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COMPOUND POISSON APPROXIMATION FOR MARKOV
CHAINS USING STEIN’S METHOD

BY TORKEL ERHARDSSON

Royal Institute of Technology, Stockholm

Let � be a stationary Harris recurrent Markov chain on a Polish state
Ž . n � 4space S, FF , with stationary distribution �. Let � � Ý I � � S ben i�1 i 1

the number of visits to S � FF by �, where S is ‘‘rare’’ in the sense that1 1
Ž .� S is ‘‘small.’’ We want to find an approximating compound Poisson1

Ž .distribution for LL � , such that the approximation error, measuredn
using the total variation distance, can be explicitly bounded with a bound

Ž .of order not much larger than � S . This is motivated by the observation1
that approximating Poisson distributions often give larger approximation
errors when the visits to S by � tend to occur in clumps and also by the1
compound Poisson limit theorems of classical extreme value theory.

We here propose an approximating compound Poisson distribution
which in a natural way takes into account the regenerative properties of
Harris recurrent Markov chains. A total variation distance error bound for
this approximation is derived, using the compound Poisson Stein equation
of Barbour, Chen and Loh and certain couplings. When the chain has an

Ž . Ž .atom S e.g., a singleton such that � S � 0, the bound depends only on0 0
much studied quantities like hitting probabilities and expected hitting
times, which satisfy Poisson’s equation. As ‘‘by-products’’ we also get
upper and lower bounds for the error in the approximation with Poisson or
normal distributions. The above results are illustrated by numerical eval-
uations of the error bound for some Markov chains on finite state spaces.

1. Introduction. In this paper we are concerned with the following
Žproblem: let � be a stationary Markov chain by a ‘‘chain’’ we mean a Markov

. Ž .process in discrete time on a Polish state space S, FF . Assume that � is
ŽHarris recurrent with a unique stationary distribution � this includes

irreducible positive recurrent Markov chains on countable state spaces; see
.below . Let � be the number of visits made by �, during n consecutive timen

points, to a subset S of the state space S, which is ‘‘rare’’ in the sense that1
Ž .� S is ‘‘small.’’ What can be said about the distribution of � ? In particular,1 n

can we go beyond purely asymptotic results and find approximating simpler
Ž .distributions to LL � , for which the error in the approximation can ben

explicitly bounded?
To clarify the last point: there are two different kinds of results that we

Ž .could try to establish about LL � . On one hand, we might consider an
� Žn. �4suitably chosen sequence of Markov chains � ; n � Z , with a correspond-
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� Žn. �4ing sequence of ‘‘rare’’ sets S ; n � Z ; this could be referred to as a1
� Žn. �4scaling of �. If the sets S ; n � Z get increasingly ‘‘rarer’’ as n � �, then1

Ž Žn..we could try to prove that, as n � �, LL � converges weakly to somen
nondegenerate limiting distribution. This would give us a limit theorem. On
the other hand, we might try to find an error bound for an approximation of
Ž .LL � with some suitable simpler distribution, by which we mean a bound forn

Ž .the distance in some appropriate metric between LL � and this approximat-n
ing distribution, for each fixed n.

An often used metric on the space of probability measures is the total
Ž .variation distance d �, � , defined for any two probability measures � andTV 1

� by2

� �d � , � � sup � A � � A .Ž . Ž . Ž .TV 1 2 1 2
A�N

A limit theorem is implied by the convergence to 0 of the corresponding total
variation distance error bound. In this paper we will be concerned with

Ž .finding suitable approximations of LL � , and total variation distance errorn
bounds for such approximations.

A motivation for the interest in such bounds is that many problems can be
formulated in terms of visits made by a stationary Markov chain to a ‘‘rare’’
set. An important area where such problems arise is the extreme value theory
for stationary Markov chains, where the state space is typically R and the

Ž .‘‘rare’’ set S is z, � , for some z � R. Here a number of important results1
are known, although almost exclusively limit theorems. Some other applica-

Ž . Ž .tions can be found in Erhardsson 1998a, b . In Erhardsson 1998a the
number of overlapping occurrences of fixed sequences in a finite-state Markov
chain is considered, and also the number of visits to ‘‘rare’’ sets by birth�death

Ž .chains. In Erhardsson 1998b the number of components of the uncovered set
in the one-dimensional Johnson�Mehl model is studied. As was shown in

Ž .Erhardsson 1996 , this quantity can be interpreted as the number of visits to
a ‘‘rare’’ set by a Markov chain.

Ž Ž .. Ž .A general observation concerning approximations for LL f � , where f � is
any functional, is that it is not a priori obvious which approximating distribu-
tions should be preferred. A natural first-order approximation is the limiting

Ž Ž ..distribution of LL f � under some scaling of �. Convergence in distribution
can be very slow, however, and this is not revealed by the limit theorem. In
such cases it is of interest to find second-order approximations; at the price of
a few additional degrees of freedom in the approximating distribution, one
might achieve a better fit and greatly reduce the size of the error bound.

Ž .Returning to LL � , if visits to S occur at times which are not too close,n 1
and if the dependence in the chain is not too strong, then it is reasonable to
expect � to be approximately Poisson distributed. This should hold not onlyn
for Markov chains, but for stationary random sequences in general. Poisson
limit theorems which formalize this idea can be found, in the context of
extreme value theory for stationary random sequences, in Leadbetter, Lind-

Ž .gren and Rootzen 1983 .´
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With the appearance of the Stein�Chen method for Poisson approximation,
a powerful tool became available for proving total variation distance error

Ž . Ž .bounds in the same direction; see Stein 1972 , Chen 1975 , Arratia, Gold-
Ž . Ž .stein and Gordon 1989 and Barbour, Holst and Janson 1992 . Theorem
Ž .3.2.1 in Erhardsson 1996 is an example of a Poisson approximation error

bound, proved using the Stein�Chen method. Such error bounds often con-
verge to 0 under some natural scaling of �. However, it also turns out that
this convergence can be quite slow if the visits by the Markov chain � to S1
tend to occur in clumps. Sometimes this clumping can be so pronounced that
not even a Poisson limit theorem can be proved.

If visits to S tend to occur in clumps, then the compound Poisson1
distribution should be a better choice for an approximating distribution. The

Ž .book by Aldous 1989 is devoted to this topic in a more general context. He
�there argues, in an intentionally heuristic manner, that the random set t;

4� � S could in many cases be well approximated by a so-called Booleant 1
model, which can be thought of as generated by first placing out points
Ž .germs according to a stationary Poisson point process on R, and then, in

Ž .the vicinity of each germ, a random set a grain ; the grains are i.i.d. random
sets, and they are independent of the point process. This approximation,
which Aldous calls the ‘‘Poisson clumping heuristic,’’ leads in the setting

Ž .described above to a compound Poisson approximation for LL � . Aldousn
designates as an important research topic the problem of finding error
bounds for such approximations.

Ž .As for rigorous results, compound Poisson limit theorems for LL � haven
been proved in the context of extreme value theory for stationary random

Ž Ž ..sequences on the state space R, BB R . According to these theorems, if � is a
Ž .stationary random sequence with extremal index � see Remark 6.2 below ,

which satisfies a certain mixing condition and some regularity conditions,
then the point process of exceedances of � above a level z � 0 converges
weakly, after a suitable scaling, to a compound Poisson point process. The
regularity conditions involve the parameters of the limit process. In general it
may be difficult to show that these conditions are met and determine the

Ž .parameters explicitly. For details, see Leadbetter and Rootzen 1988 and´
Ž .Rootzen 1988 .´

In order to establish also total variation distance error bounds for com-
pound Poisson approximations, it was asked whether an efficient Stein
method for compound Poisson approximation could be found. One idea is to

Ž .use the Stein�Chen method for discrete Poisson process approximation; see
Ž .Section 10.4 in Barbour, Holst and Janson 1992 . This method often works

Ž .well but does not give the best possible bounds if the quantity n� S is1
large. The compound Poisson Stein equation derived in Barbour, Chen and

Ž .Loh 1992 constituted an important step forward and gave rise to hopes that
it could yield approximation error bounds superior to those previously sug-
gested. Compound Poisson approximations based on this result are suggested

Ž . Ž .in Roos 1993 , and these are, in Roos and Stark 1996 , applied to the
Ž .problem of compound Poisson approximation of LL � , in a special case.n
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However, in their approach the regenerative structure of such Markov chains
is not taken into account. Therefore, we believe that for the problem of

Ž .compound Poisson approximation of LL � , there is room for an alternativen
approach.

The main results of the present paper, which is a shortened version of
Ž .Chapter 3 in Erhardsson 1997 , are the following. We propose a new approxi-

Ž � � . Ž .mating compound Poisson distribution CP 	 , 	 , . . . for LL � . This approx-1 2 n
imating distribution reflects in a natural way the fact that a Harris recurrent
Markov chain is either regenerative or can be embedded in another Harris

Ž � � .recurrent Markov chain with this property. In principle, CP 	 , 	 , . . . is the1 2
Ž .Po 	* distribution, where 	* is the expected number of cycles with at least

one visit to S , compounded with the conditional distribution of the number1
of visits to S by � during a cycle, given that the number of visits is at least 1.1

Ž Ž � . � 4When S is an atom i.e., P � � B � is constant on � � S for each1 1 0 0 1
. Ž � � .B � FF , the compounding distribution is geometric, so CP 	 , 	 , . . . is a1 2

Polya�Aeppli distribution.´
Moreover, we derive an explicit total variation distance error bound for the

Ž . Ž � � .approximation of LL � with CP 	 , 	 , . . . . The fundamental tool used forn 1 2
this is the compound Poisson Stein equation in Barbour, Chen and Loh
Ž .1992 , together with certain couplings, for which different choices are possi-

Ž .ble. When the Markov chain � has an atom S such that � S � 0, the error0 0
Ž .bound takes on the following appearance Theorem 4.3 :

d LL � , CP 	� , 	� , . . .Ž . Ž .Ž .TV n 1 2

E 
Ž .S0� � R� 2 H 	 , 	 , . . . E 
 � E 
 � �Ž . Ž . Ž .Ž .1 1 2 S S S S1 0 1 0ž /� SŽ .0

2
� n� S � 2 P 
 � 
 .Ž . Ž .1 S S1 0

Ž . Ž Ž R..Here, E 
 and E 
 � are the expected first hitting times of the setS S S S1 0 1 0

S for the chain � and the reversed chain � R, respectively, with initial0
Ž � . Ž .distributions � � S ; E 
 is the expected first hitting time of S for �, with1 S 00

Ž .initial distribution �, and P 
 � 
 is the probability that � will hit SS S 11 0

before it hits S , again with initial distribution �. The first factor in the0
bound is the so-called magic factor, which is under a certain condition

Ž .bounded by 1, and, if n� S is large, much smaller than that; it gives an1
improvement over the previously mentioned Poisson process approximation
approach. The quantities appearing in the error bound, expected first hitting
times and hitting probabilities, have been subject to much study and can be
found as solutions to Poisson’s equation; in particular, when the state space is
finite, they are the unique solutions to certain linear equation systems.

Ž Ž . Ž � � ..Some related questions are also treated. If d LL � , CP 	 , 	 , . . . canTV n 1 2
be explicitly bounded, we give upper and lower error bounds for the approxi-

Ž . Žmation of LL � with an arbitrary compound Poisson distribution in partic-n
. Ž .ular, a Poisson distribution . We also consider the approximation of LL �n

Ž .with a normal distribution, which is of interest if n� S is large; we combine1
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the main results in the paper with a Berry�Esseen theorem for normal
approximation of compound Poisson distributions, to get a Berry�Esseen

Ž .theorem for normal approximation of LL � . Furthermore, there is a connec-n
tion to the hitting time 
 of a ‘‘rare’’ subset S for the Markov chain �, sinceS 11
Ž . Ž . Ž .P 
 � n � P � � 0 . Many results about the convergence of LL 
 to anS n S1 1

exponential distribution under a suitable scaling have been given in recent
years; here, we give some error bounds for such exponential approximations.

The rest of the paper is organized as follows. In Section 2 we give some
preliminary definitions and notation, concerning Markov chains in general
and Harris recurrent Markov chains in particular. In Section 3 we define the

Ž � � .approximating compound Poisson distribution CP 	 , 	 , . . . , and give some1 2
of its relevant properties. In Section 4 we state and prove the main theorems
on total variation distance error bounds for compound Poisson approximation

Ž .of LL � . In Section 5 we explain how to calculate the hitting probabilities ofn
subsets of the state space and expected first hitting times as solutions to
Poisson’s equation. Section 6 contains the results on, in particular, upper and
lower error bounds for arbitrary compound Poisson and normal approxima-

Ž .tions for LL � . Finally, in Section 7 we calculate numerically the parame-n
Ž � � .ters of the approximating compound Poisson distribution CP 	 , 	 , . . . and1 2

Ž Ž . Ž � � ..the bound for d LL � , CP 	 , 	 , . . . in some examples, where � is aTV n 1 2
Markov chain on a finite state space.

Further applications of the results in this paper to particular Markov
Ž .models can be found in Erhardsson 1998a, b .

Ž .2. Preliminaries. We will consider the following situation. Let S, FF be
� �a Polish state space equipped with the Borel �-algebra. Let p: S � FF � 0, 1

be a stochastic transition probability on S with an invariant probability
Ž .measure �. Let �, GG, P be a probability space on which there is defined a

Z Ž � 4random sequence �: � � S i.e., a random element � ; t � Z of thet
Ž Z Z . .sequence space S , FF equipped with the product �-algebra , which is a

stationary Markov chain on S, with transition probability p and stationary
Z Z Ž�distribution �. Define the shift operator 
 : S � S by 
 . . . , x , x ,�1 0

4. � 4x , . . . � . . . , x , x , x , . . . , and denote the kth iterate of 
 by 
 .1 0 1 2 k
Ž .We denote the P-distribution of any random variable X defined on �, GG

Ž . Ž .by LL X . For each integrable random variable X defined on �, GG , each
Ž .A � FF such that � A � 0, and each B � GG, we define

� �E X � E X � � A , P B � P B � � A .Ž . Ž .Ž . Ž .A 0 A 0

Furthermore, the transition probability p induces, for each x � S, a probabil-
Ž N N .ity measure on the sequence space S , FF , under which the coordinate

� 4process � ; t � N is a p-Markov chain with initial distribution � ; seet x
Ž .Section 2 in Chapter 1 of Revuz 1984 . We denote this probability measure

Ž . Ž . Ž .by P � , and expectation with respect to P � by E � . When used togetherx x x
Ž . Ž N N .with P � , � will denote the coordinate process of S , FF .x
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We define, for each A � FF, t � Z and k � N, the functional 
 t, k: SZ � NA
� 4as the time until the kth visit to A for a sequence s � . . . , x , x , x , . . .�1 0 1

� SZ, starting from but not including time t, by


 t , k s � inf j � 
 t , k�1 s ; x � A � k � 1,Ž . Ž .� 4A A t�j


 t , 0 s � 0.Ž .A

t, kŽ . 0, k Ž .It obviously holds that 
 � � 
 �
 � . For brevity we will use theA A t
Ž . 0, 1Ž . t, kŽ .notation 
 � � 
 � , and the random variable 
 � will be denoted byA A A

t, k t, k Z
 . In an analogous way we define the functional 
 : S � N as the timeA A
until the kth visit to a subset A for a sequence s � SZ, starting from and
including time t, by

t , k t , k�1
 s � inf j � 
 s ; x � A � k � 2,Ž . Ž .� 4A A t�j

t , 1
 s � inf j � 0; x � A ,� 4Ž .A t�j

t , 0
 s � 0.Ž .A

0, 1 t, k t, kŽ . Ž . Ž .We will use the notation 
 � � 
 � , and 
 � 
 � .A A A A
We define, for each A � FF, B � FF and t � Z, the functional N t : SZ � NA, B

as the number of visits by s � SZ to A before the first visit to B, starting
from and including time t, by

t , 1Ž .
 s �1B
t � 4N s � I x � A .Ž . ÝA , B t�i

i�0

Ž . 0 Ž . t t Ž .We will use the notation N � � N � and N � N � .A, B A, B A, B A, B
We denote by � R the reverse Markov chain of �, that is, the random

Ž Z Z . Relement of S , FF defined by � � � for each t � Z. It is well known thatt �t
since � is a stationary Markov chain with stationary distribution �, the same
holds for � R. We denote by p R the transition probability of � R; this is clearly
a �-modification of the P-regular conditional distribution of � given � ,0 1

Ž . Žwhich exists since S, FF is Polish. Moreover, if � is Harris recurrent see
. R Ž .below , then so is � ; see Theorem 4.8 in Chapter 4 of Revuz 1984 .

For any two probability measures � and � � on any probability space
Ž . Ž .�, GG , we define the total variation distance d � , � � in the usual way asTV

� �d � , � � � sup � A � � � A .Ž . Ž . Ž .TV
A�GG

Ž .We say that a set A � FF is an atom for � if p �, B is constant on A for
each B � FF.

We will assume that the Markov chain � is Harris recurrent. Detailed
references on Harris recurrence and numerous other related and important
topics in the field of general state space Markov chains, are in Meyn and

Ž . Ž . Ž .Tweedie 1993 , Nummelin 1984 , Revuz 1984 and Section VI.3 of As-
Ž .mussen 1987 . We give here some definitions and fundamental properties of

Harris recurrent Markov chains, some of which will be needed in the follow-
ing sections.
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�-irreducibility and Harris recurrence. A Markov chain � is said to be
Ž . Ž .�-irreducible if there exists a measure � on S, FF satisfying � S � 0, called

an irreducibility measure, such that

P 
 � � � 0 � x � S, B � A � FF ; � A � 0 .� 4Ž . Ž .x B

If � is �-irreducible for some irreducibility measure �, then there exists a
Ž . Ž .not necessarily unique maximal irreducibility measure � on S, FF , such

Ž .that a measure � on S, FF is an irreducibility measure for � if and only if
� � � ; for short, we will say that � is �-irreducible.

By a Harris recurrent Markov chain � we mean a �-irreducible chain
which also satisfies the condition that

2.1 P 
 � � � 1 � x � B , B � A � FF ; � A � 0 .� 4Ž . Ž . Ž .x B

It follows from Proposition 9.1.1 and Theorem 9.1.4 in Meyn and Tweedie
Ž . Ž .1993 that under �-irreducibility 2.1 is in fact equivalent to the following
seemingly stronger condition:

2.2 P 
 0, k � � � 1 � k � Z�, x � S, B � A � FF ; � A � 0 .� 4Ž . Ž .Ž .x B

Ž .Also, Corollary VI.3.12 in Asmussen 1987 tells us that a Markov chain � is
Harris recurrent if and only if there exists a set S � FF, a probabilityR

Ž . �measure 	 on S, FF and constants � � 0 and m � Z , such that the follow-
ing two conditions are satisfied:

2.3 P 
 � � � 1 � x � S ;Ž . Ž .x SR

2.4 P � � B � �	 B � x � S , B � FF.Ž . Ž . Ž .x m R

Ž .S is called a regeneration set. Condition 2.4 is often called a minorizationR
Ž .condition, and a set S � FF which satisfies 2.4 for some probability measureR

	 and constants � and m is called a small set; see Section 5.2 in Meyn and
Ž . Ž .Tweedie 1993 . From Theorem 5.2.2 in Meyn and Tweedie 1993 it follows

Ž .that if � is �-irreducible, then each A � FF such that � A � 0 contains a
Ž .small set A� such that � A� � 0. Therefore, if � is Harris recurrent, then
Ž .each A � FF such that � A � 0 contains a regeneration set A� such that

Ž . Ž .� A� � 0; in particular, each singleton A such that � A � 0 is a regenera-
tion set.

For a Markov chain on a countable state space S, Harris recurrence means
that S contains exactly one nonempty closed irreducible recurrent subset and
that this subset will be hit in a.s. finite time, starting from any transient
state.

Invariant measures. According to Theorem 10.4.9 in Meyn and Tweedie
Ž . Ž1993 , for a Harris recurrent Markov chain � there exists a unique up to
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.constant multiples invariant measure � , which is equivalent to the maximal
irreducibility measure � , and satisfies


 �1B

� 42.5 � � � E I � � � d� x � B � A � FF ; � A � 0 .� 4Ž . Ž . Ž . Ž .ÝH x iž /B i�0

A Harris recurrent Markov chain � is called positive if the invariant
measure � is finite, so that there exists a stationary distribution. This will be
the case throughout the paper and holds if and only if

E 
 d� x � � � B � A � FF ; � A � 0 .� 4Ž . Ž . Ž .H x B
B

In the case considered in this paper, when � is a stationary Harris recurrent
Markov chain with stationary distribution �, it also holds that, for each

Z � .measurable function g: S � 0, � ,

 �1B

� 4E I � � B g 
 ��Ž .Ý0 iž /2.6Ž . i�0

� E g � � B � A � FF ; � A � 0 .� 4Ž . Ž .Ž .
This follows from the Palm inversion formula; see Section 2.2 in Rolski
Ž .1981 .

Ž .Regenerative properties. By a classic sense regenerative process in dis-
� 4crete time, we mean a random sequence � ; t � N for which there exists at

� 4sequence of nonnegative finite random times T ; k � N such that:k

Ž� 4 � 4.1. LL � ; r � N , T � T ; l � N does not depend on k, for eachT �r k�l kk

k � N.
Ž� 4 � 4. Ž2. � � ; r � N , T � T ; l � N is independent of � T ; i �T �r k�l k ik

. Ž .0, 1, . . . , k and � � ; t � 0, 1, . . . , � , for each k � N.t T �1k

� 4In particular, T ; k � N is a renewal process, and the segmentsk
� �4� , . . . , � � 1; k � Z are called cycles. The process � is wide senseT Tk� 1 k

Ž� 4 �regenerative if, instead of property 2, it holds that � � ; r � N , T �T �r k�lk
4. Ž .T ; l � N is independent of � T ; i � 0, 1, . . . , k for each k � Z; seek i

Ž .Kalashnikov 1994 .
A Harris recurrent Markov chain � is either classic sense regenerative or

it can be embedded in another Markov chain which is classic sense, or at
least wide sense, regenerative. The first case occurs when � has an atom A
Ž . Ž . Ž . Ž .see above such that � A � 0; then clearly 2.3 and 2.4 hold with S � AR
and m � 1 and the strong Markov property implies that we can choose

0, k�1T � 
 � 1 for each k � N.k A
Ž . Ž .The second case occurs when 2.3 and 2.4 hold with a regeneration set

S which is not an atom, but still holds that m � 1. Then, using a techniqueR
called ‘‘splitting,’’ � can be embedded in another Harris recurrent Markov

� 4 � 4chain on the state space S � 0, 1 , for which S � 1 is an atom; see SectionR
Ž . Ž .4.4 in Nummelin 1984 or Example 1.4.1 in Kalashnikov 1994 .
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Ž . Ž .Finally, the third case occurs when 2.3 and 2.4 hold with a regeneration
set S which is not an atom, and m � 1. Using more complicated ‘‘splitting’’R
construction, � can be embedded in another Markov chain which is wide
sense regenerative with 1-dependent cycles, meaning that nonadjacent cycles

Ž .are independent. For details, see Example 1.4.1 in Kalashnikov 1994 .

3. The approximating compound Poisson distribution.

Ž .DEFINITION 3.1. By CP 	 , 	 , . . . or the compound Poisson distribution1 2
� �4 �with parameters 	 ; k � Z , where 	 � 0 for each k � Z and 0 � 	 �k k

Ý� 	 � �, we mean the distribution with the following two equivalentk�1 k
definitions:

Ž . Ž M . � �4i LL Ý T , where the variables T ; i � Z and M are independent,i�1 i i
Ž . � � Ž . Ž .P T � k � 	 		 for each k � Z and i � Z , and M � Po 	 . Here LL T isi k 1

called the compounding distribution.
Ž . Ž � . � �4ii LL Ý kU , where the variables U ; k � � are independent, andk�1 k k

Ž . � Ž .U � Po 	 for each k � Z . If 	 � 0, then U � 0.k k k k

Ž .In the case when the compounding distribution of CP 	 , 	 , . . . is geomet-1 2
� Ž .k�1 ��ric with parameter 
 i.e., 	 		 � 1 � 
 
 for each k � Z , we refer tok

Ž . Ž .CP 	 , 	 , . . . as the Polya�Aeppli 	, 
 distribution; see Section 8.2 in John-´1 2
Ž .son and Kotz 1969 .

A more general definition of a compound Poisson distribution is the
� Ž .�following see Section A.19 in Aldous 1989 . A random variable W is said to

Ž .have a compound Poisson distribution POIS � , where � is a measure on
Ž . � Ž .0, � such that H 1 
 x d� � �, if the Laplace transform of W is0

�
�s xE exp �sW � exp � 1 � e d� � s � 0, � .Ž . Ž . Ž .Ž . Hž /0

Ž . Ž M . � �4If � is finite, POIS � � LL Ý T , where the variables T ; i � Z and Mi�1 i i
Ž . Ž . � Ž Ž ..are independent, LL T � �	� 0, � for each i � Z and M � Po � 0, � . Ini

Ž .this paper we consider only distributions POIS � for which � is finite and
� Ž � .has support on Z i.e., � � Ý 	 � .k�1 k k

� �4Our purpose is, for a suitable choice of parameters 	 ; k � Z , to find ank
Ž Ž . Ž .. n � 4upper bound for d LL � , CP 	 , 	 , . . . , where � � Ý I � � S . ToTV n 1 2 n i�1 i

this end, we will use the following fundamental results from Barbour, Chen
Ž .and Loh 1992 , which we state as propositions. Proposition 3.1 is part of their

Theorem 3; Proposition 3.2 follows from their Theorems 4 and 5.

� �4PROPOSITION 3.1. Let g: N � R be bounded, and let 	 ; k � Z satisfyk
the conditions of Definition 3.1. Then there exists a bounded solution f : N � R
of the equation

�

3.1 wf w � k	 f w � k � g w � w � N ,Ž . Ž . Ž . Ž .Ý k
k�1
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Ž . Ž .if and only if g is such that Eg W � 0, where W � CP 	 , 	 , . . . . The1 2
solution is unique except at w � 0.

Ž .PROPOSITION 3.2. Let f : N � R be the unique bounded solution of 3.1A
Ž . Ž . Ž . Ž .when g � � I � � P W � A , where A � N and W � CP 	 , 	 , . . . . Then,A 1 2

1
	� �3.2 H 	 , 	 , . . . � sup sup f w � 1 � f w � 
 1 e .Ž . Ž . Ž . Ž .1 1 2 A A ž /	A�N w�1 1

� �4In the case when k	 ; k � Z is monotone decreasing towards 0, then,k

1 1
�3.3 H 	 , 	 , . . . � � log 2 	 � 2	 
 1.Ž . Ž . Ž .1 1 2 1 2ž /	 � 2	 4 	 � 2	Ž .1 2 1 2

Ž .In particular, the bound 3.3 is bounded above by 1 and therefore smaller
Ž .than the bound 3.2 , which is bounded below by 1.

Ž . Ž . Ž . Ž .Equation 3.1 with g � � I � � P W � A , where A � N and W �A
Ž . Ž .CP 	 , 	 , . . . , is called a compound Poisson Stein equation. In the case1 2

� �4when k	 ; k � Z is monotone decreasing towards 0, if we define thek
function h: N � R by

w

h w � f k � w � N ,Ž . Ž .Ý
k�0

Ž .then the left-hand side of 3.1 can be expressed as �AAh, where AA is the
Ž .generator of an ‘‘immigration in groups -death’’ process Z, which is a pure

Ž .jump process in continuous time with stationary distribution CP 	 , 	 , . . . .1 2
� Ž .It is well known see Lemma 10 in Barbour, Chen and Loh 1992 and Lemma

Ž .� Ž .1 in Barbour 1988 that a solution to the equation �AAh � g, where g � �
Ž . Ž . Ž .I � � P W � A for A � N and W � CP 	 , 	 , . . . , is given by h : N � R,A 1 2 A

defined by
�

�h w � P Z � A Z � w � P W � A dt � w � N.Ž . Ž .Ž .Ž .HA t 0
0

Ž . Ž . Ž . �Thus, it holds that f w � h w � h w � 1 for each w � Z . Using cou-A A A
Ž .plings of ‘‘immigration in groups -death’’ processes with randomly perturbed

Ž . Ž .initial values, the bound 3.3 for the quantity H 	 , 	 , . . . can be derived.1 1 2
� �4If k	 ; k � Z is not monotone decreasing towards 0, then this Markoviank

generator interpretation is not valid. Using a different approach, one can still
Ž .prove the bound 3.2 .

Ž .We will use the Stein equation in the following way ‘‘Stein’s method’’ .
Ž .Assume that Y is a random variable and that W � CP 	 , 	 , . . . . Then, from1 2

Ž .3.1 ,

� 4d LL Y , CP 	 , 	 , . . . � sup E I Y � A � P W � AŽ . Ž . Ž .Ž .Ž .TV 1 2
A�N

�

� sup E Yf Y � k	 f Y � k .Ž . Ž .ÝA k Až /A�N k�1

3.4Ž .
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Ž Ž . Ž ..We will get bounds for d LL Y , CP 	 , 	 , . . . by constructing bounds forTV 1 2
Ž . Ž . Ž . Ž .the right-hand side in 3.4 , making use of 3.2 or preferably 3.3 .

We first address the question of the exact choice for the approximating
compound Poisson distribution. To our knowledge, the only previous sugges-

Ž .tion that has been made in a Stein’s method context is the one in Roos 1993 ;
see Remark 3.3 below. The alternative that we propose here is in our view
very natural for the study of Markov chains. The idea, in the spirit of Aldous’s
‘‘Poisson clumping heuristic,’’ is to partition the times of visits to S by � into1
weakly dependent clumps, in the following way.

Ž .Choose a set S � FF such that � S � 0 and S � S � �; preferably,0 0 0 1
Ž .� S should be rather large. We know from Section 2 that any S � FF such0 0

Ž . Ž .that � S � 0 contains a regeneration set S such that � S � 0. When �0 R R
has an atom it is often convenient to choose an atom as S , but this is not0
necessary. We say that a clump of visits to S by the Markov chain � begins1
at time t if � has an excursion away from S which begins at time t, that is,0
if � � S and � � S . The size of such a clump is the number of visits tot 0 t�1 0

t, 1 Ž .S made by the chain between times t and 
 thus, the size may be 0 . In1 S0

particular, if S is an atom, then a clump begins at t if and only if a cycle0
begins at t, and the size of the clump is the number of visits to S during that1
cycle.

To indicate whether a clump begins at time t, and in such a case, the size
� 4of the clump, we define random variables Z ; t � Z byt

� 4 t�1Z � I � � S N � t � Z.t t 0 S , S1 0

The P-distribution of Z is the following:t

P Z � k � P � � S , 
 0, k � 
 � 
 0, k�1 � k � Z�.Ž . Ž .t 0 0 S S S1 0 1

We next define the quantity W � Ýn Z , for which the basic couplingn i�1 i
inequality gives

d LL � , LL W � P � 	 WŽ . Ž . Ž .Ž .TV n n n n

� 4 n , 1 n , 1� P 
 � 
 
 
 � 
 � 2 P 
 � 
 .Ž .� 4ž /S S S S S S1 0 1 0 1 0

Since the right-hand side should be small, we switch our interest from � ton
Ž .W . The natural approximating compound Poisson distribution for LL W isn n

Ž M . � �4 �LL Ý T , where the variables T ; i � Z and M are independent, the T ;i�1 i i i
�4 Ž . Ž � .i � Z all have the distribution given by P T � k � P Z � k Z � 0 fori i i

� Ž Ž ..each k � Z and M � Po nP Z � 0 . In words, we consider the total0
Ž .number of nonempty clumps as Poisson distributed with the same mean

and the sizes of the nonempty clumps as independent random variables,
which are also independent of their total number. Summing up, we are led to
the following definition.

DEFINITION 3.2. Let � be a stationary Harris recurrent Markov chain, and
Ž . Ž .let S � FF and S � FF be such that � S � 0, � S � 0, and S � S � �.0 1 0 1 0 1

� 4 1Let also Z � I � � S N . By the approximating compound Poisson0 0 0 S , S1 0



T. ERHARDSSON576

Ž � � . Ž . Ž .distribution CP 	 , 	 , . . . for LL � with respect to S , we mean the1 2 n 0
� Ž .compound Poisson distribution with parameters 	 � 	 � nP Z � k fork k 0

� � � Ž .each k � Z , and 	 � 	* � Ý 	 � nP Z � 0 .k�1 k 0

Ž .REMARK 3.1. In the special case when P 
 � 
 is constant on S ,Ž�. S S 11 0

which will happen, for example, if S is an atom, the strong Markov property1
implies that

P Z � kŽ .t

k�1 �� P � � S , 
 � 
 P 
 � 
 P 
 � 
 � k � Z .Ž . Ž .Ž .0 0 S S S S S S S S1 0 1 1 0 1 0 1

Ž � � . Ž .Hence, CP 	 , 	 , . . . is in this case the Polya�Aeppli 	*, 
 distribution,´1 2
Ž . Ž .with parameters 
 � P 
 � 
 and 	* � nP � � S , 
 � 
 �S S S 0 0 S S1 0 1 1 0

Ž . Ž .n� S P 
 � 
 , where the last equality follows from Lemma 3.1 below1 S S S1 0 1

with k � 1.

�REMARK 3.2. A result from extreme value theory Theorem 2.4.3 in Lead-
Ž .�better and Rootzen 1988 gives, for any stationary random sequence � on´

Ž Ž ..the state space R, BB R , sufficient conditions for the point process of
exceedances of � above a level z to converge weakly to a compound Poisson
point process, under a certain scaling. If � is a stationary aperiodic Harris
recurrent Markov chain with stationary distribution � and an atom S such0

Ž . � 4 � �4that � S � 0, and if S � x � R; x � u for some sequence u ; n � Z ,0 1 n n
then these sufficient conditions can be written as

3.5 lim 	* � 	; lim 	� � 	 � k � Z�,Ž . k k
n�� n��

� � �4 � �4where 	 ; k � Z are the same as in Definition 3.2, and 	 ; k � Z arek k
constants satisfying the conditions of Definition 3.1; see Theorem 2.6.1 in

Ž . Ž .Leadbetter and Rootzen 1988 . If 3.5 holds, then the limiting compound´
Poisson point process has constant jump intensity 	 and a cluster size

Ž .distribution which is the compounding distribution of CP 	 , 	 , . . . .1 2

Ž . Ž RREMARK 3.3. In Roos 1993 , a compound Poisson distribution CP 	 ,1
R . Ž n . �	 , . . . is suggested for the approximation of LL Ý I , where I ; i �2 i�1 i i

4 Ž1, . . . , n is any collection of indicator variables in particular, one could take
� 4 . � 4I � I � � S for each i � 1, . . . , n . The index set � � 1, . . . , n is therei i 1

� 4 v s v wpartitioned, for each j � �, into four disjoint subsets: � � j 
 � 
 � 
j j
� b. The partitioning should be chosen so that, informally,j

v s � 4� � k � � � j ; I depends ‘‘very strongly’’ on I ;� 4j k j

v w � 4 � 4 v s� � k � � � j ; I depends ‘‘very weakly’’ on I ; l � j 
 � .� 4� 4j k l j
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Ž R R .The distribution CP 	 , 	 , . . . is then defined by1 2

n�1
v s� �E I I I � I � k , k � 1, . . . , max � � 1;Ý Ýi i j l � � l½ 5R ž /� k vs	 � i�1 j��k i

v s� � �0, k � max � � 1.l � � l

Ž .See Roos 1993, 1994 for further details.
� �Last in this section we give a few theorems relating the parameters 	 ;k

�4 Ž . Ž .k � Z to the upper bounds 3.2 and 3.3 . We will need the following
elementary result.

LEMMA 3.1. Let � be a stationary random sequence with one-dimensional
Ž . Ž .distribution �, and let A � FF and B � FF be such that � A � 0, � B � 0

and A � B � �. Then,

3.6 P � � A , 
 0, k � 
 � P � � B , 
 0, k�1 � 
 � 
 0, k � k � Z�.Ž . Ž . Ž .0 B A 0 B A B

PROOF. Define

I � I � � A , 
 i , k � 
 i , 1 � i � N, k � Z�;� 4i , k i B A

J � I � � B , 
 i , k�1 � 
 i , 1 � 
 i , k � i � N , k � Z�.� 4i , k i B A B

Ž . Ž . Ž .We want to show that E I � E J . It holds that E I �i, k i, k i, k
ŽŽ . n . Ž . ŽŽ . n . � nE 1	n Ý I , that E J � E 1	n Ý J and also that Ý I �i�1 i, k i, k i�1 i, k i�1 i, k
n �Ý J � 1. We therefore geti�1 i, k

n n1 1
�E I � E J � E I � J � � n � Z ,Ž . Ž . Ý Ýi , k i , k i , k i , kž /n ni�1 i�1

Ž .from which 3.6 follows, letting n � �. �

� � �4THEOREM 3.1. Let 	 ; k � Z be as in Definition 3.2 and define fork
ˆ ˇŽ . Ž . Žbrevity of notation P 
 � 
 � �-ess sup P 
 � 
 and P 
 �S S S x � S x S S S S1 1 0 1 1 0 1 1

. Ž . � � �4
 � �-ess inf P 
 � 
 . A sufficient condition for k	 ; k � Z toS x � S x S S k0 1 1 0

be monotone decreasing towards 0 is

1ˆ3.7 P 
 � 
 � .Ž . Ž .S S S1 1 0 ˇ3 � 2 P 
 � 
Ž .S S S1 1 0

1ˇŽ . Ž .Furthermore, a necessary condition for 3.7 to hold is that P 
 � 
 � .S S S 21 1 0
Ž .Also, if P 
 � 
 is constant on S , a necessary and sufficient conditionŽ�. S S 11 0

� � �4 Žfor k	 ; k � Z to be monotone decreasing towards 0 is that P 
 �k S S1 11.
 � .S 20
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PROOF. According to the definition, we have

k	�
k

�k � 1 	Ž . k�1

kP Z � kŽ .i�
k � 1 P Z � k � 1Ž . Ž .i

0, k ˆkP � � S , 
 � 
 1 � P 
 � 
Ž .Ž . ž /0 0 S S S S S1 0 1 1 0�
0, k ˆ ˇk � 1 P � � S , 
 � 
 P 
 � 
 1 � P 
 � 
Ž . Ž . Ž .Ž . ž /0 0 S S S S S S S S1 0 1 1 0 1 1 0

ˆ1 � P 
 � 
Ž .S S S1 1 0 �� � 1 � k � Z ,
ˆ ˇ2 P 
 � 
 1 � P 
 � 
Ž . Ž .ž /S S S S S S1 1 0 1 1 0

Ž .where the last inequality is equivalent to condition 3.7 . Furthermore, it can
1�1Ž . � �be shown by elementary calculations that 3 � 2 x � x for x � 0, and2

1�1Ž . Ž .that 3 � 2 x � x for x � , 1 , so the second part of the theorem follows.2
Ž .Finally, if P 
 � 
 is constant on S , thenŽ�. S S 11 0

k	� kP Z � kŽ .k i��k � 1 	 k � 1 P Z � k � 1Ž . Ž . Ž .k�1 i

k
�� � 1 � k � Z ,

k � 1 P 
 � 
Ž . Ž .S S S1 1 0

1Ž .if and only if P 
 � 
 � . �S S S 21 1 0

� � �4THEOREM 3.2. Let 	 ; k � Z be as in Definition 3.2. Then,k

	� � 2	� � n� S 1 � 4P 
 � 
 .Ž . Ž .Ž .1 2 1 S S S1 1 0

Ž .Also, if P 
 � 
 is constant on S , then,Ž�. S S 11 0

2� �	 � 2	 � n� S P 
 � 
 1 � 2 P 
 � 
 .Ž . Ž . Ž .Ž .1 2 1 S S S S S S1 0 1 1 1 0

PROOF. For the first result,

	� � 2	� � n P Z � 1 � 2 P Z � 2Ž . Ž .Ž .1 2 0 0

� n P Z � 0 � P Z � 1 � 2 P Z � 2Ž . Ž . Ž .Ž .0 0 0

� n P Z � 0 � 3P Z � 1Ž . Ž .Ž .0 0

� n � S P 
 � 
 � 3� S P 
 � 
Ž . Ž . Ž . Ž .Ž .1 S S S 1 S S S1 0 1 1 1 0

� n� S 1 � 4P 
 � 
 ,Ž . Ž .Ž .1 S S S1 1 0
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where we used that, according to Lemma 3.1,

P Z � 1 � P � � S , 
 0, 2 � 
 � P � � S , 
 � 
 � 
 0, 2Ž . Ž . Ž .0 0 0 S S 0 1 S S S1 0 1 0 1

� � S P 
 � 
 .Ž . Ž .1 S S S1 1 0

The second result is immediate from Remark 3.1. �

4. Total variation distance error bounds. In the first theorem of this
Ž Ž n .section we give a total variation distance bound for d LL Ý Z ,TV i�1 i

Ž .. � 4CP 	 , 	 , . . . , where Z ; i � 1, . . . , n are arbitrarily but identically dis-1 2 i
Ž .tributed nonnegative integer valued random variables, and 	 � nP Z � kk 1

� Ž .for each k � Z . Remember that a pair of random variables X, Y defined on
the same probability space is called a coupling of two probability distributions

Ž . Ž .� and � , if LL X � � and LL Y � � .1 2 1 2

� 4THEOREM 4.1. Let Z ; i � 1, . . . , n be identically distributed nonnegativei
Ž . Ž .integer valued random variables, such that E Z � �. Let 	 � nP Z � k1 k 1

� � 4 � Ž .for each k � Z . Let, for each j � 1, . . . , n and k � Z such that P Z � k1
j, k ˜j, k�Ž . 4 Ž� 0, the random variables Z , Z ; i � 1, . . . , n be a coupling of LL Z ;i i i

. Ž � .i � 1, . . . , n and LL Z ; i � 1, . . . , n Z � k , such thati j

LL Z j , k ; i � 1, . . . , n � LL Z ; i � 1, . . . , n ,Ž .Ž .i i

˜j , k �LL Z ; i � 1, . . . , n � LL Z ; i � 1, . . . , n Z � k .Ž .Ž .i i j

Then,
n

d LL Z , CP 	 , 	 , . . .Ž .ÝTV i 1 2ž /ž /
i�1

n � n nH 	 , 	 , . . .Ž .1 1 2 j , k j , k˜� k	 E Z � Z .Ý Ý Ý Ýk i in � 0j�1 k�1 i�1 i�1
i	j

Ž . Ž . nPROOF. Let W � CP 	 , 	 , . . . . From 3.4 and the fact that Ý k	 �1 2 k�1 k
Ž .nE Z � �, we get1

n

d LL Z , CP 	 , 	 , . . .Ž .ÝTV i 1 2ž /ž /
i�1

n

� sup P Z � A � P W � AŽ .Ý iž /A�N i�1

n n � n

� sup E Z f Z � k	 f Z � kÝ Ý Ý Ýj A i k A iž / ž /ž /A�N j�1 i�1 k�1 i�1

n n � n

� sup E Z f Z � k	 E f Z � k .Ý Ý Ý Ýj A i k A iž / ž /ž / ž /A�N j�1 i�1 k�1 i�1
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� �4The definition of 	 ; k � Z implies thatk

n � n

E Z f Z � E Z f Z Z � k P Z � kŽ .Ý Ý Ýj A i j A i j jž / ž /ž / ž /
i�1 k�1 i�1

� n1
� 4� k	 E f Z Z � k � j � 1, . . . , n ,Ý Ýk A i jž /ž /n k�1 i�1

and this result together with the couplings gives
n n � n

sup E Z f Z � k	 E f Z � kÝ Ý Ý Ýj A i k A iž / ž /ž / ž /A�N j�1 i�1 k�1 i�1

n � n1
j , k˜� sup k	 E f Z � kÝ Ý Ýk A in ž /� 0A�N j�1 k�1 i�1

i	j

n � n1
j , k� k	 E f Z � kÝ Ý Ýk A iž /ž /n j�1 k�1 i�1

n � n n1
j , k j , k˜� sup k	 E f Z � k � f Z � k .Ý Ý Ý Ýk A i A iž /n ž /A�N � 0j�1 k�1 i�1 i�1

i	j

Finally, from Proposition 3.2 we get that

n n
j , k j , k˜sup f Z � k � f Z � kÝ ÝA i A iž / ž /A�N i�1 i�1

i	j

n n
j , k j , k˜� H 	 , 	 , . . . Z � Z ,Ž . Ý Ý1 1 2 i i

i�1 i�1
i	j

which completes the proof. �

We now return to the situation considered in Section 3, where � is a
stationary Harris recurrent Markov chain, S � FF and S � FF are such that0 1
Ž . Ž . � 4� S � 0, � S � 0 and S � S � �, and the variables Z ; t � Z are0 1 0 1 t

defined as
� 4 t�1Z � I � � S N � t � Z.t t 0 S , S1 0

� 4 � Ž .Let, from now on, for each j � 1, . . . , n and k � Z such that P Z � k � 0,0
�Ž j, k j, k . 4 Ž .the random sequence � , � ; t � Z be a coupling of LL � ; t � Z and˜t t t

Ž � .LL � ; t � Z Z � k , such thatt j

j , k j , k �LL � ; t � Z � LL � ; t � Z , LL � ; t � Z � LL � ; t � Z Z � k .Ž . ˜Ž . Ž . Ž .t t t t j



COMPOUND POISSON APPROXIMATION FOR MARKOV CHAINS 581

j, k ˜j, k� 4 � 4Also, define the random variables Z ; t � Z and Z ; t � Z byt t

Z j , k � I � j , k � S N t�1 � j , k � t � Z ;� 4 Ž .t t 0 S , S1 0

˜j , k j , k t�1 j , kZ � I � � S N � � t � Z.� 4 Ž .˜ ˜t t 0 S , S1 0

THEOREM 4.2. Let � be a stationary Harris recurrent Markov chain. Let
Ž . Ž .S � FF and S � FF be such that � S � 0, � S � 0 and S � S � � and0 1 0 1 0 1

Ž � � . � 4let CP 	 , 	 , . . . be as in Definition 3.2. Let, for each j � 1, . . . , n and1 2
� Ž . Ž j, k j, k .k � Z such that P Z � k � 0, the random sequence � , � be such a˜0

Ž . Ž � .coupling of LL � ; i � Z and LL � ; i � Z Z � k as described in the preced-i i j
ing paragraph. Then,

d LL � , CP 	� , 	� , . . .Ž . Ž .Ž .TV n 1 2

� � n � n nH 	 , 	 , . . .Ž .1 1 2 � j , k j , k˜� k	 E Z � ZÝ Ý Ý Ýk i in � 0j�1 k�1 i�1 i�1
i	j

4.1Ž .

� 2 P 
 � 
 .Ž .S S1 0

PROOF. The triangle inequality implies

d LL � , CP 	� , 	� , . . .Ž . Ž .Ž .TV n 1 2

� d LL � , LL W � d LL W , CP 	� , 	� , . . . ,Ž . Ž . Ž . Ž .Ž . Ž .TV n n TV n 1 2

where W � Ýn Z . As noted in the previous section, the first term can ben i�1 i
bounded using the basic coupling inequality

d LL � , LL W � P � 	 W � 2 P 
 � 
 .Ž . Ž . Ž . Ž .Ž .TV n n n n S S1 0

Ž .For the second term, Theorem 4.1 can be applied, since it follows from 2.5
Ž . Ž .that E Z � � S � �. �1 1

How should the couplings and the set S be chosen in order to make the0
Ž .bound 4.1 small and	or easily computed? The answer depends on the

special structure of the particular Markov chain considered. In Erhardsson
Ž .1998b an example of a ‘‘tailor-made’’ set of couplings is given for a Markov
chain � which is a function of an underlying i.i.d. sequence. Below, we derive

�a rather simple theorem, valid if S is an atom for the Markov chain � by0
Ž .which we mean, as in Section 2, that p �, B is constant on S for each0

�B � FF .
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THEOREM 4.3. Let � be a stationary Harris recurrent Markov chain. Let
Ž . Ž .S � FF and S � FF, where S is an atom, be such that � S � 0, � S � 00 1 0 0 1

Ž � � .and S � S � �, and let CP 	 , 	 , . . . be as in Definition 3.2. Then,0 1 1 2

d LL � , CP 	� , 	� , . . .Ž . Ž .Ž .TV n 1 2

E 
Ž .S0� �� 2 H 	 , 	 , . . . E 
 Z � � SŽ . Ž .Ž .1 1 2 S 0 10ž /� SŽ .0

� n� S � 2 P 
 � 
Ž . Ž .1 S S1 04.2Ž .
E 
Ž .S0� � R� 2 H 	 , 	 , . . . E 
 � E 
 � �Ž . Ž . Ž .Ž .1 1 2 S S S S1 0 1 0ž /� SŽ .0

2
� n� S � 2 P 
 � 
 .Ž . Ž .1 S S1 0

�Ž j, k j, k .PROOF. We use Theorem 4.2 together with certain couplings � , � ;˜i i
4i � Z , which are constructed as follows. First, if S is not a singleton, then0

Ž .replace it by a singleton without loss of generality, since S � S � � .0 1
Ž .Extend the probability space �, GG, P so that it contains, apart from the

� k � Ž .Markov chain �, a collection of random sequences � ; k � Z , P Z � k �˜ 0
40 , which are independent of each other and independent of �, and satisfy
Ž k . Ž � . � Ž .LL � � LL � Z � k . Next, define, for each k � Z such that P Z � k � 0,˜ 0 0

the random sequence � k by

R�� , �
 � � t � 
 ;Ž .t S S0 0

k Rk � R� , t � �
 � ;Ž .˜t�
 Ž� . S� � S 0t 0

k� k� , t � 
 .˜t�
 �
 Ž� . S˜S S 00 0

� Ž . Ž k . Ž .For each k � Z such that P Z � k � 0, it holds that LL � � LL � , since,0
�for each a � Z and b � Z such that a � 0 � b, and each A � FF; t �t

4a, . . . , b ,
b � � b

k k RP � � A � P � � A , 
 � � i , 
 � j� 4 � 4 Ž .� Ý Ý �t t t t S S0 0ž / ž /
t�a i�0 j�0 t�a

j� �
R� 4� P � � A , 
 � � i , 
 � jŽ .Ý Ý � t t S S0 0ž /

i�0 j�0 t��i

b�j�1
k k

k�P � � A , � � A� 4˜ ˜� � ½ 5t t�i 
 Ž� .�t t�j˜S0ž /
t�a�i t�1

j� �
R� 4� P � � A , 
 � � i , 
 � jŽ .Ý Ý � t t S S0 0ž /

i�0 j�0 t��i

�1

�� 4�P � � A � � S� t t�i 0 0ž /
t�a�i
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b�j

�P � � A� 4�S t t�j0 ž /
t�1

� � b
R� 4� P � � A , 
 � � i , 
 � jŽ .Ý Ý � t t S S0 0ž /

i�0 j�0 t�a

b

� 4� P � � A .� t tž /
t�a

k Ž k .Similarly, it can be shown that � is independent of 
 � . We introduce the˜S0

obvious notation

Zk � I � k � S N t�1 � k � t � Z ;� 4 Ž .t t 0 S , S1 0

˜k k t�1 kZ � I � � S N � � t � Z� 4 Ž .˜ ˜t t 0 S , S1 0

and we finally define

� j , k � � k � t � Z ;t t�j

� j , k � � k � t � Z.˜ ˜t t�j

The definition of the couplings is thus complete. We now evaluate the first
Ž .term on the right-hand side of 4.1 , using these couplings:

� � n � n nH 	 , 	 , . . .Ž .1 1 2 � j , k j , k˜k	 E Z � ZÝ Ý Ý Ýk i in � 0j�1 k�1 i�1 i�1
i	j

� � n � n nH 	 , 	 , . . .Ž .1 1 2 � k k˜� k	 E Z � ZÝ Ý Ý Ýk i�j i�jn � 0j�1 k�1 i�1 i�1
i	j

RŽ Ž . .
 �1 1�j�
 � �1 
�1� � S Sn � 0 0H 	 , 	 , . . .Ž .1 1 2 � k k˜� k	 E Z � ZÝ Ý Ý Ýk i in � Rj�1 k�1 i�1�jŽ .i��
 �S0

n�j n�j
k k˜� Z � ZÝ Ýi i 0kŽ . Ž .i� n�j�
 �1 �1 i�n�j�
 � �1S S0 0

� � n �H 	 , 	 , . . .Ž .1 1 2 � j , k j , k j , k j , k� k	 TT � TT � TT � TT .Ž .Ý Ý k 1 2 3 4n j�1 k�1

We will calculate the terms in this expression one by one. For the first term,

 �1 
 �1S S0 0

j , k k � 4TT � E Z � E I � � SÝ Ý1 i i 1� 0 � 0R RŽ . Ž .i��
 � i��
 �S S0 0

R � 4� E N � � N � I � � SŽ .Ž .S , S S , S 0 11 0 1 0

� 4 1� E I � � S 
 � 1 N � E 
 Z ,Ž . Ž .Ž .0 0 S S , S S 00 1 0 0
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Ž .where we used 2.6 in the last equality. This result and Definition 3.2 imply
that

n �1
� j , kk	 TT � nE Z E 
 Z � n� S E 
 Z .Ž . Ž .Ž . Ž .Ý Ý k 1 0 S 0 1 S 00 0n j�1 k�1

k RŽ .For the second term, we use the fact that � is independent of 
 � ,˜ S0

RŽ Ž . .1�j�
 � �1 
�1 Ž .1�j�r�1 
�1S �0

j , k k k R˜ ˜TT � E Z � E Z P 
 � � rŽ .Ý Ý Ý Ž .2 i i S0ž /ž /i�1�j r�1 i�1�j

Ž .1�j�r�1 
�1�
R�� E Z Z � k P 
 � � r ,Ž . Ž .Ý Ý Ž .i 0 S0

r�1 i�1�j

which implies that
Ž .1�j�r�1 
�1� � �

� �j , k R�k	 TT � k	 E Z Z � k P 
 � � rŽ . Ž .Ý Ý Ý Ý Ž .k 2 k i 0 S0
k�1 k�1 r�1 i�1�j

Ž .1�j�r�1 
�1� �
� R�� k	 E Z Z � k P 
 � � r .Ž . Ž .Ý Ý Ý Ž .k i 0 S0

r�1 i�1�j k�1

Since also
Ž .1�j�r�1 
�1 �

� �k	 E Z Z � kŽ .Ý Ý k i 0
i�1�j k�1

Ž .1�j�r�1 
�1

� nE Z ZŽ .Ý 0 i
i�1�j

Ž .1�j�r�1 
�1 �i
i , 1� nE Z Z I 
 � l� 4Ý Ý ž /0 i S0

i�1�j l�1

Ž .1�j�r�1 
�1 �i
i , 1� nE Z I 
 � l E ZŽ .� 4Ý Ý ž /i S S �Ž i�l .0 0

i�1�j l�1

Ž .1�j�r�1 
�1 �i � 4E I � � S ZŽ .0 0 �Ž i�l .i , 1� nE Z I 
 � l� 4Ý Ý ž /i S0 � SŽ .0i�1�j l�1

2Ž .1�j�r�1 
�1 E Z � SŽ .Ž .�Ž i�l . 1� nE Z � nr ,Ž .Ý i � S � SŽ . Ž .0 0i�1�j

we get
2n �1 � SŽ .1� j , k Rk	 TT � n E 
 � .Ž .Ý Ý Ž .k 2 S0n � SŽ .0j�1 k�1
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kFor the third term we use the fact that � is independent of 
 ,˜ S0

n�j n�j�
j , k k k˜ ˜TT � E Z � E Z P 
 � rŽ .Ý Ý Ý3 i i S0ž /ž / r�1 Ž .Ž . i� n�j�r�1 �1i� n�j�
 �1 �1S0

n�j�

�� E Z Z � k P 
 � rŽ . Ž .Ý Ý i 0 S0
r�1 Ž .i� n�j�r�1 �1

� Ž .�and calculations similar to those for the second term see Erhardsson 1997
give

2n �1 � SŽ .1� j , kk	 TT � n E 
 .Ž .Ý Ý k 3 S0n � SŽ .0j�1 k�1

k Ž k .Finally, for the fourth term we use the fact that � is independent of 
 � ,˜S0

n�j n�j�
j , k k k kTT � E Z � E Z P 
 � � rŽ .˜Ý Ý Ý Ž .4 i i S0ž /ž /k r�k�1 i�n�j�r�1Ž .i�n�j�
 � �1˜S0

n�j�

�� E Z P 
 � r Z � kŽ . Ž .Ý Ý i S 00
r�k�1 i�n�j�r�1

�

� �� � S rP 
 � r Z � k � � S E 
 Z � k ,Ž . Ž .Ž . Ž .Ý1 S 0 1 S 00 0
r�k�1

implying that
n � n �1 1

� �j , k �k	 TT � k	 � S E 
 Z � kŽ . Ž .Ý Ý Ý Ýk 4 k 1 S 00n nj�1 k�1 j�1 k�1

�
� �� � S k	 E 
 Z � k � n� S E 
 Z .Ž . Ž . Ž .Ž .Ý1 k S 0 1 S 00 0

k�1

RŽ Ž .. Ž .All that now remains is to show that E 
 � � E 
 , and thatS S0 0

E 
 Z � � S E 
 � E 
 � R .Ž . Ž . Ž .Ž . Ž .ž /S 0 1 S S S S0 1 0 1 0

The first of these assertions holds since
� �

R RE 
 � � P 
 � � i � P 
 � i � E 
 ;Ž . Ž . Ž . Ž .Ý ÝŽ . Ž .S S S S0 0 0 0
i�0 i�0

Ž .the second assertion follows from 2.6 , since

 �1S0

Ri , 1� 4 � 4E 
 Z � E I � � S 
 � 
 
 �� I � � S . �Ž .Ž . Ž .Ý ž /S 0 0 0 S S i i 10 0 0ž /i�0

Ž . Ž .We note that when S is an atom, the quantity E 
 Z in 4.2 can be1 S 00

written in a different form, which is sometimes more tractable.
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THEOREM 4.4. Let � be a stationary Harris recurrent Markov chain, and
Ž . Ž .let S � FF and S � FF be such that � S � 0, � S � 0 and S � S � �.0 1 0 1 0 1

Ž . Ž � 4. Ž � 4.Assume also that P 
 � 
 , E 
 I 
 � 
 and E 
 I 
 � 
Ž�. S S Ž�. S S S Ž�. S S S1 0 1 1 0 0 0 1

are constant on S . Then,1

� 4E 
 I � � S , 
 � 
 � 2� S E 
 I 
 � 
� 4 Ž . Ž .Ž .S 0 0 S S 1 S S S S1 1 0 1 1 1 0E 
 Z �Ž .S 00 P 
 � 
Ž .S S S1 0 1

� 4� S E 
 I 
 � 
Ž . Ž .1 S S S S1 0 0 1� .
P 
 � 
Ž .S S S1 0 1

PROOF. The strong Markov property gives

� 4E 
 I Z � kŽ .S 00

k
0, i 0, i�1 0, k� E 
 � 
 � 
 � 
 � 
Ý Ž . Ž .S S S S S1 1 1 0 1ž /ž

i�2

k
0, i 0, k�1� 4�I � � S I 
 � 
 I 
 � 
� 4 � 4Ł0 0 S S S S1 0 1 0 /i�1

k�1� E 
 I � � S , 
 � 
 P 
 � 
 P 
 � 
� 4 Ž . Ž .Ž .S 0 0 S S S S S S S S1 1 0 1 1 0 1 0 1

� k � 1 P � � S , 
 � 
Ž . Ž .0 0 S S1 0

k�2� 4�E 
 I 
 � 
 P 
 � 
 P 
 � 
Ž . Ž .Ž .S S S S S S S S S S1 1 1 0 1 1 0 1 0 1

k�1 � 4�P � � S , 
 � 
 P 
 � 
 E 
 I 
 � 
 ,Ž .Ž . Ž .0 0 S S S S S S S S S1 0 1 1 0 1 0 0 1

k � Z�.
From this we get, using also Lemma 3.1,

�

� 4E 
 Z � kE 
 I Z � kŽ . Ž .ÝS 0 S 00 0
k�1

� 4E 
 I � � S , 
 � 
 � 2� S E 
 I 
 � 
� 4 Ž . Ž .Ž .S 0 0 S S 1 S S S S1 1 0 1 1 1 0�
P 
 � 
Ž .S S S1 0 1

� 4� S E 
 I 
 � 
Ž . Ž .1 S S S S1 0 0 1� . �
P 
 � 
Ž .S S S1 0 1

REMARK 4.1. As explained in Section 2, any Harris recurrent Markov
Ž .chain which satisfies the minorization condition 2.4 with m � 1 can be

embedded in another Harris recurrent Markov chain, which has an atom;
therefore, this case is covered by Theorem 4.3. Moreover, a Markov chain �

Ž .which satisfies 2.4 with m � 1 can be embedded in another Markov chain
Ž .which is wide sense regenerative with 1-dependent cycles see Section 2 . It is

not too difficult to see how the couplings in the proof of Theorem 4.3 could be
generalized to handle such a process, at the price of added complexity in the
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bound. Indeed, it should be possible to generalize Theorem 4.3 to handle any
Ž .stationary weak sense regenerative not necessarily Markovian random

Ž .sequence with d-dependent cycles d � N .

REMARK 4.2. Assume that a scaling of the Markov chain � is chosen such
Ž .that lim inf � S � 0, andn�� 0

0 � lim inf n� S � lim sup n� S � �.Ž . Ž .1 1
n�� n��

Using the fact that
�

P 
 � 
 � P 
 � 
 � P � � S , 
 � iŽ . Ž .Ž . ÝS S S S i 1 S1 0 1 0 0
i�0

�
R R R� P � � S , 
 � � i � � S E 
 � ,Ž .Ž . Ž .Ý Ž . Ž .0 1 S 1 S S0 1 0

i�0

we get from Theorem 4.3 and Proposition 3.2 that, for some explicit constant
C � � and n large enough,

� � Rd LL � , CP 	 , 	 , . . . � C E 
 � E 
 � � E 
 � S ,Ž . Ž . Ž . Ž .Ž . Ž . Ž .Ž .ž /TV n 1 2 S S S S S 11 0 1 0 0

� � �4and C can be chosen particularly small if also k	 ; k � Z is monotonek
Ž .decreasing towards 0. On the other hand, if it holds that lim inf � Sn�� 0

� � �4� 0, that k	 ; k � Z is monotone decreasing towards 0 and thatk
1 1 1Ž . Žlim sup P 
 � 
 � if S is an atom, then can be replaced by inn�� S S S 14 4 21 1 0

. Ž .the last condition , and if also lim n� S � �, then we get, using Propo-n�� 1
sition 3.2 and Theorem 3.2, for some explicit constant C � � and n large
enough,

d LL � , CP 	� , 	� , . . .Ž . Ž .Ž .TV n 1 2

R� C log n� S E 
 � E 
 � � E 
 � S .Ž . Ž . Ž .Ž . Ž . Ž .Ž .ž /1 S S S S S 11 0 1 0 0

In the latter situation it is natural to look for an approximating normal
Ž . Ž .distribution for LL � and an error bound . This will be given in Theo-n

rem 6.2.

5. Hitting probabilities and expected hitting times. We now con-
sider the question of how to calculate explicitly the parameters in the
approximating compound Poisson distribution of Definition 3.2 and the quan-
tities appearing in the total variation distance upper bound of Theorem 4.3.
For this, we may use the following well-known results, which we give here as
propositions. Variations of Proposition 5.1 can be found in many places in the

Ž .literature; see, for example, Proposition 1.8 in Chapter 2 of Revuz 1984 .
Proposition 5.2 follows from Proposition 5.1 and the Markov property.

PROPOSITION 5.1. Let p be the transition probability of a Markov chain �,
Ž .and let S � FF be such that P 
 � � � 1. Then, for any two measurable† Ž�. S†
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functions f : Sc � R and f : S � R, there exists at most one bounded measur-† † †
able function h: S � R satisfying the following conditions:

� ch y p x , dy � f x , x � S ;Ž . Ž . Ž .H †� Sh x �Ž . �f x , x � S .Ž .† †

Ž If f � 0, h is called p-harmonic outside S ; otherwise h is said to satisfy†
.Poisson’s equation with charge f outside S .†

PROPOSITION 5.2. Let � be a stationary Harris recurrent Markov chain
Ž .with transition probability p. Let A � FF and B � FF be such that � A � 0,

Ž .� B � 0 and A � B � �. Then:

Ž . Ž . � �i The function P 
 � 
 : S � 0, 1 is the unique bounded measur-Ž�. B A
able function on S which satisfies

� c
P 
 � 
 p x , dy , x � A 
 B ,Ž . Ž .Ž .H y B A�P 
 � 
 � SŽ .x B A �I x , x � A 
 B.Ž .B

Ž . Ž . Ž NB , A. � �ii For each fixed s � 0, 1 , the function E s : S � 0, 1 is theŽ�.
unique bounded measurable function on S which satisfies

� cNB , AE s p x , dy , x � A 
 B ,Ž . Ž . Ž .H y
S

N �B , AE s �Ž .x NB , As E s p x , dy , x � B ,Ž . Ž .H y
S�

1, x � A.

Ž . Ž . � .iii The function E 
 : S � 0, � satisfiesŽ�. A

� cE 
 p x , dy � 1, x � A ,Ž .Ž .H y A�E 
 �Ž . Sx A �
0, x � A.

Ž .Moreover, if E 
 is bounded, then it is the unique bounded measurableŽ�. A
function which satisfies this equation.

Using Proposition 5.2, provided that the corresponding Poisson’s equations
can be solved, we can calculate explicitly the quantities appearing in the total
variation distance error bound of Theorem 4.3 and the generating function for
Ž .LL Z . When the state space S is finite, these equations reduce to systems of0

� c �linear equations of dimensions at most S . In Section 7 we give some0
numerical examples of the latter case.

6. Poisson, normal and exponential approximation. In some situa-
tions, it might be of interest to consider other approximating distributions for
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Ž . Ž � � .LL � than the compound Poisson distribution CP 	 , 	 , . . . . A simplen 1 2
Ž Ž ..choice is the Po n� S distribution, or some compound Poisson distribu-1

tion with easily calculated parameters. To find an upper bound for
Ž Ž . Ž Ž ...d LL � , Po n� S , one can use some variation on the Stein�ChenTV n 1

method for Poisson approximation; see the introduction and the references
given there. However, the next theorem tells us that if a bound for

Ž Ž . Ž � � ..d LL � , CP 	 , 	 , . . . can be explicitly calculated, then we can also findTV n 1 2
Ž Ž . Ž .. Ž .upper and lower bounds for d LL � , CP 	 , 	 , . . . , where CP 	 , 	 , . . .TV n 1 2 1 2

�is an arbitrary compound Poisson distribution. For another upper bound,
Ž . �derived in a different way, see Lemma 2.4.2 in Roos 1993 .

THEOREM 6.1. Let � be a stationary Harris recurrent Markov chain. Let
Ž . Ž .S � FF and S � FF be such that � S � 0, � S � 0, and S � S � �, and0 1 0 1 0 1

Ž .let CP 	 , 	 , . . . be any compound Poisson distribution. Then,1 2

� �exp �n� S P 
 � 
 � exp �	 � d LL � , CP 	 , 	 , . . .Ž . Ž . Ž . Ž . Ž .Ž .Ž .1 S S S TV n 1 21 0 1

� d LL � , CP 	 , 	 , . . .Ž . Ž .Ž .TV n 1 2

�
� � �� �� 1 � exp � 	 � 	 � d LL � , CP 	 , 	 , . . . .Ž . Ž .Ž .Ý k k TV n 1 2ž /

k�1

In particular,

n� S P 
 � 
 exp �n� S � d LL � , CP 	� , 	� , . . .Ž . Ž . Ž . Ž . Ž .Ž . Ž .1 S S S 1 TV n 1 21 1 0

� d LL � , Po n� SŽ . Ž .Ž .Ž .TV n 1

� 3n� S P 
 � 
 � d LL � , CP 	� , 	� , . . . .Ž . Ž . Ž . Ž .Ž .1 S S S TV n 1 21 1 0

PROOF. The triangle inequality gives

d CP 	� , 	� , . . . , CP 	 , 	 , . . . � d LL � , CP 	� , 	� , . . .Ž . Ž . Ž . Ž .Ž . Ž .TV 1 2 1 2 TV n 1 2

� d LL � , CP 	 , 	 , . . .Ž . Ž .Ž .TV n 1 2

� d CP 	� , 	� , . . . , CP 	 , 	 , . . . � d LL � , CP 	� , 	� , . . . .Ž . Ž . Ž . Ž .Ž . Ž .TV 1 2 1 2 TV n 1 2

Ž Ž �We want to find an upper and a lower bound for d CP 	 ,TV 1
� . Ž ..	 , . . . , CP 	 , 	 , . . . . For the upper bound, let independent random vari-2 1 2

� �4 � 
 �4ables N ; k � Z and N ; k � Z be defined on the same probabilityk k
Ž � . 
 Ž � � �.space, with distributions N � Po 	 
 	 and N � Po 	 � 	 for eachk k k k k k

� � � � �4k � Z . Define also the index set � � Z by � � k � Z ; 	 � 	 . Accord-k k
ing to Definition 3.1, it holds that

�



LL kN � kN � CP 	 , 	 , . . . ,Ž .Ý Ýk k 1 2ž /
k�1 k��

�

 � �

LL kN � kN � CP 	 , 	 , . . . .Ž .Ý Ýk k 1 2ž /ck�1 k��
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Using these identities and the basic coupling inequality we get

d CP 	� , 	� , . . . , CP 	 , 	 , . . .Ž . Ž .Ž .TV 1 2 1 2

� �

 
� P kN � kN 	 kN � kNÝ Ý Ý Ýk k k kž /ck�1 k�� k�1 k��

� � �

 
 �� �� P kN � 0 � P N � 0 � 1 � exp � 	 � 	 .Ý Ý Ýk k k kž / ž / ž /

k�1 k�1 k�1

Ž � � .For the lower bound, assuming that W � CP 	 , 	 , . . . and W �1 1 2 2
Ž .CP 	 , 	 , . . . , we get, from the definition of total variation distance,1 2

d CP 	� , 	� , . . . , CP 	 , 	 , . . .Ž . Ž .Ž .TV 1 2 1 2

� �� sup P W � A � P W � AŽ . Ž .1 2
A�N

� �� P W � 0 � P W � 0Ž . Ž .1 2

� �� exp �n� S P 
 � 
 � exp �	 .Ž . Ž . Ž .Ž .1 S S S1 0 1

Ž .The second part of the theorem follows from the fact that if 	 � 	 � n� S1 1
and 	 � 0 for k � 2, 3, 4, . . . , then,k

�
�� �1 � exp � 	 � 	Ý k kž /

k�1

� 1 � exp �n � S � P Z � 1 � P Z � 1Ž . Ž . Ž .Ž .Ž .1 0 0

� 1 � exp �n � S � P Z � 0 � 2 P Z � 1Ž . Ž . Ž .Ž .Ž .1 0 0

� 1 � exp �n � S P 
 � 
 � 2 P Z � 1Ž . Ž . Ž .Ž .ž /1 S S S 01 1 0

� 1 � exp �3n� S P 
 � 
 ,Ž . Ž .Ž .1 S S S1 1 0

where we used that, according to Lemma 3.1,

P Z � 1 � P � � S , 
 0, 2 � 
 � P � � S , 
 � 
 � 
 0, 2Ž . Ž . Ž .0 0 0 S S 0 1 S S S1 0 1 0 1

� � S P 
 � 
 ,Ž . Ž .1 S S S1 1 0

and from the mean value theorem. �

REMARK 6.1. Assume that a scaling of the Markov chain � is chosen such
that

0 � a � lim inf n� S � a � lim sup n� S � �.Ž . Ž .0 1 1 1
n�� n��

According to Theorem 6.1, if

d LL � , CP 	� , 	� , . . .Ž . Ž .Ž .TV n 1 2
6.1 lim sup � a exp �a ,Ž . Ž .0 1P 
 � 
Ž .n�� S S S1 1 0

then, for some explicit constants 0 � C � C� � � and n large enough,

CP 
 � 
 � d LL � , Po n� S � C�P 
 � 
 .Ž . Ž . Ž . Ž .Ž .Ž .S S S TV n 1 S S S1 1 0 1 1 0
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This result quantifies the essential drawback of the first-order Poisson ap-
Ž .proximation for LL � : the approximation error is too large if the visits to Sn 1

Ž .have a strong tendency to occur in clumps. The quantity P 
 � 
 is aS S S1 1 0

natural measure of this tendency.

REMARK 6.2. Let � be a stationary random sequence on the state space
Ž Ž ..R, BB R , with one-dimensional distribution �. Assume that for each 
 � 0

� �4 Ž .there exists a sequence u ; n � Z such that lim n� S � 
 , wheren n�� 1
� 4S � x � R; x � u . In classical extreme value theory, such a random1 n

� �sequence is said to have extremal index � � 0, 1 if

� 4lim P max � ; i � 1, . . . , n � SŽ .i 1
n��

� lim P � � 0 � exp ��
 � 
 � 0;Ž . Ž .n
n��

6.2Ž .

Ž .see Section 2.2 in Leadbetter and Rootzen 1988 . If � has extremal index´
� � 1 and satisfies a certain mixing condition, then

6.3 lim d LL � , Po 
 � 0 � 
 � 0.Ž . Ž . Ž .Ž .TV n
n��

Assume that � is a stationary Harris recurrent Markov chain which has an
Ž . Ž .atom S such that � S � 0 and S � S � �. In this case 6.2 holds if and0 0 0 1

only if

6.4 lim P 
 � 
 � � � 
 � 0;Ž . Ž .S S S1 0 1n��

Ž . Ž .see Section 2.6 in Leadbetter and Rootzen 1988 . If 6.4 holds with � � 1 and´
if

� � � �d LL � , CP 	 , 	 , . . . � n� S � 
Ž . Ž . Ž .Ž .TV n 1 2 1
lim sup

P 
 � 
Ž .n�� S S S1 1 0

� 
 exp �
 � 
 � 0,Ž .

Ž . Ž .then 6.3 holds with the same rate of convergence as in 6.4 . This follows
from the same argument as in Remark 6.1.

We next consider the case when the approximating compound Poisson
Ž � � . Ž . Ž .distribution CP 	 , 	 , . . . is such that 	* � n� S P 
 � 
 is large. It1 2 1 S S S1 0 1

Ž � � .is then reasonable to expect CP 	 , 	 , . . . to be close to a normal distribu-1 2
tion. To quantify this assertion, we define m for each r � Z� as the r thr

Ž � � .moment of the compounding distribution of CP 	 , 	 , . . . ; that is,1 2

� �	kr r ��m � E Z Z � 0 � k � r � Z .Ž . Ýr 0 0 	*k�1
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THEOREM 6.2. Let � be a stationary Harris recurrent Markov chain such
that m � �. Then, the following Berry�Esseen theorem holds:3

� � n� SŽ .n 1
sup P � x � � xŽ .ž /m 	m n� S'Ž . Ž .x�R 2 1 1

0.8m m1	2
3 1� �� d LL � , CP 	 , 	 , . . . � .Ž . Ž .Ž .TV n 1 2 3	2m n� S' Ž .2 1

Ž � � . Ž M .PROOF. Definitions 3.1 and 3.2 tell us that CP 	 , 	 , . . . � LL Ý T ,1 2 i�1 i
� �4 Ž . Žwhere the variables T ; i � Z and M are independent, P T � k � P Zi i 0

� . � � � Ž .� k Z � 0 � 	 		* for each k � Z and each i � Z , and M � Po 	* . It0 k
holds that

M �
�E T � m 	* � k	 � n� S ,Ž .Ý Ýi 1 k 1ž /

i�1 k�1

M m2
Var T � m 	* � n� S ,Ž .Ý i 2 1ž / m1i�1

and the triangle inequality gives

� � n� SŽ .n 1
sup P � x � � xŽ .ž /m 	m n� S'Ž . Ž .x�R 2 1 1

� d LL � , CP 	� , 	� , . . .Ž . Ž .Ž .TV n 1 2

MÝ T � n� SŽ .i�1 i 1� sup P � x � � x .Ž .ž /m 	m n� S'Ž . Ž .x�R 2 1 1

The second term on the right-hand side in this expression can be bounded
Ž .using Theorem 1 in Michel 1993 , which yields the desired result. �

Ž .In the easily derived last theorem of this section, we give error bounds for
Ž .two related kinds of approximations. First, if LL � can be approximated byn

Ž � � .CP 	 , 	 , . . . with good accuracy, then it is reasonable to expect the quan-1 2
tity 
 to be approximately exponentially distributed; see, for example,S1

Ž . ŽSection 5.1.5 in Kalashnikov 1994 . Secondly, in some situations e.g., in
.extreme value theory it is natural to define a strictly decreasing sequence of

� Žm. 4‘‘rare’’ sets S ; m � N and ask for an approximating distribution for1
Ž . � Žm. 4LL M , where M � max m � N; � � 0 .n n n
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THEOREM 6.3. Let � be a stationary Harris recurrent Markov chain. Let
Ž . Ž .S and S be such that � S � 0, � S � 0 and S � S � �. Then,0 1 0 1 0 1

P 
 � x � exp �x� S P 
 � 
Ž . Ž . Ž .Ž .S 1 S S S1 1 0 1

� d LL � , CP 	� , 	� , . . .Ž .Ž .Ž .TV � x � 1 2

� ��� S P 
 � 
 exp � x � S P 
 � 
 � x � 1, � .Ž . Ž . Ž . Ž . .Ž .1 S S S 1 S S S1 0 1 1 0 1

Also,

Ž� x ��1.
Ž� x ��1. Ž� x ��1.P M � x � exp �n� S P 
 � 
Ž . Ž .Ž .ž /n 1 S S S01 1

� �Ž� x ��1.� d LL � , CP 	 , 	 , . . . � x � 0, n .Ž . .Ž .Ž .TV n 1 2

PROOF. Use the triangle inequality, the mean value theorem and the
following facts:

� �� 4
 � x � 
 � x � � � 0 � x � 1, � ,� 4 .� 4S S � x �1 1

Ž� x ��1.� �� 4M � x � M � x � � � 0 � x � 0, n . �� 4 .� 4n n n

7. Numerical examples. In this section we calculate numerically the
parameter values of the approximating compound Poisson distribution

Ž � � . Ž Ž . Ž � � ..CP 	 , 	 , . . . , and the value of the bound for d LL � , CP 	 , 	 , . . .1 2 TV n 1 2
given in Theorem 4.3, for some examples where � is an irreducible Markov
chain on a finite state space S. From Section 2, we know that � is then Harris
recurrent and that any singleton in S is a regeneration set. In the examples

� 4that we consider, we take S � 1, 2, . . . , 8 . We define a transition matrix q on
S by

0.334 0.215 0.173 0.119 0.065 0.086 0.003 0.005� �
0.289 0.133 0.211 0.133 0.067 0.156 0.007 0.004
0.356 0.184 0.075 0.043 0.151 0.183 0.002 0.006
0.41 0.162 0.108 0.075 0.14 0.097 0.005 0.003q � ,
0.316 0.239 0.044 0.218 0.076 0.098 0.004 0.005
0.44 0.176 0.044 0.242 0.088 0 0.005 0.005
0.18 0.06 0.19 0.09 0.13 0.1 0.13 0.12� �
0.2 0.16 0.07 0.1 0.14 0.1 0.09 0.14

and using q we define the transition matrix p of the Markov chain � in the
following way:

�1 � �q i , SŽ .1 c cq i , j , i � S , j � S ,Ž . 1 11 � q i , SŽ .1�p i , j �Ž . c�q i , j , i � S , j � S ,Ž . 1 1�q i , j , i � S , j � S,Ž . 1
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TABLE 1
Parameter values for the first example

� 1 0.5 0.25 0.1 0.01 0.001

�4 �5 �6Ž .� S 0.006140 0.003063 0.001529 6.113 � 10 6.110 � 10 6.109 � 101

 0.8386 0.8492 0.8546 0.8578 0.8598 0.8600

where 0 � � � 1, and S � S is a ‘‘rare’’ set. In the first example we take1
� 4 � 4S � 8 and S � 1 . In this case, from Remark 3.1, it follows that1 0

Ž � � . Ž .CP 	 , 	 , . . . is the Polya�Aeppli 	*, 
 distribution, with parameters 
 �´1 2
Ž . Ž . Ž .P 
 � 
 and 	* � n� S P 
 � 
 ; the compounding distribution isS S S 1 S S S1 0 1 1 0 1

geometric with mean 
�1. The values of these parameters can be explicitly
Ž .calculated simply by solving linear equation systems see Section 5 . Using

Maple to perform these calculations for some different values of � , we get the
values in Table 1.

Ž Ž . Ž � � ..As a bound for the total variation distance d LL � , CP 	 , 	 , . . . , weTV n 1 2
Ž .may use 4.2 in Theorem 4.3. All quantities appearing in this bound can be

Ž � c �calculated by solving linear equation systems with dimension at most S �0
1. Ž .7 . Also, Theorem 3.1 implies that, since P 
 � 
 � , we may use theS S S 21 1 0

Ž . Ž � � .good upper bound 3.3 for the ‘‘magic’’ factor H 	 , 	 , . . . . For the same1 1 2
values of � as previously considered and some typical values of n, we get the
values in Table 2.

In the second example, we consider the same Markov chain � as above. We
� 4now, however, define � � � 2� , and we take S � 7, 8 . In this case1

� � � .CP 	 , 	 , . . . is no longer a Polya�Aeppli distribution, but it still holds that´1 2
Ž . Ž . Ž .	* � n� S 
 � n� S P 
 � 
 and that the mean of the compounding1 1 S S S1 0 1

distribution is 
�1. Furthermore, the generating function g of the compound-
ing distribution is rational and can be computed as the solution of a linear
equation system. Calculating the parameters as before, for some different
values of � � � 2� , we get the values in Table 3.

Ž Ž . Ž � � ..As a bound for the total variation distance d LL � , CP 	 , 	 , . . . , weTV n 1 2
Ž .again use 4.2 in Theorem 4.3. Theorem 3.1 again implies that we may use

Ž . Ž � � . �the good upper bound 3.3 for the ‘‘magic’’ factor H 	 , 	 , . . . since condi-1 1 2

TABLE 2
Ž .Values of the bound 4.2 for the first example

�

1 0.5 0.25 0.1 0.01 0.001

�4 �510 0.04106 0.01831 0.008611 0.003315 3.238 � 10 3.231 � 10
2 �4 �510 0.1215 0.03816 0.01354 0.004101 3.317 � 10 3.238 � 10
3 �4 �5n 10 0.5982 0.2004 0.06171 0.01196 4.100 � 10 3.317 � 10
4 �510 1.279 0.5089 0.2013 0.05584 0.001194 4.100 � 10
5 �410 1.980 0.8361 0.3586 0.1164 0.005545 1.194 � 10
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TABLE 3
Parameter values for the second example

� � 1 0.5 0.25 0.1 0.01 0.001

�4 �5 �6Ž .� S 0.005796 0.002906 0.001455 5.826 � 10 5.829 � 10 5.830 � 101

 0.7534 0.7570 0.7588 0.7599 0.7606 0.7606

TABLE 4
Ž .Values of the bound 4.2 for the second example

� �

1 0.5 0.25 0.1 0.01 0.001

�4 �510 0.03616 0.01616 0.007598 0.002924 2.855 � 10 2.848 � 10
2 �4 �510 0.1079 0.03410 0.01208 0.003642 2.927 � 10 2.855 � 10
3 �4 �5n 10 0.6763 0.2075 0.05695 0.01082 3.645 � 10 2.927 � 10
4 �510 1.714 0.6829 0.2621 0.06649 0.001082 3.645 � 10
5 �410 2.810 1.214 0.5210 0.1657 0.006637 1.082 � 10

Ž . �tion 3.7 is satisfied . Computing this bound for the second example, for the
same values of � � as previously considered, and some typical values of n, we
get the values in Table 4.

We finally note that, using Maple, it is not difficult to show that if n is
Ž .chosen so that lim n� S � c � 0, then, in both of the examples above,� � 0 1

the total variation distance bound divided by � converges to a constant as
� � 0. For c values 0.1, 1 and 10, the values of this limiting constant are, in
the first example, 0.04655, 0.1748 and 0.6779, respectively; in the second
example, 0.08431, 0.3306 and 1.763, respectively.
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