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We consider the d-dimensional threshold voter model. It is known that,
except in the one-dimensional nearest-neighbor case, coexistence occurs
(nontrivial invariant measures exist). In fact, there is a nontrivial limit
η

1/2
∞ obtained by starting from the product measure with density 1/2. We

show that in these coexistent cases,

ηt ⇒ αδ0 + βδ1 + �1 − α− β�η1/2
∞ as t → ∞�

where α = P�τ0 < ∞�, β = P�τ1 < ∞�, τ0 and τ1 are the first hitting times
of the all-zero and all-one configurations, respectively, and ⇒ denotes weak
convergence.

1. Introduction. A continuous-time Markov process ηt on 	0�1
Zd
is

called a d-dimensional spin system if it evolves as follows: at rate c�x�η� the
value at site x ∈ Zd of the configuration η changes from η�x� to 1 − η�x�.
When c�·� η� ≡ 0 for η ≡ 0 and for η ≡ 1, the point masses on these two
configurations, δ0 and δ1, respectively, are invariant for the process. In this
case, if there are any nontrivial invariant measures, ones which are not a
linear combination of these two, we say that coexistence occurs, because there
is a limiting distribution which contains zeros and ones together. When coex-
istence occurs, it is natural to ask what the nontrivial, invariant distributions
are and to try to determine the limiting behavior of the process.

The threshold voter model is a d-dimensional spin system that was intro-
duced by Cox and Durrett and has become the subject of much recent study.
The transition rates are given by

c�x�η� =
{

1� if there is a y with �x− y� ≤ M and η�x� �= η�y��
0� otherwise�

(We can use any norm such that inf	�x�� x ∈ Zd� x �= 0
 = 1; M is a positive
integer.) Cox and Durrett (1991) showed that if M = d = 1, the threshold
voter model has only the trivial invariant measures δ0 and δ1, and if M and
d are large enough, coexistence occurs. In particular, they proved that the
threshold voter model coexists in one dimension if M ≥ 4, in two dimensions
if M ≥ 3 (when � · � is the l1 norm), and in three or more dimensions if M ≥ 1.
It has also been shown that for M = 1, the one-dimensional process converges
weakly to a convex combination of δ0 and δ1, provided the initial distribution
is translation invariant. [See Andjel, Liggett and Mountford (1992).]
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Liggett (1994) has proved that for any �M�d� �= �1�1� the threshold voter
model on Zd with parameter M coexists. We will see below that starting from
product measure with density 1/2, the threshold voter model always converges
to a stationary distribution which we will call η1/2

∞ . In fact, Liggett proved co-
existence by showing that this limit is nontrivial. Neither Liggett nor Cox and
Durrett have characterized all the invariant measures for the �M�d� �= �1�1�
process. However, Cox and Durrett (1991) conjectured that for any threshold
voter model in which coexistence occurs, if the initial distribution is transla-
tion invariant and puts no mass on the all-zero or all-one configurations, then
the process converges to η

1/2
∞ . When we refer to convergence of a process or

measures we will mean weak convergence (convergence of finite-dimensional
distributions), denoted by ⇒. The purpose of this paper is to prove a general-
ization of this conjecture, the complete convergence theorem.

Theorem 1.1. Consider the threshold voter model with parameters
�M�d� �= �1�1�. Let τ0 = inf	t ≥ 0� ηt ≡ 0
 and τ1 = inf	t ≥ 0� ηt ≡ 1
, and
set α = P�τ0 < ∞� and β = P�τ1 < ∞�. Then

ηt ⇒ αδ0 + βδ1 + �1 − α− β�η1/2
∞ as t → ∞�

To prove this theorem we look at the dual of the threshold voter model. The
dual is an annihilating branching process ζt defined on the finite subsets of
Zd. The first part of the proof involves showing

P�0 < �ζt� ≤ k� → 0 as t → ∞(1.1)

for all k < ∞; this is done in Section 2. To obtain (1.1) we use the duality
equation and a comparison with the threshold contact process to get that
ζt is not positive recurrent if we identify configurations which differ by a
translation. Then, after proving some technical lemmas, (1.1) follows from an
induction argument on the number of particles in the dual. The second part of
the proof is to show that (1.1) implies the theorem, which is done in Section 3.
This is similar to other proofs of convergence theorems for processes with
annihilating duals, when the initial distribution is translation invariant. [See
Bramson, Ding and Durrett (1991).] To get the more general result we use a
comparison with the threshold contact process and its complete convergence
theorem.

2. The dual process. The d-dimensional threshold voter model has a
dual which is a continuous-time Markov chain on the set of finite subsets of Zd;
it is constructed in Cox and Durrett (1991). Let � = 	z ∈ Zd� �z� ≤ M
. The
dual is an annihilating branching process with transition rates q�B�C� defined
as follows: each x ∈ B is removed from B at rate 2 and is replaced uniformly
by an odd subset of x+� , but when an attempt is made to put a point at a
site which is already occupied, the points annihilate one another. Throughout
this paper we will identify a configuration in 	0�1
Zd

with the subset of Zd

which consists of the set of ones. If ηA
t is the threshold voter model at time
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t with initial configuration A, and ζB
t is the annihilating branching process

at time t with initial configuration B, the two are related by the following
duality equation:

P
(�ηA

t ∩B� is odd
) = P

(�ζB
t ∩A� is odd

)
(2.1)

for all finite B. [See Cox and Durrett (1991), Section 2.]
The goal of this section is to prove (1.1), but we first need some results about

the threshold contact process. The threshold contact process with parameters
�M�d�λ� is a d-dimensional spin system ξt that has the following flip rates:

c�x� ξ� =



λ� if ξ�x� = 0 and ξ�y� = 1 for some �x− y� ≤ M�

1� if ξ�x� = 1�

0� otherwise�

The threshold voter model ηt dominates the λ ≤ 1 threshold contact process
ξt in the sense that if ξ0 ≤ η0, then

P�ξt ≤ ηt� = 1

for all t ≥ 0. [Here ξt ≤ ηt iff ξt�x� ≤ ηt�x� for all x ∈ Zd.] The proof of
this result is obtained using the standard coupling and appears in Liggett
(1985), Theorem 1.5 of Chapter III. It is based on the fact that both processes
are attractive, meaning that the presence of ones in the configuration makes
transitions to ones more likely, and the presence of zeros in the configura-
tion makes transitions to zero more likely. It can be shown that the threshold
contact process has a (coalescing) dual. [See Liggett (1985), Section 4 of Chap-
ter III.] The dual process is a Markov chain γt on the set of finite subsets of
Zd which has transitions as follows:

B → B\	x
 at rate 1 for each x ∈ B

and

B → B ∪ �x+� � at rate λ for each x ∈ B�

The two processes are related by the following duality equation:

P�ξA
t ∩B �= �� = P�γB

t ∩A �= ��
for B finite.

If the pointmass on the all-zero configuration is invariant for a particle
system Xt on 	0�1
Zd

, we say that the process survives if it has a nontrivial
invariant measure. We say there is finite survival of the process if

lim
t→∞

P�Xt �= �� > 0

for some finite initial set X0. Liggett (1994) has shown that for �M�d� �= �1�1�,
the λ ≥ 1 threshold contact process survives, but we will need finite survival
of the process. This will be proved in Lemma 2.1. The proof follows from the
fact that the threshold contact process has a dual with many nice properties.
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Lemma 2.1. For �M�d� �= �1�1� and λ ≥ 1, the threshold contact process
has finite survival.

Proof. Denoting the configuration ξ ≡ 1 by the symbol 1, the duality
equation gives

P�ξ1
t ∩ 	0
 �= �� = P�γ	0


t �= ���(2.2)

By taking the limit as t goes to infinity in (2.2) we see that survival of the
threshold contact process is equivalent to finite survival of its dual. So by
Liggett’s result we have finite survival of the dual process. The dual γt can be
considered as a Markov process on 	0�1
Zd

with transition rates dependent
on the local configurations. Viewed in this manner, it can be extended to an
infinite particle system. [See Chapter I of Liggett (1985).] For any positive
integer N, let B�N� denote the set �−N�N�d ∩ Zd. Then using the duality
equation again, we get

P�γB�N�
t ∩ 	0
 �= �� = P�ξ	0


t ∩B�N� �= ���
and taking the limit as N → ∞ gives us this dual analogue of (2.2):

P�γ1
t ∩ 	0
 �= �� = P�ξ	0


t �= ���
So we also have that survival of the infinite dual is equivalent to finite sur-
vival of the threshold contact process. Thus our problem can be reduced to
showing that finite survival of the dual implies survival of the infinite dual.
However, this follows from the arguments in Bezuidenhout and Gray (1994).
The dual has all the essential properties of the processes considered in that
paper. Perhaps the most important of these properties is that of additivity.
This means that versions of the process can be coupled so that

γA∪B
t = γA

t ∪ γB
t

for any finite sets A and B. It is also important that the dual is spatially
translation invariant. These features allow a comparison with oriented perco-
lation, a process for which the two notions of survival are equivalent. Thus, by
the methods of Bezuidenhout and Gray, we can conclude that finite survival
of the dual implies survival of the infinite dual. Hence we have finite survival
of the threshold contact process. ✷

Throughout this paper we will be using the complete convergence theorem
for the threshold contact process; it appears in Cox and Durrett (1991). We
denote the upper stationary distribution for the process (the limit obtained by
starting from the all-one configuration) by ξ1

∞.

Theorem. Let ξt be the threshold contact process at time t. Then

ξt ⇒ αδ0 + �1 − α�ξ1
∞ as t → ∞�

where α = P�τ < ∞� and τ is the time it takes for the process to die out �hit
the empty set�.
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Thus by Lemma 2.1 we see that, starting from any initial distribution ex-
cept δ0, the �M�d� �= �1�1�, λ ≥ 1 threshold contact process converges to a
nontrivial distribution (something other than δ0).

By looking at the transition rates or duality equation (2.1) with A = Zd,
we see that the dual of the threshold voter model has the property that if
B is odd, ζB

t is odd for all t, while if B is even, ζB
t is even for all t. Let ζo

t

denote the dual process concentrating on the odd subsets of Zd and ζe
t be the

process concentrating on the even subsets of Zd. We will write ζ̃t to represent
the process where we identify configurations which differ by a translation. We
can make ζ̃e

t into an irreducible Markov chain by adding the transitions that
at rate 2, � is replaced with a uniformly chosen even subset of � . The process
then has no traps and can reach any element in its state space, which consists
of the collection of finite even subsets of Zd (modded out by translation). Let
η

1/2
t be the threshold voter model at time t, where η

1/2
0 is distributed as the

product measure with density 1/2. Equation (2.1) implies that

P��η1/2
t ∩B� is odd� = P��ζB

t ∩ η
1/2
0 � is odd� = 1

2P�ζB
t �= ��(2.3)

for any finite set B. The distribution of ηt, the process at time t, is determined
by knowing

P��ηt ∩B� is odd�

for all finite B. So (2.3) shows that (the distribution of) η
1/2
t converges to

some stationary distribution, and Liggett (1994) has proved that the limit is
nontrivial for �M�d� �= �1�1�. Thus

lim
t→∞

P��η1/2
t ∩ 	x�y
� is odd� > 0

for some x�y ∈ Zd, and by setting B = 	x�y
 in (2.3) we get

P�ζ̃	x�y

t �= � for all t� = lim

t→∞
P�ζ	x�y


t �= �� > 0�(2.4)

implying that the Markov chain ζ̃e
t is transient for �M�d� �= �1�1�. We might

expect the Markov chain ζ̃o
t to also be transient. Although this may be true,

it seems like a nontrivial problem to resolve. However, the following result is
fairly easy to obtain and turns out to be all that we need.

Lemma 2.2. If �M�d� �= �1�1�, then ζ̃o
t is not positive recurrent.

Proof. Now ζo
t is not positive recurrent. Otherwise this process would

have an invariant measure µ which concentrates on finite configurations. How-
ever, because ζo

t is irreducible, µ would also have to be translation invariant.
Since the threshold voter model ηt dominates the λ = 1 threshold contact

process ξt, we have

P�ζ	0

t ∩ 	0
 �= �� = P�η	0


t ∩ 	0
 �= �� ≥ P�ξ	0

t ∩ 	0
 �= ���
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Thus, finite survival and the complete convergence theorem of the threshold
contact process imply

lim inf
t→∞

P�ζ	0

t ∩ 	0
 �= �� = ε

for some ε > 0.
Assume that ζ̃o

t is positive recurrent. Let ν be an invariant measure for the
process ζ̃o

t which concentrates on finite configurations. Choose k so that

ν	A� diameter A > k
 < ε/4�

Since ζo
t is not positive recurrent, there exists t1 so large that

P�ζ	0

t ⊂ �−k� k�d� < ε/4

for all t > t1. Also, there exists t2 so large that

P�diameter ζ̃
	0

t > k� < ε/2

for all t ≥ t2. Let T = max	t1� t2
. Then for all t ≥ T,

P�ζ	0

t ∩ 	0
 �= �� ≤ P�ζ	0


t ⊂ �−k� k�d� +P�diameter ζ̃
	0

t > k� < 3ε/4�

Since this gives a contradiction, ζ̃o
t must not be positive recurrent. ✷

We will use Lemma 2.2 and induction to obtain (1.1), but we first need some
preliminary results.

Lemma 2.3. Let Yj be a sequence of independent and identically dis-
tributed exponential random variables with parameter θ, and set Sk =∑k

j=1 Yj. Let fk be the density function of Sk. Suppose W > 0. Then there
exists K such that for k ≥ K, for all t ≥ 0 and 0 ≤ w ≤ W,

fk�t� ≤ fk�t−w� + fk�t+w��(2.5)

Proof. We will actually verify (2.5) for k + 1. The density function for
Sk+1 is

fk+1�t� =
{
ctke−θt� if t ≥ 0�

0� otherwise�

for some positive constant c, and so

d

dt
fk+1�t� = cktk−1e−θt − θctke−θt = ctk−1e−θt�k− θt�� t ≥ 0�

Thus fk+1 is increasing on �−∞� k/θ� and decreasing on �k/θ�∞�. So (2.5)
holds if t+w ≤ k/θ or t−w ≥ k/θ. Assume that t−w ≤ k/θ ≤ t+w. Then by
monotonicity,

fk+1�t−W� + fk+1�t+W� ≤ fk+1�t−w� + fk+1�t+w��
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Hence it suffices to show that there exists K such that for all k ≥ K and
t−W ≤ k/θ ≤ t+W,

fk+1�t� ≤ fk+1�t−W� + fk+1�t+W��(2.6)

For large k, since θ and W are fixed, we can assume that k/θ > 2W. So when
t−W ≤ k/θ ≤ t+W, we have t > W, and (2.6) is equivalent to

ctke−θt ≤ c�t−W�ke−θ�t−W� + c�t+W�ke−θ�t+W��

which is equivalent to

1 ≤
(

1 − W

t

)k

eθW +
(

1 + W

t

)k

e−θW�

Since k/θ−W ≤ t ≤ k/θ+W, we have(
1 − W

t

)k

eθW +
(

1 + W

t

)k

e−θW

≥
(

1 + W

W− k/θ

)k

eθW +
(

1 + W

W+ k/θ

)k

e−θW → 2

as k → ∞, because (
1 + W

W− k/θ

)k

→ e−θW

and (
1 + W

W+ k/θ

)k

→ eθW�

Thus (2.6) is satisfied, and the conclusion of Lemma 2.3 follows. ✷

For the remainder of this section, we will be working with ζ̃t, the irreducible
process obtained from the dual by identifying configurations which differ by
a translation. Each transition of ζ̃t occurs by replacement of a particle with a
subset of its neighborhood. Consider this to be a transition for the embedded
discrete time chain, even if the particle gets replaced by itself. Thus, this
discrete time chain can make transitions from a state to itself. Now fix a
finite initial configuration B. Throughout the rest of this section, when we
refer to the process we will mean ζ̃B

t , and when we refer to the discrete time
chain we will mean the embedded chain for ζ̃B

t described above. Often we will
write something like, “we had i particles n times.” By this we will mean at n
different times of this discrete time chain.

Lemma 2.4. Fix i > 0. Suppose σ is a sequence of transitions by the discrete
time chain with the property that it starts with the initial configuration B, ends
with i particles and there are i particles at least n times. Let Fσ�t� = P�between
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times 0 and t our sequence of transitions by the process is σ�. Then for all
W > 0, there exists n such that, for t ≥ W and all 0 ≤ w ≤ W,

Fσ�t� ≤ Fσ�t−w� +Fσ�t+w�
for all σ as above.

Proof. Let gσ be the density function for the time to complete the se-
quence σ , given our transitions begin with σ . Then

gσ�t� =


∫ t

0
fk�t− u� dG�u�� if t ≥ 0�

0� otherwise�

where k + 1 is the number of times we have had i particles in the sequence
σ , fk is as in Lemma 2.3 (where θ = 2i), and G is the conditional distribution
function for the time spent not having i particles during the sequence σ . Fix
W > 0. Now by Lemma 2.3, for large n,

gσ�t� =
∫ t

0
fk�t− u�dG�u�

≤
∫ t

0
fk�t−w− u�dG�u� +

∫ t

0
fk�t+w− u�dG�u�

≤
∫ t−w

0
fk�t−w− u�dG�u� +

∫ t+w

0
fk�t+w− u�dG�u�

= gσ�t−w� + gσ�t+w�
for t ≥ 0 and all 0 ≤ w ≤ W. Also, if t ≥ 0,

Fσ�t� =
∫ t

0
gσ�u� exp�−2i�t− u��dup�σ��

where p�σ� is the probability that the discrete time chain starts with the
sequence σ . Thus, for large n,

Fσ�t� =
∫ t

0
gσ�t− u�e−2iu du p�σ�

≤
∫ t

0
gσ�t−w− u�e−2iu du p�σ� +

∫ t

0
gσ�t+w− u�e−2iu du p�σ�

≤
∫ t−w

0
gσ�t−w− u�e−2iu du p�σ� +

∫ t+w

0
gσ�t+w− u�e−2iu du p�σ�

= Fσ�t−w� +Fσ�t+w�
for t ≥ W and 0 ≤ w ≤ W. ✷

Corollary 2.5. For i > 0, let Gi
n�t� = P(at time t the process has i particles

for at least the nth time). Then, given W > 0, there exists N such that, for t ≥ W
and all 0 ≤ w ≤ W,

Gi
N�t� ≤ Gi

N�t−w� +Gi
N�t+w��
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Proof. Let S�n� be the set of finite sequences of transitions by the discrete
time chain with the property that they start with the initial configuration B,
end with i particles, and have i particles at least n times. For each n, S�n� is
a countable set, so

Gi
n�t� =

∑
σ∈S�n�

Fσ�t��

Thus by Lemma 2.4, there exists N so that if t ≥ W,

Gi
N�t� = ∑

σ∈S�N�
Fσ�t� ≤

∑
σ∈S�N�

Fσ�t−w� + ∑
σ∈S�N�

Fσ�t+w�

= Gi
N�t−w� +Gi

N�t+w�
for 0 ≤ w ≤ W. ✷

Proposition 2.6. Let ζB
t be the dual for the threshold voter model, where

�M�d� �= �1�1� and B is any finite set. Then

lim
t→∞

P�0 < �ζB
t � ≤ k� = 0

for all 0 < k < ∞.

Proof. It suffices to show that

lim
t→∞

P��ζ̃B
t � = i� = 0(2.7)

for any 0 ≤ i < ∞. By (2.4) and Lemma 2.2 we know that both ζ̃e
t and ζ̃o

t are
not positive recurrent, so (2.7) must be true for i = 0 and i = 1. We will use
induction to prove it for all i. Assume (2.7) is true for i−2, but not for i. We will
show that this leads to a contradiction. The idea is the following: if we keep
having i particles, where two are close together, then there is a good chance
that the two will annihilate each other, leaving us with i− 2 particles which
contradicts the induction hypothesis. However, if we keep having i particles
that are all very far apart, they will behave like i independent particles for
long periods of time, contradicting the fact that (2.7) is true for B = 	0
 and
i = 1.

Since (2.7) is not true for i, there exists ε > 0 such that

P��ζ̃B
tj
� = i� > 5ε�(2.8)

for some sequence 	tj
 converging to infinity. Choose an integer L such that
L > 2/ε. Let T be so large that

P��ζ̃	0

t � = 1� < 1

2L2
(2.9)

for t ≥ T. Choose W > LT. By Corollary 2.5 there exists N such that, for
t ≥ W and all 0 ≤ w ≤ W,

Gi
N�t� ≤ Gi

N�t−w� +Gi
N�t+w��(2.10)
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We will say the particles of the dual at time s interact by time t, denote
this event by Is�t�, if there exist x1� y1 ∈ ζs (x1 �= y1) and u ∈ �s� t� such that
�x2 − y2� ≤ M for some x2 ∈ ζ

	x1

u and y2 ∈ ζ

	y1

u . Let D be so large that

P
(
I0�2W�∣∣�ζ0� = i� �x− y� ≥ D for all x�y ∈ ζ0

)
<

1
2L2

�(2.11)

Suppose that

P��ζ̃B
t � = i� 0 < �x− y� ≤ D for some x�y ∈ ζ̃B

t � ≥ ε

for a sequence of times converging to infinity. Each time �ζ̃B
t � = i, where two

particles are within distance D, there is positive probability at least p > 0
that in one unit of time the two close particles annihilate each other while all
other particles remain fixed. So we would have

P��ζ̃B
t � = i− 2� ≥ εp

for a sequence of times converging to infinity. Since this contradicts the induc-
tion hypothesis, we can choose S to be so large that

P��ζ̃B
t � = i� 0 < �x− y� ≤ D for some x�y ∈ ζ̃B

t � < ε(2.12)

for t ≥ S.
Now let p�m�n� = P(at time m the discrete time chain has i particles for

the nth time). Then
∞∑

m=0

p�m�n� = P�the process has i particles at least n times� ≤ 1�

and so

lim
K→∞

∑
m≥K

p�m�n� = 0�(2.13)

Let N�t� be the number of times the process has had i particles between time
0 and t. Then by (2.13), for fixed n,

lim
t→∞

P��ζ̃B
t � = i� N�t� = n� = 0�

So

P��ζ̃B
t � = i� N�t� < N� < ε(2.14)

for t sufficiently large.
By (2.8) and (2.14) we can find tJ, a time in the sequence 	tj
, such that

tJ > W+S and

Gi
N�tJ� > 4ε�

Since W > LT, (2.10) implies that there exist L times 	s1� s2� � � � � sL
 in the
interval �tJ −W�tJ +W� and all at least distance T apart, so that

Gi
N�sj� > 2ε
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for 1 ≤ j ≤ L. Let Ei
N�D�t� be the event that �ζ̃B

t � = i, this be at least the Nth
time this has occurred, and all particles be at least distance D apart. Then,
by (2.12),

P�Ei
N�D�sj�� > ε

for 1 ≤ j ≤ L. Let sj�1� be a time in the set 	s1� s2� � � � � sL
 such that

P

(
Ei

N�D�sj�1��
∖ ⋃

1≤j≤L

j �=j�1�

Ei
N�D�sj�

)
≤ 1/L�

Then

P

(
Ei

N�D�sj�1�� ∩
⋃

1≤j≤L

j �=j�1�

Ei
N�D�sj�

)
> ε− 1/L > 1/L�

So there exists a time sj�2� �= sj�1� in 	s1� s2� � � � � sL
 such that

P
(
Ei

N�D�sj�1�� ∩Ei
N�D�sj�2��

)
> 1/L2�(2.15)

Assume, without loss of generality, that sj�2� > sj�1�. Now if

Ei
N�D�sj�1�� ∩Ei

N�D�sj�2��
occurs, then either the particles of the dual at time sj�1� interact by time sj�2� or
any given particle from ζ̃B

sj�1� is again a single particle after time sj�2�−sj�1�. So

P
(
Ei

N�D�sj�1�� ∩Ei
N�D�sj�2��

)
≤ P

(
Isj�1� �sj�2��

∣∣Ei
N�D�sj�1��

)+P
(�ζ̃	0


sj�2�−sj�1� � = 1
)
< 1/L2�

where the last inequality follows from (2.11) and (2.9). Thus we have a con-
tradiction to (2.15), which implies the desired result. ✷

3. The complete convergence theorem. In this section we will use the
duality result from Section 2 to prove the complete convergence theorem. The-
orem 1.1 will be proved in three steps: first for translation invariant initial
distributions, then for any initial distribution which concentrates on configu-
rations with infinitely many zeros and ones and finally for distributions which
put positive mass on finite configurations. Recall (2.3), which implies

P��η1/2
t ∩B� is odd� → 1

2P�ζB
t �= � for all t�

for any finite set B. So to prove that ηt converges to the limit for product
measure with density 1/2, it will suffice to show that

P��ηt ∩B� is odd� → 1
2P�ζB

t �= � for all t�(3.1)

for any finite B. We will use (1.1) to obtain (3.1), but first we will need some
preliminaries.
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The graphical representation for the threshold voter model can be found
in Cox and Durrett (1991). We will need this construction in the proof of
Proposition 3.2 below. For x ∈ Zd and odd S ⊂ � , let 	Tx�S

n � n ≥ 1
 be
independent Poisson processes with rate 22−�� �. The times Tx�S

n will be the
only possible times at which a flip can occur at the site x. At time Tx�S

n draw
arrows from x + y to x for each y ∈ S\	0
. If 0 �∈ S we write a δ at x.
We say there is a path from �x�0� to �y� t� if there is a pair of sequences
x0 = x� � � � � xn = y and s0 = 0 < s1 < · · · sn < sn+1 = t so that:

1. For 1 ≤ m ≤ n there is an arrow from xm−1 to xm at time sm.
2. For 1 ≤ m ≤ n+ 1 there are no δ’s in �sm−1� sm�.

Now let

Nx
t �y� = the number of paths from �x�0� to �y� t�

and

NA
t �y� =

∑
x∈A

Nx
t �y��

Then set

ηA
t �y� =

{
1� if NA

t �y� is odd�

0� if NA
t �y� is even�

(3.2)

We see that ηA
t is the threshold voter model at time t with initial configuration

A, since straightforward parity calculations using (3.2) give the following flip
rates at 0:

1
2�� �−2

∑
S⊂�
S odd

cS�0� η��

where

cS�0� η� = 1
2

(
1 − ∏

y∈S�	0

�1 − 2η�y��

)
�

The graphical representation also allows us to describe the dual process; this
is done by reversing time. For further explanations and details consult Cox
and Durrett (1991).

We will also need the following lemma, which appears in Bramson, Ding
and Durrett (1991).

Lemma 3.1. Let X1�X2� � � � be independent r.v.’s with P�Xm = 1� = 1 −
P�Xm = 0� = θm, where 0 < β ≤ θm ≤ 1 − β < 1, and let Sn = X1 + · · · +Xn.
Then ∣∣P�Sn is odd� − 1

2

∣∣ ≤ 1
2�1 − 2β�n�
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Proposition 3.2. Consider the threshold voter model with �M�d� �= �1�1�.
Suppose the initial distribution µ is translation invariant and puts no mass
on the all-zero and all-one configurations. Then

η
µ
t ⇒ η1/2

∞ as t → ∞�

the (nontrivial) limit starting from product measure with density 1/2.

Proof. Let η
µ
1 denote the set 	x ∈ Zd� ηµ

1 �x� = 1 and η
µ
1 �x + e1� = 0
,

where e1 is the d-dimensional unit vector �1�0� � � � �0�. Our first step will be
to show that, given ε > 0, there exists K so that if �A� ≥ K, then

P�ηµ
1 ∩A = �� < ε�(3.3)

For any finite set B

P�ηµ
1 ∩B = �� =

∫ [∏
x∈B

�1 − η�x� + η�x�η�x+ e1��
]
µ1�dη�

=
∫ [

Eη
∏
x∈B

�1 − η1�x� + η1�x�η1�x+ e1��
]
µ�dη��

(3.4)

where µ1 is the distribution of η
µ
1 . Given δ > 0, by Theorem 4.6 of Chapter I

of Liggett (1985), there exists L so that for finite B satisfying

min	�x− y�� x�y ∈ B� x �= y
 ≥ L�(3.5)

we have

Eη
∏
x∈B

�1 − η1�x� + η1�x�η1�x+ e1��

≤ ∏
x∈B

Eη�1 − η1�x� + η1�x�η1�x+ e1�� + δ�B��
(3.6)

[The reasoning behind (3.6) is basically that, at finite times, distant coor-
dinates evolve almost independently.] Hölder’s inequality and the translation
invariance of µ imply∫ ∏

x∈B
Eη�1 − η1�x� + η1�x�η1�x+ e1�� µ�dη�

≤
∫
�Eη�1 − η1�0� + η1�0�η1�e1����B� µ�dη��

(3.7)

Hence, using (3.4), (3.6) and (3.7), we see that if B satisfies (3.5), then

P�ηµ
1 ∩B = �� ≤ δ�B� +

∫
�Eη�1 − η1�0� + η1�0�η1�e1����B� µ�dη��(3.8)

Starting from any configuration which is not identically zero or identically
one, there is a positive chance that after one unit of time, the threshold voter
model will have a one at the origin and a zero at e1. Thus for µ a.e. η, we have

Eη�1 − η1�0� + η1�0�η1�e1�� = 1 −Pη�η1�0� = 1 and η1�e1� = 0� < 1�
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So by the bounded convergence theorem

lim
k→∞

∫
�Eη�1 − η1�0� + η1�0�η1�e1���k µ�dη� = 0�(3.9)

Fix ε > 0. Use (3.9) to choose k′ so large that∫
�Eη�1 − η1�0� + η1�0�η1�e1���k

′
µ�dη� < ε

2
�

Now set δ = ε/2k′. Let L be such that (3.6) is satisfied for B satisfying (3.5).
If �A� is sufficiently large, there is a B ⊂ A such that �B� = k′ and B satisfies
(3.5) for that L. Hence (3.8) implies

P�ηµ
1 ∩A = �� ≤ P�ηµ

1 ∩B = ��

≤ δk′ +
∫
�Eη�1 − η1�0� + η1�0�η1�e1���k

′
µ�dη� < ε�

and so (3.3) is satisfied.
Now we want to strengthen (3.3) to the following: given ε > 0 and any

positive integer N, there exists K′ such that if �A� ≥ K′, then

P��ηµ
1 ∩A� < N� < ε�(3.10)

By (3.3) we can choose K so that if �A� ≥ K, then

P�ηµ
1 ∩A = �� < ε/N�

Let K′ be so large that if �A� ≥ K′, then A contains N disjoint sets
A1�A2� � � � �AN with �Aj� ≥ K for all j. Then, for �A� ≥ K′, we have

P��ηµ
1 ∩A� < N� ≤

N∑
j=1

P�ηµ
1 ∩Aj = �� < ε�

The rest of the proof is similar to the approach found in Bramson, Ding,
and Durrett (1991). Let <B

∞ = 	ζB
t �= � for all t
, where B ⊂ Zd is a fixed

finite set. Then Proposition 2.6 and inequality (3.10) imply

�ηµ
1 ∩ ζB

t � → ∞1<B∞ in probability�(3.11)

where the right-hand side is ∞ on <B
∞ and 0 on its compliment. By (3.1), the

proposition will be proved if we can show that

P��ηµ
2 ∩ ζB

t � is odd� → 1
2P�<B

∞� as t → ∞�(3.12)

since, by duality,

P��ηµ
2+t ∩B� is odd� = P��ηµ

2 ∩ ζB
t � is odd��

To get (3.12) we will find a lot of independent events which change the parity.
Construct the processes η

µ
s and ζB

s on independent graphical representa-
tions. Recall that at times Tx�S

n , n ≥ 1, a flip can occur at the site x for the
threshold voter model; these are times at which the value of the process on
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the set S can influence the site x to change. Let Ut = η
µ
1 ∩ ζB

t . We say that
x ∈ Ut is almost isolated if in the graphical representation of ηµ

s ,

	Tx�S
n � n ≥ 1
 ∩ �1�2� = � for all odd S ⊂ � � with S �= 	e1
�

	Tx+e1� S
n � n ≥ 1
 ∩ �1�2� = � for all odd S ⊂ �

and for y ∈ � ,

	Tx+y�S
n � n ≥ 1
 ∩ �1�2� = � for all odd S ⊂ � � with − y ∈ S

(i.e., only x+e1 influences x, nothing influences x+e1, and x influences nothing
from time 1 to time 2). For any set A ⊂ Ut, with �x1 − x2� > 2M for all
x1� x2 ∈ A, 	x is almost isolated: x ∈ A
 are i.i.d. events that are independent
of η

µ
1 and 	ζB

s � s ≥ 0
. So letting Vt be the set of almost isolated x ∈ Ut, it
follows from (3.11) that

�Vt� → ∞1<B∞ in probability�(3.13)

Now let �t be the σ-field generated by ζB
t , ηµ

1 , Vt and all the Poisson points
in the graphical representation of η

µ
s in Zd × �1�2� except those coming from

	Tx�S
n � n ≥ 1
, x ∈ Vt. Then

P
(�ηµ

2 ∩ ζB
t � is odd

∣∣�t

) = P

( ∑
x∈Vt

gx = hmod 2
∣∣∣�t

)
a.s.,(3.14)

where

gx = 1	there is no flip atx in �1�2�

and

h = 1 − 	�ηµ
2 ∩ ζB

t ∩Vc
t �mod 2
�

Observe that, given �t, Vt and h are constant, and gx, x ∈ Vt, are indepen-
dent. So it follows from (3.13) and Lemma 3.1 that

P

( ∑
x∈Vt

gx = hmod 2
∣∣∣�t

)
→ 1

2 1<B∞ in probability�(3.15)

Combining (3.14) and (3.15), taking expected values and using the bounded
convergence theorem, we get

P��ηµ
2 ∩ ζB

t � is odd� → 1
2P�<B

∞� as t → ∞
and thus our proof is complete. ✷

It is fairly easy to generalize the previous proposition if we use duality and
the complete convergence theorem for the threshold contact process.

Proposition 3.3. Consider the threshold voter model with �M�d� �= �1�1�.
Suppose that the initial distribution µ puts all its mass on configurations with
infinitely many zeros and ones. Then

η
µ
t ⇒ η1/2

∞ as t → ∞�
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Proof. Fix a finite set B ⊂ Zd. Let ε > 0 and 	tn
 be any sequence tending
to infinity. We will show that there exists a subsequence 	sn
 of 	tn
, such that

lim
n→∞

∣∣P��ηµ
sn
∩B� is odd� − 1

2P�<B
∞�∣∣ < ε�(3.16)

which will verify (3.1) and so complete the proof. ✷

If µ1 and µ2 are two probability measures, the inequality µ1 ≤ µ2 means∫
fdµ1 ≤

∫
fdµ2

for all monotone functions f. Let Sb�t� be the semigroup for the λ = 1 thresh-
old contact process and Sa�t� be the semigroup for the spin system whose
rates are those of this threshold contact process with the roles of zeros and
ones reversed. If S�t� is the semigroup for the threshold voter model, then
since all processes are attractive,

µSb�t� ≤ µS�t� ≤ µSa�t�(3.17)

for all t ≥ 0. [See Corollary 1.7 of Chapter III in Liggett (1985).] Let νb be
the upper invariant measure for the (λ = 1) threshold contact process (the
limit obtained by starting from the all-one configuration), and define νa to be
the measure obtained by applying νb to configurations with zeros and ones
interchanged. Then by the complete convergence theorem for the threshold
contact process µSb�t� ⇒ νb and µSa�t� ⇒ νa as t → ∞, so (3.17) implies νb ≤
νa. Suppose ρ is any measure such that νb ≤ ρ ≤ νa. Then by attractiveness
again, we have

νbS�t� ≤ ρS�t� ≤ νaS�t�
for all t ≥ 0.

The measure νb satisfies the conditions of Proposition 3.2, so

νbS�t� ⇒ ν as t → ∞
and

νaS�t� ⇒ ν as t → ∞�

where ν is the invariant measure obtained in the limit when starting the voter
model from product measure with density 1/2. Since any function which de-
pends on a finite number of coordinates can be written as a linear combination
of monotone functions, there exists T such that∣∣P��ηρ

T ∩B� is odd � − 1
2P�<B

∞�∣∣ < ε(3.18)

for all νb ≤ ρ ≤ νa. Now, since the space of all probability measures is compact,
we can choose a subsequence 	sn
 of 	tn
 such that µS�sn −T� converges to
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some measure ρ. By (3.17), we have νb ≤ ρ ≤ νa. Thus

lim
n→∞

∣∣P��ηµ
sn
∩B� is odd� − 1

2P�<B
∞�∣∣

= lim
n→∞

∣∣P��ηµ
sn−T ∩ ζB

T � is odd� − 1
2P�<B

∞�∣∣
= ∣∣P��ηρ

0 ∩ ζB
T � is odd� − 1

2P�<B
∞�∣∣

= ∣∣P��ηρ
T ∩B� is odd� − 1

2P�<B
∞�∣∣ < ε�

To get the convergence theorem in the case of finite initial configurations,
we will again use a comparison with the threshold contact process, but we will
need some preliminary results.

Lemma 3.4. Let ξt be the threshold contact process, where �M�d� �= �1�1�
and λ ≥ 1. Set τA = inf	t ≥ 0� ξA

t = �
. Then

lim
�A�→∞

P�τA = ∞� = 1�

Proof. We will first consider the �2�1� case. The proof here is the same
as that for the ordinary contact process. [See Liggett (1985), Chapter VI, The-
orems 1.9 and 1.10.] Now the �2�1� case implies the cases �M�1�, for M > 2.
Thus we have the lemma for d = 1.

Now we will deal with the d = 2 cases. It suffices to prove the �1�2� case.
Given ε > 0, choose k so large that for the �2�1� process,

P�τA = ∞� > 1 − ε

for all A such that �A� ≥ k. Suppose B ⊂ Z2 and �B� ≥ k2. There must be at
least k points in the orthogonal projection of B to the line y = 2x or to the
line y = − 1

2x. Assume, without loss of generality, the former situation.
We will use the coupling found in Liggett (1994) (proof of Proposition 2) to

compare the (1,2) process to the (2,1) process. Define the mapping π� Z2 → Z
by π�m�n� = m+2n. Then the four neighbors of �m�n� in Z2 map onto the four
neighbors of π�m�n� in Z, and �π�B�� ≥ k. Denoting for the moment the (2,1)
process by ξt and the (1,2) process by γt, we will construct a coupling which
maintains the relation ξt ≤ π�γt�, showing that survival of ξt implies survival
of γt. Associate each j ∈ Z such that ξ�j� = 1 with any of the �m�n� ∈ Z2 such
that π�m�n� = j and γ�m�n� = 1, letting the 1 → 0 transition at associated
sites occur together. For sites j with ξ�j� = 0, such that some neighbor i
satisfies ξ�i� = 1, let �m�n� be the site associated with i, and then associate
j with any neighbor of �m�n�. Again, couple the 0 → 1 transitions at the
associated sites. Thus, for the (1,2) process,

P�τA = ∞� > 1 − ε

for all A such that �A� ≥ k2.
We will use the two-dimensional case to get the higher-dimensional cases.

Suppose d > 2. Let B ⊂ Zd satisfy �B� ≥ k2d. Then there are at least k2 par-
ticles in the projection π�B� of B to some coordinate plane. Consider now a
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coupling of the two-dimensional process and the d-dimensional process. Con-
struct the coupling using the projection map as above, to show that survival
of the two-dimensional process implies survival of the d-dimensional process.
Hence for the d > 2 process,

P�τA = ∞� > 1 − ε

for all A such that �A� ≥ k2d. ✷

Remark. Both Lemma 3.4 and Proposition 3.3 generalize to some extent
to other attractive spin systems. The key ingredients in the proof of Propo-
sition 3.3 are the complete convergence theorem for the threshold contact
process and annihilating duality for the threshold voter model. The complete
convergence theorem for the contact process generalizes to many other addi-
tive processes. [See Durrett (1995).] Thus our ideas could be applied to give
more general results for attractive spin systems which satisfy duality equation
(2.1) and dominate an appropriate additive process which survives.

Now we have what we need to prove the remaining part of the theorem.

Proposition 3.5. Let ηA
t be the threshold voter model where �M�d� �=

�1�1�, and the initial state A is finite. Set τA = inf	t ≥ 0� ηA
t = �
. Then

ηA
t ⇒ αδ0 + �1 − α�η1/2

∞ as t → ∞�

where α = P�τA < ∞�.

Proof. We will follow the proof of Proposition 3.3 to show that the process
ηA

t �τA=∞ converges to η
1/2
∞ as t → ∞. Fix an arbitrary finite set B ⊂ Zd. Let

	tn
 be any sequence tending to infinity and 0 < ε < 1. It will suffice to show
that there exists a subsequence 	sn
 of 	tn
 such that

lim sup
n

∣∣P(�ηA
sn
∩B� is odd

∣∣τA = ∞)− 1
2P�<B

∞�∣∣ < ε�

[This is the analogue of (3.16).]
If ξt is the λ = 1 threshold contact process, by Lemma 3.4 we can choose N

so large that

P�ξC
t �= � for all t� > 1 − ε/5(3.19)

for all sets C such that �C� ≥ N.
We claim that there exists U such that

P
(�ηA

t � ≥ N
∣∣τA = ∞)

> 1 − ε/10(3.20)

for t ≥ U. Suppose not, that is,

P
(�ηA

tk
� < N

∣∣τA = ∞) ≥ ε/10
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for some sequence 	tk
 tending to infinity. Each time the cardinality of the
threshold voter model drops below N, there is probability at least p > 0, in-
dependent of the configuration, that the process dies out. Now, by comparison
with the threshold contact process, 1 − α = P�τA = ∞� > 0. Thus

P�τA > tk� > P�0 < �ηA
tk
� < N�p ≥ P��ηA

tk
� < N� τA = ∞�p

= P
(�ηA

tk
� < N

∣∣τA = ∞)�1 − α�p ≥ ε

10
�1 − α�p > 0

(3.21)

for all tk. Since
∑∞

n=0 P�n ≤ τA < n + 1� < 1, we know P�τA ≥ n� → 0 as
n → ∞. So this contradiction of (3.21) verifies (3.20).

There is a collection � which consists of a finite number of finite sets D ⊂
Zd, with �D� ≥ N, such that

P�ηA
U ∈ � �τA = ∞� > 1 − ε/5�(3.22)

Fix a set D ∈ � . We will use the notation and arguments of Proposition
3.3; however, µ will be replaced by the pointmass measure on the set D, and
νb will be replaced by ν̃b = ε′δ0 + �1 − ε′�νb, where ε′ < ε/5. Proposition 3.2
implies ν̃bS�t� ⇒ ε′δ0+�1−ε′�ν as t → ∞. So, following the reasoning leading
to (3.18), there exists T such that∣∣P��ηρ

T ∩B� is odd� − 1
2P�<B

∞�∣∣ < 2ε/5

for all ν̃b ≤ ρ ≤ νa. Again using the ideas from Proposition 3.3, we see that
there exists a subsequence 	rn
 of 	tn −U−T
 such that ηD

rn
converges to a

distribution ρ, and ν̃b ≤ ρ ≤ νa by contact process comparisons. So

lim
n→∞

∣∣P��ηD
rn+T ∩B� is odd� τD = ∞� − 1

2P�<B
∞�∣∣

= ∣∣P��ηρ
T ∩B� is odd� − 1

2P�<B
∞�∣∣ < 2ε/5�

(3.23)

Since � contains only a finite number of sets, we can choose the sequence
	rn
 so that (3.23) is satisfied for all D ∈ � . Thus, because (3.19) shows that
P�τD = ∞� > 1 − ε/5, we have

lim
n→∞

∣∣P(�ηD
rn+T ∩B� is odd

∣∣τD = ∞)− 1
2P�<B

∞�∣∣ < 4ε/5(3.24)

for any D ∈ � . Therefore, using (3.22) and (3.24), we get

lim sup
n

∣∣P(�ηA
rn+U+T ∩B� is odd

∣∣τA = ∞)− 1
2P�<B

∞�∣∣ < ε�

So, setting sn = rn +U+T, the proposition is proved. ✷

Now using the symmetry of the process in zeros and ones, Theorem 1.1
follows from Proposition 3.3 and Proposition 3.5.
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