P�ξ = 0� < α�n� < 1. Let us calculate the second partial derivative
of F�r� ϕ̄� with respect to the variable ϕ in the saddlepoint. We get that

∂2

∂ϕ2
H�r�ϕ� = −Erξ cosϕ

U
− 2E

r2ξ2 sin2 ϕ

U2
�

in a general point �r�ϕ�. Then a simple substitution implies (2.7). Lemma 3
is proved. ✷

4. Asymptotic approximation for the symmetric polynomial S�k��n�.
Let us consider the solution �rn� ϕ̄n� of the asymptotic saddlepoint equation
(1.4) which also satisfies relation (1.5). Let us remark that these numbers
depend on n because of the function α�n� at the right-hand side of (1.4). On
the other hand, if �r�α∗�� ϕ̄�α∗�� denotes the solution of (1.4) with the mod-
ification that the number α�n� is replaced by α∗ = limn→∞ α�n� in it, then
limn→∞ rn = r�α∗�, and limn→∞ ϕ̄n = ϕ̄�α∗�. Indeed, it follows from Lemma 2
that limn→∞ rn = r�α∗�, since the function G�r�, which was so defined that the
number rn is the solution of the equation G�r� = α�n�, is a continuous and
strictly monotone function. Then it follows from Lemma 1 that the relation
limn→∞ ϕ̄n = ϕ̄�α∗� also holds.

We want to make a Taylor expansion of the function βj�rn� ϕ� defined in
(2.10) in the variable ϕ around the point �rn� ϕ̄n�. For this end, we introduce
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some notations. Put

�4�1�

η
�0�
j = η�0�

j �n� = ��βj�rn� ϕ̄n� −Eβj�rn� ϕ̄n��

= 1
2
log�r2n + ξ2j + 2rnξj cos ϕ̄n�

− 1
2
E log�r2n + ξ2 + 2rnξ cos ϕ̄n��

ζ
�0�
j = ζ�0�j �n� = "�βj�rn� ϕ̄n� −Eβj�rn� ϕ̄n��

= arccos
rn cos ϕ̄n + ξj

�r2n + ξ2j + 2rnξj cos ϕ̄n�1/2

−Earccos
rn cos ϕ̄n + ξ

�r2n + ξ2 + 2rnξ cos ϕ̄n�1/2
�

�4�2�

η
�1�
j = η�1�

j �n� = ∂

∂ϕ
��βj�rn� ϕ� −Eβj�rn� ϕ��

∣∣∣∣
ϕ=ϕ̄n

= ∂

∂ϕ
�βj�rn� ϕ�

∣∣∣∣
ϕ=ϕ̄n

= − rnξj sin ϕ̄n
r2n + ξ2j + 2rnξ cos ϕ̄n

�

ζ
�1�
j = ζ�1�j �n� = ∂

∂ϕ
"�βj�rn� ϕ̄n� −Eβj�rn� ϕ̄n��

= ∂

∂ϕ
"βj�rn� ϕ�

∣∣∣∣
ϕ=ϕ̄n

= rnξj cos ϕ̄n + r2n
r2n + ξ2j + 2rnξj cos ϕ̄n

− α�n��

[In the last identity we applied the same calculation as in (2.11).]

�4�3�

A0 = A0�n� = E�βj�rn� ϕ̄n�

= 1
2
E log�r2n + ξ2 + 2rnξ cos ϕ̄n� − α�n� log rn�

B0 = B0�n� −E"βj�rn� ϕ̄n�

= Earccos
rn cos ϕ̄n + ξ

�r2n + ξ2 + 2rnξ cos ϕ̄n�1/2
− α�n�ϕ̄n�
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the numbers A2 = A2�n� and B2 = B2�n� which are the second derivatives of
the functions E�βj�rn� ϕ� and E"βj�rn� ϕ� in the point ϕ = ϕ̄n, that is,

�4�4�
A2 = A2�n� = −E rnξ cos ϕ̄n

U�rn� ξ� ϕ̄n�
− 2E

r2nξ
2 sin2 ϕ̄n

U�rn� ξ� ϕ̄n�2
�

B2 = B2�n� = −E rnξ sin ϕ̄n
U�rn� ξ� ϕ̄n�

+ 2E
rnξ sin ϕ̄n�rnξ cos ϕ̄n + r2�

U�rn� ξ� ϕ̄n�2
�

�4�5�

η
�2�
j = η�2�

j �n� = � ∂2

∂ϕ2
�βj�rn� ϕ� −Eβj�rn� ϕ��

∣∣∣∣
ϕ=ϕ̄n

= − rnξj cos ϕ̄n
U�rn� ξj� ϕ̄n�

− 2
r2nξ

2
j sin

2 ϕ̄n

U�rn� ξj� ϕ̄n�2
−A2�

ζ
�2�
j = ζ�2�j �n� = " ∂

2

∂ϕ2
�βj�rn� ϕ� −Eβj�rn� ϕ��

∣∣∣∣
ϕ=ϕ̄n

= −rnξj sin ϕ̄n
U�rn� ξj� ϕ̄n�

+ 2
rnξj sin ϕ̄n�rnξj cos ϕ̄n + r2n�

U�rn� ξj� ϕ̄n�2
−B2�

We can write

�βj�rn� ϕ� = A0 + η�0�
j �rn� ϕ̄n� + η�1�

j �rn� ϕ̄n��ϕ− ϕ̄n�

+ 1
2�A2 + η�2�

j ��ϕ− ϕ̄n�2 + 1
6ϑj�1�ϕ− ϕ̄n�3�

"βj�rn� ϕ� = B0 + ζ�0�j �rn� ϕ̄n� + ζ�1�j �rn� ϕ̄n��ϕ− ϕ̄n�

+ 1
2�B2 + ζ�2�j ��ϕ− ϕ̄n�2 + 1

6ϑj�2�ϕ− ϕ̄n�3�

where

�4�6�
ϑj�1 = ϑj�1�rn� ϕ� =

∂3

∂ϕ3
�βj�rn� ϕ�

∣∣∣∣
ϕ=ϕ̃
�

ϑj�2 = ϑj�2�rn� ϕ� =
∂3

∂ϕ3
"βj�r�ϕ�

∣∣∣∣
ϕ= ˜̃ϕ

with some numbers ϕ̃ and ˜̃ϕ in the interval �ϕ� ϕ̄n�. Summing up the last rela-
tions for j = 1� � � � � n, we get the following relation for the function Zn�rn� ϕ�
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defined in (2.9):

�4�7�

Zn�r�ϕ� = n�A0 + iB0� +
√
nS0�n� + iT0�n�

+ √
n�S1�n� + iT1�n���ϕ− ϕ̄n�

+ n

2
�A2 + iB2��ϕ− ϕ̄n�2

+
√
n

2
�ε1�n� + iε2�n���ϕ− ϕ̄n�2

+ n

6
�δ1�n� + iδ2�n���ϕ− ϕ̄n�3�

where

S0 = S0�n� =
1√
n

n∑
j=1
η
�0�
j �rn� ϕ̄n� and

T0 = T0�n� =
n∑
j=1
ζ
�0�
j �rn� ϕ̄n�mod2π�

(4.8)

S1 = S1�n� =
1√
n

n∑
j=1
η
�1�
j �rn� ϕ̄n��

T1 = T1�n� =
1√
n

n∑
j=1
ζ
�1�
j �rn� ϕ̄n��

(4.9)

and

ε1�n� =
1√
n

n∑
j=1
η
�2�
j �rn� ϕ̄n�� ε2�n� =

1√
n

n∑
j=1
ζ
�2�
j �rn� ϕ̄n��

δk�n� =
1
n

n∑
j=1
ϑj�k�rn� ϕ�� k = 1�2�

We want to give a good asymptotic formula for the integral (2.8) by means
of (4.7) if Property B holds. Define the intervals

Ī�n� = [
ϕ̄n − n−1/2+1/10� ϕ̄n + n−1/2+1/10] and I�n� = Ī�n� ∩ �0� π��

Observe that for sufficiently large n Ī�n� = I�n� if 0 < ϕ̄�α∗� < π, and Ī�n� =
I�n� ∪ �−I�n�� if ϕ̄�α∗� = 0 or ϕ̄�α∗� = π with α∗ = limn→∞ α�n�. This relation
follows from Lemma 1, the relation limn→∞ ϕ̄n = ϕ̄�α∗�which we pointed out at
the beginning of this Section, Property B and the observation that in the case
ϕ̄�α∗� = 0 or π K±�r�α∗�� > 0 with a strict inequality. Indeed, the inequality
K±�r�α�n��� > 0 also holds in this case. These facts imply the relation between
the intervals I�n� and Ī�n� formulated in this paragraph.

We claim that there is an appropriate set 9�n� on the probability space
where the random variables ξ1� ξ2� � � � are defined such that

�4�10� P�9�n�� → 1 as n→ ∞�
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and

�4�11� �
(
1
π

∫
I�n�

exp�Zn�rn� ϕ��dϕ
)
=

{
2Dn� if 0 < ϕ̄n < π�
Dn� if ϕ̄n = 0 or ϕ̄ = π

on the set 9�n� for the function Zn�r�ϕ� defined in (2.9) with a (random)
number Dn which satisfies the relation

�4�11′� Dn=�
(√

π exp�Zn�rn� ϕ̄n�− �S1�n�+ iT1�n��2
2�A2 + iB2� +O�n−1/10��√

2n�−A2− iB2�

)
�

where S1�n� and T1�n� are defined in (4.9), A0, B0 in (4.3), ϕ̄n = ϕ̄�α�n��
and

√�−A2 − iB2� is meant as the square root with positive real part. Let
us remark that A2 < 0, which statement is proved with a slightly different
notation in Lemma 3. Moreover, the numbers A2�n� are strictly separated
from zero for all sufficiently large n since �rn� ϕ̄n� → �r�α∗�� ϕ̄�α∗�� as n→ ∞,
and Property A and Lemma A can be applied if ϕ̄�α∗� = 0 or ϕ̄�α∗� = π. We
also claim that

�4�11′′�

the angle between the complex numbers

exp�Zn�rn� ϕ̄n�− ��S1�n�+ iT1�n��2/2�A2+ iB2���√
2n�−A2− iB2�

and i =
√
−1 is larger than n−1/20

and

�4�12�
∣∣∣∣
∫
�0� π�\�I�n��

exp�Zn�rn� ϕ��dϕ
∣∣∣∣=O�exp��Zn�rn� ϕ̄n�− const.n1/5���

and the O�·� is uniform in (4.11) and (4.12) on the sets 9�n�.
Before the proof of relations (4.10), (4.11), (4.11′), (4.11′′) and (4.12) we show

that they imply Lemma 4. First we show by a comparison of the right-hand
side of (4.11), (4.11′), (4.11′′) and (4.12) that a negligible error is committed
on the set 9�n� if the integral (2.8) is restricted to the set I�n�; that is, the
expression Dn or 2Dn defined in (4.11′) is a good approximation of S�k��n�.

Formula (4.15) which will appear in the definition of the set 9�n� implies
that ∣∣∣∣�S1�n� + iT1�n��2

2�A2 + iB2�

∣∣∣∣ < const.n1/10

on the set 9�n�. This relation together with (4.11′), (4.11′′) imply that


Dn
 ≥ const.
∣∣∣∣�

(
exp�Zn�rn� ϕ̄n� − ��S1�n� + iT1�n��2/2�A2 + iB2���√

2n�−A2 − iB2�

)∣∣∣∣
≥ n−1/20const�

∣∣∣∣exp�Zn�rn� ϕ̄n� − ��S1�n� + iT1�n��2/2�A2 + iB2���√
2n�−A2 − iB2�

∣∣∣∣
≥ exp

{�Zn�rn� ϕ̄n� − const.n1/10
}
�
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The above estimate together with (4.11), (4.12) and the definition of S�k��n�
imply that S�k��n� = 2Dn�1+o�1�� if 0 < ϕ̄�α∗� < π and S�k��n� = Dn�1+o�1��
if ϕ̄�α∗� = 0 or ϕ̄�α∗� = π. Hence to prove Lemma 4 it is enough to give a good
estimate on Dn. We shall consider the cases 0 < ϕ̄�α∗� < π, ϕ̄�α∗� = 0 and
ϕ̄�α∗� = π separately. We get with the help of relation �4�11′� and the identity
Zn�rn� ϕ̄n� = n�A0 + iB0� +

√
nS0�n� + iT0�n� that on the set 9�n�,

�4�13� Dn =
√
2√

Knπ
exp

{
nA0 +

√
nS0 −U1

}
cos

(
nB0 +T0 −U2 −

ω

2

)

× �1+O�n−1/10�� if 0 < ϕ̄�α∗� < π

with

�4�14�
U1 = U1�n� =

A2�S2
1 −T2

1� + 2B2S1T1

2�A2
2 +B2

2�
�

U2 = U2�n� =
−B2�S2

1 −T2
1� + 2A2S1T1

2�A2
2 +B2

2�

and

�4�14′� K =K�n� = �A2
2 +B2

2�1/2� ω = ω�n� = arctan
B2

A2

because of the relation

�4�14′′� �S1 + iT1�2
2�A2 + iB2�

= U1 + iU2�

In the case ϕ̄�α∗� = 0, B0 = 0, B2 = 0, T0 = 0 and S1 = 0, hence

�4�13′�
Dn = 1√

2π
A2
n
exp

{
T2

1

2A2
+ nA0 +

√
nS0

}
�1+O�n−1/10��

if ϕ̄�α∗� = 0

and in the case ϕ̄�α∗� = π, nB0 = n�−π − α�n�� = k�n�π, T0 = 0 and S1 = 0.
Hence

�4�13′′�
Dn = �−1�k�n� 1√

2π
A2
n
exp

{
T2

1

2A2
+ nA0 +

√
nS0

}
�1+O�n−1/10��

if ϕ̄�α∗� = π�

Lemma 4 follows from (4.13), (4.13′), (4.13′′) and the relation between S�k��n�
and Dn.
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We define 9�n� in the form 9�n� = 91�n� ∩ 92�n�. 91�n� is the set where
the above relations hold:

�4�15�


S1�n�
 < n1/20�

T1�n�
 < n1/20�

εk�n�
 < n1/10� k = 1�2�


δ̄k�n�
 < n1/10� k = 1�2�∣∣∣∣
n∑
j=1

ξj cos�ϕ̄n ± n−4/10�
r2n + ξ2j + 2rnξj cos�ϕ̄n ± n−4/10�

− nE ξ cos�ϕ̄n ± n−4/10�
r2n + ξ2 + 2rnξ cos�ϕ̄n ± n−4/10�

∣∣∣∣ < n11/20�
where

δ̄k�n� =
1
n

n∑
j=1
ϑ̄j� k� k = 1�2

with

ϑ̄j�1 = sup

ϕ−ϕ̄n
<n−1/2+1/10

∣∣∣∣12 ∂3

∂ϕ3
�log�r2n + ξ2j + 2rnξj cosϕ��

∣∣∣∣�
ϑ̄j�2 = sup


ϕ−ϕ̄n
<n−1/2+1/10

∣∣∣∣ ∂3∂ϕ3
arccos

rn cosϕ+ ξ
�r2n + ξ2 + 2rnξ cosϕ�1/2

∣∣∣∣�
The set 92�n� is defined as the set where the above relation holds:

�4�15′�

∣∣∣∣W�n� − 1
2

∣∣∣∣ > n−1/20 with

W�n� = 1
π

(
nB0�n� +T0�n� −U2�n� −

ω�n�
2

)
mod1

if 0 < ϕ̄�α∗� < π�
where B0, T0, U2 and ω are defined in (4.1), (4.2), (4.14) and (4.14′).

The above defined set 9�n� satisfies relation (4.10), since both 91�n� and
92�n� satisfy it. It holds for 91�n� since the random variables

√
nS1�n�,√

nT1�n�,
√
nεk�n�, k = 1�2, and the last expression in (4.15) are sums of

n independent random variables with expectation zero and finite second
moment, while nδ̄k�n� is the sum of n independent random variables with
finite expectation. Hence we can deduce relation (4.15) from the Chebyshev
and Markov inequalities if we know that the appropriate variances and
expected value have a uniform bound for all sufficiently large n. But this
holds because of relation (2.5) and the fact that z�α∗� = r�α∗� exp�iϕ̄�α∗�� and
zn = rn exp�iϕ̄n� are separated from the real line if 0 < ϕ̄�α∗� < π, they are
separated from −� if ϕ̄�α∗� = 0, and from � if ϕ̄�α∗� = π. The last observation
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is needed to check that the singularity of the random functions in the point
rn or −rn makes no problem.

The probability of the event that relation �4�15′� holds tends to 1, as n→ ∞.
This follows from Proposition B which will be proved in Section 5. Indeed, it fol-
lows from Proposition B that the random variablesW�n� converge in distribu-
tion to the uniform distribution if n→ ∞, and this implies �4�15′�. The above
mentioned limit theorem holds because the vectors �T0�n�� S1�n��T1�n�� con-
verge in distribution to a random vector �T0� S1� S2� such that T0 is uniformly
distributed mod 1, and the vector �S1� S2� is independent of T0. The limit dis-
tribution for W�n� follows from this fact and the definition of W�n�.

Formula (4.11′′) follows from (4.14′′) and (4.15′). To prove relation (4.11) and
(4.11′) in the case 0 < ϕ̄�α∗� < π, observe that by (4.7) and the definition of
the set 9�n�,

�4�16�

Zn�rn� ϕ� −Zn�rn� ϕ̄n� = n�A2 + iB2�
�ϕ− ϕ̄n�2

2
+√

n�S1�n� + iT1�n���ϕ− ϕ̄n�
+O�n−1/10�

= n�A2 + iB2�
2

(
ϕ− ϕ̄n +

S1 + iT1√
n�A2 + iB2�

)2

− �S1 + iT1�2
2�A2 + iB2�

+O�n−1/10�

if ϕ ∈ I�n� and ω ∈ 9�n�, hence
∫
I�n�

exp�Zn�rn� ϕ� −Zn�rn� ϕ̄n��dϕ

=
∫
I�n�

exp
{
n�A2 + iB2�

2
�ϕ− ϕ̄n +

S1 + iT1√
n�A2 + iB2�

�2

− �S1 + iT1�2
2�A2 + iB2�

+O�n−1/10�
}
dϕ

=
∫ ∞

−∞
exp

{
n�A2 + iB2�

2
�ϕ− ϕ̄n +

S1 + iT1√
n�A2 + iB2�

�2

− �S1+iT1�2
2�A2 + iB2�

+O�n−1/10�
}
dϕ+O�exp�−Kn1/5��

=
√
2π exp�−��S1 + iT1�2/2�A2 + iB2�� +O�n−1/10��√�−A2 − iB2�n

�

since
∫∞
∞ exp�−A�ϕ−B�2�dϕ = √

π/A if �A > 0, and the main term in
the middle expression of the last relation is dominating, being larger than
O�exp�−constn1/10��. In the above calculation we have exploited that A2 < 0.
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The expression
√�−A2 − iB2� is meant as the square root with positive real

part.
The cases ϕ̄�α∗� = 0 or ϕ̄�α∗� = π are similar, but simpler. The integrals we

are interested in can be calculated similarly, only the approximating integrals∫∞
−∞ must be replaced by

∫∞
0 or

∫ 0
−∞. (We exploit during these calculations that

S1 = 0 in the present case.) The main part of the integral under consideration
is real, since S1 = 0, B2 = 0, T0 = 0 and B0 = 0 modπ in this case.

To prove (4.12) it is enough to show that

�4�17� �Zn�rn� ϕ� ≤ �Zn�rn� ϕ̄n� − const.n1/5 if ϕ ∈ �0� π� \ I�n�

on the set 9�n�, where the function Zn�rn� ϕ� is defined in (2.9) and (2.10).
First we show the following weaker result:

�4�18� �Zn�rn� ϕ̄n ± n−2/5� < �Zn�rn� ϕ̄n� − const.n1/5�

that is, relation (4.17) holds if some very special points of the set �0� π� \ I�n�
are considered.

To prove relation (4.18) let us first observe that for A2 = A2�n� defined in
(4.4), A2 < −K with some negative constant K. Indeed, either 0 < ϕ̄ < π in
which case A2 = −2E�r2nξ2 sin2 ϕ̄n/U�rn� ξ� ϕ̄n�2� < −K because of Lemma 1
or ϕ̄n = 0 or ϕ̄n = π, and in these cases A2 = E�∓rnξ/�rn ± ξ�2� < −K
because of Property B. We get relation (4.18) by taking the real part of the first
identity in (4.16) with the choice ϕ = ϕ̄n±n−2/5 with the help of the following
observations: nA2��ϕ− ϕ̄n�2/2� < −const.n1/5, √n
�ϕ − ϕ̄n�S1�n�
 < n3/20 on
the set 9�n� because of the relation A2 < −K and (4.15).

Relation (4.17) can be rewritten, with the change of variable ψ = cosϕ, in
the equivalent form,

�4�19� Yn�ψ� ≤ Yn�cos ϕ̄n� − const.n1/5 if 
arccosψ− ϕ̄n
 ≥ n−2/5�

on the set 9�n�, with the function Yn�ψ� defined as

Yn�ψ� = �Zn�rn�arccosψ� =
n∑
j=1

1
2 log�r2n + ξ2j + 2rnξjψ� − nα�n� log rn�

Relation (4.18) implies that

�4�20� Yn�cos�ϕ̄n ± n−2/5�� ≤ Yn�cos ϕ̄n� − const.n1/5�

To prove (4.19) it is enough to observe that

�4�21� d2

dψ2
Yn�ψ� = −

n∑
j=1

2r2nξ
2
j

�r2n + ξ2j + 2rnξjψ�2
≤ 0�

hence the function Yn�·� is concave, and relation (4.20) implies its strength-
ened form, relation (4.19).
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5. Proof of the limit theorems for sums of independent vectors.

Proof of Proposition A. In the proof we apply a natural adaptation of
the characteristic function technique. We shall investigate the expressions

�5�1� ϕ�t� l� = E exp�itX1 + 2πil�Y1 − α���
where t ∈ Rk, l is an arbitrary integer if G0 = G, l is an integer, 0 ≤ l < p if
G0 = �j/p� j = 0� � � � � p− 1�, and tXs denotes scalar product. We claim that

�5�2�
ϕ�t� l� = exp

{− 1
2t�t

∗ + o�t2�} if l = 0 and t→ 0�


ϕ�t� l�
 < C < 1 if l �= 0 and 
t
 < ε�
where the constants C < 1 and ε > 0 may depend on l,

Since EX1 = 0, and the coefficient of Y1−α in the definition of the function
ϕ�t� l� is zero for l = 0, the first line of relation (5.2) follows from a simple
Taylor expansion, just as it is done in the proof of the classical central limit
theorem. First we prove the second line of (5.2) first in the case if G0 = G,
that is, if the minimal coset containing the support µ is the whole group G. We
show that in this case for all positive integers l and 0 ≤ α ≤ 1 there is some
δ = δ�l� > 0 and η = η�l� > 0 depending only on l such that the distribution
µ of Ys satisfies the inequality

�5�3� µ

( l⋃
j=1

[
j

l
− η+ α� j

l
+ η+ α

])
< 1− δ�

Let us emphasize that the numbers η > 0 and δ > 0 in (5.3) may depend on l
but not on α.

To prove (5.3) first we show that for all sets,

A�β� = A�β� l� η� =
l⋃
j=1

(
j

l
+ β− 2η�

j

l
+ β+ 2η

)
�

µ�A�β�� < 1− δ if the numbers η = η�β� l� and δ = δ�β� l� are appropriately
chosen. Indeed, the µ measure of the (finite) sets

⋃l
j=1�j/l + β� is less than

one for all 0 ≤ β ≤ 1, since otherwise the support of the measure µ were
concentrated on a finite coset. Since these sets are compact, this relation also
holds for their sufficiently small neighborhoods.

Since the group G is compact, there is a finite cover of G with some sets of
the form Ā�β�, which sets are defined in the same way as A�β�, (µ�A�β� <
1 − δ�β�), only 2η is replaced by η in their definition. If we choose η as the
minimum of the numbers η appearing in the definition of the sets Ā�β� ap-
pearing in this finite cover, then all sets which are considered at the left-hand
side of (5.3) are contained in one of the sets A�β� for which Ā�β� takes part in
this cover. Hence relation (5.3) holds if η and δ are chosen as the minimum of
those values η�β� > 0 and δ�β� > 0 which appear in the sets A�β� for which
Ā�β� takes part in this finite cover of G.
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Relation (5.3) implies that for sufficiently small ε = ε�l� > 0,

P

(

lY1 + tX1 − α
 >

η

2

)
>
δ

2
�

for all 0 ≤ α ≤ 1 if t < ε with some η = η�l� and δ = δ�l�. Hence

E� exp�i�lY1 + tX1 − α�� < 1− ηδ2

8

for all α ∈ �0�1�. Since this relation holds for all α, this implies the second line
of (5.2) in the case G = G0.

If G0+α with G0 = � j
p
� j = 0�1� � � � � p−1�, is the minimal coset containing

the support of µ, then the distribution of Y1 − α is concentrated on G0. The
distribution of Y1 − α is concentrated on some points of the form ku/p, u =
0� � � � � r with some r such that the µ measure of all these points ku/p is
positive. We may assume by replacing α by α−k0/p, if this is needed, that k0 =
0. Moreover, because of the minimality property of G0 the greatest common
divisor of k1� � � � � kr and p equals 1. Hence there are some integers Nu, u =
1� � � � � r and N such that

�5�4� Np+
r∑
u=1

Nuku = 1�

This fact implies that for any 1 ≤ l < p all vectors exp�2πilku
p
�, u = 0� � � � � r

cannot be parallel. Indeed, otherwise the relation lku = lk0 = 0 mod p would
hold for all u = 1� � � � � r, and this contradicts (5.4). Also, the maximum between
the angles of the vectors exp�itX1+2π�ilku/p�� are separated from zero with
positive probability, and this fact implies the second line of (5.2) in this case,
too.

Since E exp�itUn + 2πilVn� = �ϕ�t/√nX1� l��n, relation (5.2) implies that

E exp�itUn + 2πilVn� =
{
exp

{− 1
2t�t

∗}�1+ o�1��� if l = 0�

o�1�� if l �= 0�

Here t ∈ Rk, l = 0�±1�±2� � � � if G0 = G, and l is an integer, 0 ≤ l < p, if G0 =
�j/p� j = 0� � � � � p − 1�. This means that limn→∞E exp�itUn + 2πilVn� =
E exp�itU + 2πilV� for all such t and l, where �U�V� is such a random
vector whose distribution is described in Proposition A. This relation implies
Proposition A. ✷

Proof of Proposition B. The proof is a slight modification of that of
Proposition A. It is enough to prove a modification of (5.2) under the con-
dition of Proposition B where the characteristic function ϕ�t� l� is replaced
by ϕn�t� l� = E exp�itX1�n� + 2πil�Y1�n� − α��. The constant C < 1 in the
second line of this modified relation (5.2) must not depend on n. The first
line of this modified formula (5.2) holds, since it holds if X1�n� is replaced by
X, and �E exp�itX1�n�� − E exp�itX�� = o�t2� as t → 0. The second line of
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(5.2) can be deduced from a modified version of (5.3) where the distribution µ
of Y1 is replaced by the distribution µn of Y1�n�, but the numbers η and δ
must not depend on n. This can be deduced, just as it was done in the proof
of Proposition A, from the weaker relation µn�A�β�� < 1− δ with

A�β� = A�β� l� η� =
l⋃
j=1

(
j

l
+ β− 2η�

j

l
+ β+ 2η

)
�

δ > 0, η > 0, if the numbers η = η�β� l� and δ = δ�β� l� are appropriately
chosen. We have already proved in Proposition A that µ�A�β�� < 1−δ, where
µ is the (weak) limit of the measures µn. Moreover, this statements also holds
for the closure Ā�β� of the set A�β� with a possibly smaller parameter η.
Since µn ⇒ µ, lim supn→∞ µn�Ā�β�� ≤ µ�Ā�β��. This implies that also the
relation µn�A�β�� < 1− δ holds for large n. Proposition B is proved. ✷

6. The proof of the main results.

Proof of Theorem 1. By Lemma 4, log 
S�k��n�
−log 
S̄�k��n�
 ⇒ 0, where
S̄�k��n� is defined in (2.12) and ⇒ denotes stochastic convergence. Hence
S�k��n� can be replaced by S̄�k��n� in the proof of Theorem 1.

We claim that

�6�1�
U1�n�√
n

⇒ 0�
T2

1�n�√
n

⇒ 0 and

1√
n
log

∣∣∣∣cos
(
nB0�n� +T0�n� −U2�n� −

ω�n�
2

)∣∣∣∣ ⇒ 0�

The third relation in (6.1) is needed only in the case when 0 < ϕ�α∗� < π. The
first two relations in (6.1) are trivial, since the random variables U1�n� and
T2

1�n� are stochastically bounded. They are even stochastically convergent.
The third relation holds, since the random variables T0�n� − U2�n�mod 2π
converge in distribution to the uniform distribution in �0�2π�. Indeed, by
Proposition B the random vectors �T0�n��U2�n�� converge in distribution to
a random vector �T�U�, where T and U are independent and T is uniformly
distributed in �0�2π�. Hence the random variables T0�n�−U2�n�mod2π con-
verge in distribution to the uniform distribution of �0�2π�, as we claimed. This
relation implies that the random variables log 
 cos�n�B0�n�−U2�n�−ω�n�/2�

converge in distribution to a random variable log 
 cosV
, whereV is uniformly
distributed in �0�2π�. This implies that the third relation also holds in (6.1).
The random variables S0�n� converge to a normal law with expectation zero
and variance Varη, and a slight refinement of the previous argument also
shows that the vectors(

log cos
(
n�B0�n� −U2�n� −

ω�n�
2

)
� S0�n�

)

converge in distribution to a random vector �log cosV�Z�, where V and Z are
independent random variables, V is uniformly distributed in �0�2π�, and Z is



2008 P. MAJOR

normally distributed with expectation zero and variance Varη. Relation (2.13)
follows from the above observations. Because of Lemma 4, the form of S̄�k��n�
defined in (2.12) and the limit behavior of the expression in the second relation
of (6.1), the sign of S�k��n� also satisfies the relations given in Theorem 1. ✷

Proof of Lemma 5. The random variable η = η�α∗� is constant if and
only if

ξ2 + 2r�α∗�ξ cos ϕ̄�α∗� = const. with probability 1.

Since ξ is a nonconstant random variable, and its values satisfy an equation
of second order, its distribution is concentrated in two points x1 and x2 which
satisfy the identity x21+2r�α∗�x1 cos ϕ̄�α∗� = x22+2r�α∗�x2 cos ϕ̄�α∗�, or equiva-
lently x1+x2+2r�α∗� cos ϕ̄�α∗� = 0. In case (a) when the relation 0 < ϕ̄�α∗� < π
holds, by Lemma 1 the identity E�ξ/r2�α∗� + ξ2 + 2r�α∗�ξ cos ϕ̄�α∗�� = 0 must
hold. This is equivalent to the relation px1+qx2 = 0 with p = P�ξ = x1�, q =
P�ξ = x2� = 1−p, since r2+x21+2rx1 cos ϕ̄ = r2+x22+2rx2 cos ϕ̄ in this case.
Finally, the second equation of the fixed point equation (1.4) r�∂H/∂r�
r=r�α∗� =
α∗ yields that E�rξ cos ϕ̄+ r2/r2 + ξ2 + 2rξ cos ϕ̄� = α∗. This is equivalent to
�r2/r2 − x1x2� = α∗, since in this case r2+ξ2+2rξ cos ϕ̄ = r2−x1x2, as the cal-
culation r2+ξ2+2rξ cos ϕ̄ = r2+�px21+qx22� = r2+�px1+qx2��x1+x2�−x1x2 =
r2 − x1x2 shows.

We have proved that the distribution of the random variable ξ must be
concentrated in two different points, and the above equations make it possible
to calculate r�α∗� and ϕ̄�α∗� from α∗. To decide whether we get a real solution
for a pair �F�α∗� we have to check whether the condition 
 cos�ϕ�α∗�
 < 1 is
satisfied. Some calculation shows that

cos ϕ̄�α∗� = −x1 + x2
2r�α∗� = −�q− p�x1

2qr�α∗� � r�α∗�2 = p

q

α∗

1− α∗x
2
1�

The last two identities yield that cos2 ϕ̄�α∗� = ��p− q�2/4pq��1− α∗/α∗�. This
gives that the condition 
 cos ϕ̄�α∗�
 < 1 is equivalent to α∗ > 1− 4pq.

In case (b) when the relation ϕ̄�α∗� = 0 holds, the random variable ξ is
concentrated in two points x1, x2, x1+x2+2r�α∗� = 0, and E�ξ/�r+ ξ�2� ≥ 0.
The latter relation is equivalent to Eξ ≥ 0 in the present case. Since 2r�α∗� =
−�x1 + x2� the second part of the fixed point equation (1.4) yields that α∗ =
E�r/r+ ξ� = −��p− q��x1 + x2�/x1 − x2�. The conditions px1 + qx2 ≥ 0, x1 +
x2 < 0 are satisfied. The last condition appears, because it is equivalent to
r�α∗� > 0. Some calculation shows that under such conditions the relation
0 < α∗ < 1 also holds. Case (c) in Lemma 5 when ϕ̄�α∗� = π can be handled
similarly to case (b). Lemma 5 is proved. ✷

Proof of Theorem 2. Because of Lemma 4 the random variable S�k��n�
can be replaced by S̄�k��n� defined in the first line of (2.12) in the proof of the
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limit theorem. Moreover, under the conditions of Theorem 2,
√
nS0�n� = 0;

that is, this term is missing from (2.12). Proposition B implies that the random
vectors,

�6�2�
(
−U1�n�� nB0 +T1 −U2 −

ω

2
mod 2π

)
�

converge in distribution to a random vector �U�Z�, where Z = Z1 − U2 +
const.mod 2π with U2 = �−B2�S2 −T2� + 2A2ST/2�A2 +B2

2��, U1 = −U =
−�A2�S2 −T2� + 2B2ST/2�A2 +B2

2��, �S�T� is a Gaussian random vector
with expectation zero and covariance matrix given in (2.14), the random vari-
able Z1 is uniformly distributed in �0�2π�, and it is independent of the vector
�S�T�. These relations imply that the random variable Z is also uniformly
distributed in �0�2π�, and it is independent of the vector �S�T� hence also
of the random variable U, since its conditional distribution under the con-
dition S = x, T = y is the uniform distribution on �0�2π� for all x and y.
Lemma 4 together with the convergence of the random vectors defined in (6.2)
in distribution to the random vector �U�Z� imply Theorem 2. ✷

Proof of Theorem 2′. Here again the investigation of the random vari-
able S�k��n� can be replaced by that of S̄�k��n� defined in the second line of
(2.12). We are interested in the asymptotic behavior of the expression in the
exponent of this formula. We describe the central limit theorem for the ran-
dom vector �L−1

n S0�n��T1�n�� with the definition of an appropriate normal-
ization Ln.

We have
√
nS0�n� = ∑n

j=1�η�0�
j − Eη

�0�
j � with η

�0�
j = log 
r�α�n�� + ξj
.

Under the conditions of Theorem 2′ limn→∞Varηj�n� = 0, but to determine
the right norming Ln we need a sharper estimate on this variance. To get
it, observe that r�α�n�� = r�α∗� + �α�n� − α∗�r′�α∗� + O��α�n� − α∗�2�, and
since x1 + x2 + 2r�α∗� = 0, ηj ∼ log 
ξj − ��x1 + x2�/2� + r′�α∗��α�n� − α∗�
.
Hence ηj takes two values y1 and y2 with probabilities p and q, and

y1 − y2
 = �4r′�α∗�
α�n� − α∗
/x1 − x2��1 + o�1��, where x1 > x2. We get
with the help of some calculation from the second relation in (1.4) and the
relations ϕ̄�α� = 0 in a small neighborhood of α∗ that r′�α∗�E�ξ/�r+ ξ�2� = 1.
Because of this identity and the relation x1 + x2 + 2r�α∗� = 0 that r′�α∗� =
��x1 − x2�2/4�px1 + qx2��. Hence VarS0�n� = Varηj = pq�y1 − y2�2 ∼
pq�α�n� − α∗�2�x1 − x2�2/�px1 + qx2�2. On the other hand, some calcu-
lation yields that VarT1�n� = �x1 + x2�2/�x1 − x2�2. Since the random
variables ξj take two values, the random variables S0�n� and T1�n� are
linear transform of each other. Because of the above observations and
the central limit theorem the random vectors �L−1

n S0�n��T1�n� converge
in distribution to a vector �V� ��x1 + x2�/�x1 − x2��V� with the choice
Ln = √

pq
α�n� − α∗
�x1 − x2�/px1 + qx2, where V is a standard normal
random variable. This limit theorem together with the form of the second line
in (2.12) imply Theorem 2′. ✷
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