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PRAGMATIC STRUCTURING
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Within the framework of information geometry, the interaction among
units of a stochastic system is quantified in terms of the Kullback–
Leibler divergence of the underlying joint probability distribution from an
appropriate exponential family. In the present paper, the main example for
such a family is given by the set of all factorizable random fields. Motivated
by this example, the locally farthest points from an arbitrary exponential
family E are studied. In the corresponding dynamical setting, such points
can be generated by the structuring process with respect to E as a repelling
set. The main results concern the low complexity of such distributions which
can be controlled by the dimension of E .

1. Introduction.

1.1. The motivation of the approach. In the field of neural networks, so-called
infomax principles like the principle of “maximum information preservation” by
Linsker [20] are formulated to derive learning rules that improve the information
processing properties of neural systems (see [12]). These principles, which are
based on information-theoretic measures, are intended to describe the mechanism
of learning in the brain. There, the starting point is a low-dimensional and
biophysiologically motivated parametrization of the neural system, which need not
necessarily be compatible with the given optimization principle. In contrast to this,
we establish theoretical results about the low complexity of optimal solutions for
the optimization problem of frequently used measures like the mutual information
in an unconstrained and more theoretical setting. In the present paper, we do not
comment on applications to modeling neural networks. This is intended to be
done in a further step, where the results can be used for the characterization of
“good” parameter sets that, on the one hand, are compatible with the underlying
optimization and, on the other hand, are biologically motivated.

1.2. An illustration of the main example. Consider the example of two binary
units with the state sets �1 = �2 = {0,1}. The configuration set of the system is
given by the product {0,1}2. The set P̄({0,1}2) of all probability distributions on
that product is a three-dimensional simplex with the four extreme points δ(ω1,ω2),
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FIG. 1. The set F of factorizable distributions on {0,1}2.

ω1,ω2 ∈ {0,1} (Dirac distributions). The two units are independent with respect to
p ∈ P̄({0,1}2) if p is equal to the tensor product of the marginal distributions p1
and p2: p = p1 ⊗p2. The set of all strictly positive and in such a way factorizable
distributions is a two-dimensional manifold (exponential family) F embedded in
the simplex P̄({0,1}2); see Figure 1.

With the Kullback–Leibler divergence D on P̄({0,1}2), the dependence of the
two units can be quantified by

degree of p-dependence := “distance” of p from F
= inf

q∈FD(p‖q).

This quantity is nothing but the mutual information of the two units with respect
to p. In the present paper, we will focus on stochastic systems with the highest
degree of dependence. In the example of two binary units, these are given by the
distributions

1
2(δ(0,0) + δ(1,1)) and 1

2(δ(1,0) + δ(0,1)) (see Figure 1).

1.3. The results. Motivated by the example in Section 1.2, the farthest points
from an arbitrary exponential family E in the set of all probability distributions are
studied in a general setting by using the framework of information geometry for
discrete probability spaces ([1], [5] and [11]). In particular, generalizations of the
example of two binary units are discussed.
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The results concern the low complexity of optimal distributions, which can
be controlled by the dimension d of the underlying exponential family E
(Corollary 3.4). As an important consequence of this, the existence of an
exponential family E∗ with dimension less than or equal to 1

2(d
2 + 7d + 4)

that captures all points with locally maximal distance from E is established
(Theorem 3.5). In particular, for the example of N binary units, N ≥ 8, there is
an exponential family with dimension less than or equal to N2 that captures all
distributions with optimal dependence of the units.

A translation of the setting into a dynamical version is given by the definition
of structuring processes with respect to exponential families as repelling sets
(Theorem 3.12). The stable limit points of such a process play the role of
distributions with largest distance from the underlying exponential family. In the
context of neural networks, structuring is related to learning that is induced by the
infomax principles mentioned in Section 1.1.

2. Notation and preliminaries. In the following, � denotes a nonempty and
finite set. With the usual addition and scalar multiplication, the set R

� of all
functions �→ R becomes a real vector space. In R

� we have the canonical basis

eω: ω′ �→ eω(ω
′) :=

{
1, if ω′ = ω,
0, otherwise,

ω ∈�,

which induces the norm ‖x‖ = (
∑

ω∈� x(ω)2)1/2.
The (closed) simplex

P̄(�) :=
{
p = (

p(ω)
)
ω∈� ∈ R

� :p(ω)≥ 0 for all ω ∈�, ∑
ω∈�

p(ω)= 1
}

is a convex and compact subset of R
� with the extreme points eω, ω ∈ �. Its

elements are the probability measures on �. The extreme points correspond to the
Dirac measures, and the centroid c ∈ P̄(�) with c(ω) := 1/|�| for all ω ∈� is the
equally distributed normed measure. For all x ∈ R

�, suppx := {ω ∈ � :x(ω) �=
0} denotes the support set of x. Every nonempty subset � of � induces the
corresponding (open) face

P(�) := {
p ∈ P̄(�) : suppp =�

}
of P̄(�). Obviously, the closed simplex is the disjoint union

P̄(�)= ⊎
∅�=�⊂�

P(�)

of the faces, and every element p ∈ P̄(�) is contained in P(suppp).
Following the information-geometric description of finite probability spaces,

each open face P(�) can be considered as a differentiable submanifold of R
�
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with dimension d := |�| − 1 and the basis-point independent tangent space

T(�) :=
{
x ∈ R

� : suppx =�,
∑
ω∈�

x(ω)= 0
}
.

With the Fisher metric 〈·, ·〉p: T(�)× T(�)→ R in p ∈ P(�) defined by

(x, y) �→ 〈x, y〉p := ∑
ω∈�

1

p(ω)
x(ω)y(ω),

P(�) becomes a Riemannian manifold. The most important additional structure
studied in information geometry is given by a pair of dual affine connections on
the manifold. Application of such a dual structure to the present situation leads
to the notion of (−1)- and (+1)-geodesics: Each two points p,q ∈ P(�) can be
connected by the geodesics γ (α) = (γ

(α)
ω )ω∈� : [0,1]→ P(�), α ∈ {−1,+1}, with

γ (−1)
ω (t) := (1 − t) p(ω)+ tq(ω) and γ (+1)

ω (t) := r(t)p(ω)1−t q(ω)t .
Here, r(t) denotes the normalization factor.

A submanifold E of P(�) is called an exponential family if there exist a point
p0 ∈ P(�) and vectors v1, . . . , vd ∈ R

� such that it is the image of the map

R
d → P(�), (θ1, . . . , θd) �→

∑
ω∈�

p0(ω) exp
(∑d

i=1 θivi(ω)
)

∑
ω′∈� p0(ω′) exp

(∑d
i=1 θivi(ω

′)
)eω.

In this case, the (+1)-geodesically convex manifold E is said to be generated by p0
and v1, . . . , vd . One has dimE ≤ d , where the equality holds if and only if the
vectors {v1, . . . , vd,1} are linearly independent (1 denotes the “constant” vector
with entries equal to 1).

A general projection theorem by Amari ([1], Theorem 3.9, page 91) implies the
following:

Let E be an exponential family and p ∈ P(�). Then there exists at most
one point p′ ∈ E such that the (−1)-geodesic connecting p and p′ intersects E
orthogonally with respect to the Fisher metric.

Such a point p′ is called a (−1)-projection of p onto E and can be characterized
by the Kullback–Leibler divergence D: P̄(�)× P̄(�)→ R,

(p, q) �→D(p‖q) :=



∑
ω∈suppp

p(ω) ln
p(ω)

q(ω)
, if suppp ⊂ suppq,

∞, otherwise.

We define the “distance” DE : P̄(�)→ R+ from E by

p �→DE(p) := inf
q∈ED(p‖q).
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This is a continuous function (Lemma 4.2). It was proven by Amari that a point
p′ ∈ E is the (−1)-projection of p onto E if and only if it satisfies the minimizing
property DE (p) =D(p‖p′) ([1], Theorem 3.8, page 90). With domE we denote
the set of all points in P̄(�) for which there exist such distance minimizing points
in E and define the corresponding projection πE : domE → E .

MAIN EXAMPLE, PART 1. Let �1, . . . ,�N be nonempty and finite sets.
Consider the tensorial map P(�1)× · · · ×P(�N)→ P(�1 × · · · ×�N),

(p1, . . . , pN) �→ p1 ⊗ · · · ⊗ pN := ∑
(ω1,...,ωN )

∈�1×···×�N

p1(ω1) · · ·pN(ωN)e(ω1,...,ωN ).

The image F := {p1 ⊗ · · · ⊗ pN :pi ∈ P(�i), 1 ≤ i ≤ N} of this map, which
consists of all factorizable and strictly positive probability distributions, is an
exponential family in P(�1 ×· · ·×�N) with dimF = (|�1|−1)+· · ·+ (|�N |−
1). For the particular case of N binary units, that is, |�i| = 2 for all i, the
dimension of F is equal to N . The following statements are well known (see [3]):

πF (p)= p1 ⊗ · · · ⊗ pN, DF (p)=
N∑
i=1

H(pi)−H(p).(2.1)

Here, pi denotes the ith marginal distribution of p and H the Shannon
entropy [28].

3. Results and applications.

NOTE. All proofs are given in Section 4.

3.1. The main results in the nondynamical setting.

PROPOSITION 3.1. For an exponential family E in P(�) and a point p ∈
domE , the gradient of DE in p with respect to the Fisher metric is given by

gradDE(p)=
∑

ω∈ suppp
p(ω)

(
ln

p(ω)

πE(p)(ω)
−DE (p)

)
eω.(3.2)

In particular, if the gradient vanishes in p, then we have

p(ω)= eDE (p)πE(p)(ω), ω ∈ suppp and DE (p)=− lnπE(p)(suppp).(3.3)

PROPOSITION 3.2. Let E be an exponential family in P(�) and p ∈ domE .
If DE attains a locally maximal value in p, then the cardinality of the support set
of p can be estimated by | suppp| ≤ dimE + 1.
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REMARKS 3.3. (i) For the case E := P(�), DE vanishes identically and the
statements in Propositions 3.1 and 3.2 are trivially satisfied for all points in P(�).

(ii) If the exponential family consists of a single point, Proposition 3.2 implies
that we have only Dirac measures as locally maximal points.

An immediate consequence of Propositions 3.1 and 3.2 is the following
statement about the structure of distributions with locally largest distance from
the underlying exponential family.

COROLLARY 3.4. Let E be a d-dimensional exponential family generated by
p0 and v1, . . . , vd . If DE attains a locally maximal value in p ∈ domE , then there
exist real numbers r1, . . . , rd and a set � ⊂ � with |�| ≤ d + 1 such that the
following representation of p holds:

p(ω)=



p0(ω) exp
(∑d

i=1 rivi(ω)
)

∑
ω′∈� p0(ω′) exp

(∑d
i=1 rivi(ω

′)
) , ω ∈�,

0, ω /∈�.
Here, the numbers r1, . . . , rd and the set � are unique.

The “exponential” structure of this representation indicates the possibility of
capturing all optimal distributions with respect to DE by an exponential family E∗
with low dimension. This is guaranteed by the following.

THEOREM 3.5. Let E be a d-dimensional exponential family. Then there
exists an exponential family E∗ ⊃ E with dimension less than or equal to 1

2(d
2+

7d+ 4) such that the topological closure of E∗ contains all locally maximal points
in domE with respect to DE .

REMARK 3.6. By choosing E to be the exponential family that consists of the
centroid of P(�), |�| ≥ 3, Theorem 3.5 implies that there exists a two-dimension-
al exponential family E∗ in P(�) such that all extreme points of the simplex
P̄(�) can be approximated by E∗. To construct such a family, choose an arbitrary
numbering ϕ: �→ {1, . . . , |�|} ⊂ R of the set � and define E∗ to be the two-
dimensional exponential family generated by the centroid and the vectors ϕ and ϕ2.
For 1 ≤ k ≤ |�| and βn ↑∞, we have

lim
n→∞

exp(−βn(ϕ(ω)− φ(σ ))2)∑
ω′∈� exp(−βn(ϕ(ω′)− φ(σ ))2)

= δσ (ω) for all σ,ω ∈�.

Thus, E∗ approximates all Dirac measures.
This is the finite-dimensional counterpart of the fact that all Dirac measures

on (R,B1) can be approximated by normal distributions (two-dimensional
exponential family) in the sense of weak convergence.
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3.2. Some applications. The examples considered in the present paper are
induced by a special kind of exponential family. Let A be a subset of the power
set P(�) of �. With the characteristic functions IA: �→ R, IA(ω)= 1 if ω ∈A
and IA(ω)= 0 if ω /∈ A, we define EA to be the exponential family generated by
the centroid of P(�) and the functions IA, A ∈ A . The following statement gives
a description of the support set of an element that is projectable on EA :

LEMMA 3.7. Let A be a subset of P(�) and p ∈ domEA . Then for every
nonempty set A⊂� with A ∈A or � \A ∈A the intersection suppp∩A is also
nonempty.

MAIN EXAMPLE, PART 2. For each i ∈ {1, . . . ,N}, consider the partition

Ai := {�1 × · · · × {ωi} × · · · ×�N :ωi ∈�i}
of �1 × · · · × �N . The exponential family F of the factorizable distributions in
P(�1 × · · · ×�N) is induced by

A :=
N⋃
i=1

Ai .

Thus, we have EA = F . Let p be a point in domF ⊂ P̄(�1 × · · · × �N).
Lemma 3.7 implies | suppp| ≥ |Ai | = |�i | for all i. Therefore, we obtain

|suppp| ≥ max
1≤i≤N |�i|.

If DF attains a locally maximal value in p, then with (2.1) and (3.3) we get

p(ω1, . . . ,ωN)= exp

(
N∑
i=1

H(pi)−H(p)

)
p1(ω1) · · ·pN(ωN)

for all (ω1, . . . ,ωN) ∈ suppp. According to Proposition 3.2, the cardinality of the
support set can be estimated by

max
1≤i≤N |�i | ≤ |suppp| ≤ 1 −N +

N∑
i=1

|�i |.

With η := max1≤i≤N(|�i | − 1), we obtain

η≤ |suppp| − 1 ≤Nη.

Finally, for N ≥ 8, Theorem 3.5 guarantees the existence of an exponential
family F∗ with dimension ≤ (Nη)2 that approximates all locally maximal points
with respect to DF . These are the points with optimal dependence of the N units.
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GENERALIZATION OF THE MAIN EXAMPLE. For every subset J ⊂ I :=
{1, . . . ,N}, J �= ∅, consider the restriction

restJ :
∏
i∈I

�i →
∏
i∈J

�i, (ωi)i∈I �→ (ωi)i∈J

and

AJ :=
{

rest−1
J

({ωJ }) :ωJ ∈ ∏
i∈J

�i

}
.

For a fixed n, 1 ≤ n≤N , we define

A (n) := ⋃
J⊂I

1≤|J |≤n

AJ and F (n) := EA (n) .

Each F (n) represents only intrinsic dependencies up to order n. With F (0) := {c},
we have the hierarchy

F (0) ⊂F (1) ⊂ · · · ⊂F (N)

and the equations F (1) =F , F (N) =P(�) hold.
For simplicity, in the following we consider only the binary case �i = {0,1}

for all i. In that case, the exponential family F (n) consists of all strictly positive
probability distributions in P({0,1}I ) for which there exist real numbers θJ ,
J ⊂ I , |J | ≤ n, such that for all σ = (σi)i∈I ∈ {0,1}I the equality

lnp(σ )= ∑
J⊂I
|J |≤n

θJ · ∏
i∈J

σi

holds (
∏
i∈∅ σi := 1). Furthermore, one has

dimF (n) =
n∑
i=1

(
N

i

)

(for these statements see [3] and [21]). Now we apply Corollary 3.4 and Lemma 3.7
to a point p ∈ domF (n) in whichDF (n) attains a locally maximal value: There exist
real numbers θJ , J ⊂ I , 1 ≤ |J | ≤ n, and a set � ⊂� with

2n =
n∑
i=0

(
n

i

)
≤ |�| ≤

n∑
i=0

(
N

i

)
≤ min

{
(N + 1)n,2N

}
and

p(σ )= exp
(∑

J⊂I,1≤|J |≤n θJ ·∏i∈J σi
)

∑
σ ′∈� exp

(∑
J⊂I,1≤|J |≤n θJ ·∏i∈J σ ′

i

)I�(σ ).
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3.3. Structuring fields and the dynamical setting.

DEFINITION 3.8. We call the vector field &E : P(�)→ T(�) defined by

p �→&E(p) := gradDE (p)

the structuring field with respect to E .

The most trivial example is given by E := P(�). In that case the structuring
field vanishes identically and there is no “motion.” The complementary situation
where E consists of only one point is discussed in Example 3.13.

PROPOSITION 3.9. Let E be an exponential family in P(�). Then for every
initial point p0 ∈ P(�) there exists a unique maximal solution γ : I → P(�) for
the problem

dγ

dt
=&E(γ ), γ (0)= p0.(3.4)

If limt→sup I γ (t) exists and is projectable, then sup I =∞.

To translate the results stated in Section 3.1 into the dynamical setting, we define
the following:

DEFINITION 3.10. A point p ∈ P̄(�) is a (positive) limit point with respect
to &E iff there exists a solution γ : I → P(�) for &E that converges to p:
limt→sup I γ (t) = p. The limit point p is stable iff there exists an open neigh-
borhood U of p in P̄(�) such that for every point p0 ∈ U ∩ P(�) there exists a
solution with initial point p0 that converges to p.

REMARK 3.11. The correspondence between stable limit points and locally
maximal points with respect to DE is not one to one. The property to be a locally
maximal point does not imply the stability in the sense of Definition 3.10.

THEOREM 3.12. Let E be an exponential family in P(�) and p ∈ domE a
limit point with respect to the structuring field &E . Then the statements (3.3) in
Proposition 3.1 are valid. If the limit point p is stable, the cardinality of its support
set can be estimated as in Proposition 3.2.

EXAMPLE 3.13. If the exponential family E consists of only one point
q∈P(�), then the projection is given by πE(p) = q for all p ∈ P(�). We have
the structuring field

p �→ gradDE (p)=
∑
ω∈�

p(ω)

(
ln
p(ω)

q(ω)
−D(p‖q)

)
eω.
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FIG. 2. Structuring field with respect to the centroid in dimensions 2 and 3.

With an initial point p0 ∈ P(�), we obtain the following solution γ = (γω)ω∈�:
R →P(�) for the problem (3.4):

γω(t)= q(ω)1−et p0(ω)
et∑

ω′∈� q(ω′)1−et p0(ω
′)et

.(3.5)

The trajectory of γ is a (+1)-geodesic going through p0. Furthermore, we have,
for all ω,

lim
t→−∞γω(t)= q(ω)

and

lim
t→+∞ γω(t)= q(ω)

q(M)
IM(ω) with M := arg max

ω′
p0(ω

′)
q(ω′)

.

For a generic p0, M has only one element ω and the orbit converges to the Dirac
measure that is concentrated in ω. Figure 2 illustrates the flow in P(�) for |�| = 3
and |�| = 4 with respect to the centroid as repelling set.

The trajectories are related to those appearing in statistical physics by variation
of the inverse temperature β . There, one considers distributions of the form

pβ(ω)= e−βE(ω)∑
ω′∈� e−βE(ω

′) ,

whereE denotes the energy function. Setting β := et andE := − lnp0, one obtains
a special case of (3.5).

MAIN EXAMPLE, PART 3 (Some computer simulations). With (2.1) we get
the structuring field

p �→&F (p)=
∑

ω=(ω1,...,ωN )

∈�1×···×�N

p(ω)

(
lnp(ω)+H(p)−

N∑
i=1

(
lnpi(ωi)+H(pi)

))
eω,
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FIG. 3. Simulations of &F for two binary units.

with respect to the exponential family F of the factorizable distributions on the
product set �1 × · · · ×�N . For the simulation of the corresponding process, with
an initial point p0 and a sequence εn ↓ 0, we define the following iteration rule:

p(0) := p0 and p(n+1) := rnp
(n)

(
p(n)

p
(n)
1 ⊗ · · · ⊗ p

(n)
N

)εn
, n= 0,1,2, . . . .

Here, rn is the normalization factor at time n. This iteration, which follows
the gradient method with respect to the (+1)-geodesics, has not been analyzed
analytically.

In the following, the structuring process is illustrated by some computer
simulations, starting with the case of binary units:

(i) In the Venn diagrams shown in Figures 3 and 4, each circle represents one
unit. The interior and the exterior of such a circle are the disjoint events in the
configuration set of the system corresponding to the two states of the unit. Each
diagram illustrates a probability distribution on the set of all atoms, which are
generated by the events of all units in the system. The gray value of an atom is
proportional to the probability of the atom; “white” is the maximal probability in a
given Venn diagram. The diagrams on the left-hand side are the initial distributions
and the ones on the right-hand side are the limit (structured) distributions.

We start with two units (see Figure 3); this is the situation that has been
discussed in Section 1.2. The stable limit distributions are 1

2 (δ(0,0) + δ(1,1)) and
1
2 (δ(1,0) + δ(0,1)) (see Figure 1). Figure 4 gives some examples for three binary
units.

(ii) Now consider two units with the state sets �1 = {1,2, . . . ,m} and �2 =
{1,2, . . . , n}. Every (m×n)-field in the simulations shown in Figure 5 represents a
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FIG. 4. Simulations of &F for three binary units.
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FIG. 5. Simulations of &F for some cardinalities m,n≥ 3.

probability distribution on the configuration set �1 ×�2. The horizontal direction
of each field corresponds to the elements of �1 and the vertical to the ones of �2.
The gray value of an event (i, j) ∈ �1 × �2 is proportional to its probability;
“white” is the maximal probability in a given field.

With these examples, one can see that the process has the tendency to structure
the initial distribution in such a way that the support set becomes a graph of a
one-to-one mapping between the state sets of the two units. Of course, this is
only possible for the case m= n. The situation m> n is illustrated in the last
two simulations in Figure 5, where the support set of each final distribution is the
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graph of a surjective mapping. This is a consequence of the entropy maximization
in each unit [see (2.1)].

REMARK 3.14. Within the framework of information geometry, gradient
fields have been studied in [13] and [24]. In [13], although the underlying
mathematical structure is more general than in the present paper, the flows
correspond to our situation of a one-point exponential family as in Example 3.13. It
has been proven ([13], Theorem 1) that the trajectories of such flows are in general
of geodesic type.

3.4. Some problems and comments. (i) Dependency among stochastic units
is frequently referred to as “stochastic interaction” [3]. Of course, the dynamical
aspects of interaction are ignored in the present approach. A generalization of
this approach to Markov processes is necessary for a better understanding of the
dynamical properties of strongly interacting units.

(ii) Theorem 3.5 guarantees the existence of low-dimensional exponential
families E∗ that capture all optimal distributions with respect to DE . One has
to construct such families more explicitly in order to define models for learning
systems.

(iii) From the learning-theoretical point of view, statements like Theorem 3.5
are interesting for the reason that they provide a characterization of parameter
sets for learning systems with high generalization ability. Although the setting of
statistical learning theory by Vapnik and Chervonenkis [29] is different from the
present one, a broad notion of generalization can be captured by its mathematical
basis given in [30].

4. Proofs.

LEMMA 4.1. Let E be a d-dimensional exponential family in P(�) generated
by p0 and v1, . . . , vd . If a point p is projectable on E , that is, p ∈ domE , then
there exist a neighborhoodU of p in R

� and continuously differentiable functions
li : U → R, i = 1, . . . , d , such that for all q ∈U ∩ P̄(�) the following holds:

q ∈ domE and πE(q)=
∑
ω∈�

exp
(∑d

i=1 li (q)vi(ω)
)

∑
ω′∈� exp

(∑d
i=1 li (q)vi(ω

′)
)eω.

LEMMA 4.2. Let E be an exponential family in P(�). Then DE is continuous
on P̄(�).

PROOF. Let p be a point in P̄(�) and pn ∈ P̄(�), n ∈ N, a sequence with
pn → p. For all q ∈ E ⊂P(�), we have

DE(pn)≤D(pn ‖q).(4.6)
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The continuity of D(· ‖q) implies the convergence

lim
n→∞D(pn ‖q)=D(p ‖q).(4.7)

With (4.6) and (4.7), one has

lim sup
n→∞

DE(pn)≤ lim sup
n→∞

D(pn ‖q)= lim
n→∞D(pn ‖q)=D(p ‖q).(4.8)

From the lower semicontinuity of the Kullback–Leibler divergence D (see, e.g.,
[9], [16] and [18]), we get the same continuity property for the map DE (see [26],
Theorem 1.17, page 16). With this, taking the infimum of the right-hand side of
(4.8) leads to

lim sup
n→∞

DE(pn)≤ inf
q∈ED(p ‖q)=DE(p)(4.9)

≤ lim inf
n→∞ DE(pn).(4.10)

So, the equality holds in (4.9) and (4.10) and we finally get

lim
n→∞DE(pn)=DE (p) . �

PROOF OF PROPOSITION 3.1. With an arbitrary numbering � := suppp =
{ω1, . . . ,ωn+1}, we consider the coordinate chart

ϕ:

{
(θ1, . . . , θn) ∈ R

n : θi > 0 for all i,
n∑
i=1

θi < 1

}
→P(�),

with

θ = (θ1, . . . , θn) �→ ϕ(θ1, . . . , θn) :=
n∑
i=1

θieωi +
(

1 −
n∑
i=1

θi

)
eωn+1 .

The tangent space T(�) is spanned by the vectors ∂i := ∂ϕ/∂θi = eωi − eωn+1 ,
i = 1, . . . , n, and the Fisher metric in p is given by the matrix

gij (p) := 〈∂i, ∂j 〉p = 1

p(ωn+1)




p(ωn+1)
p(ω1)

+ 1 1 · · · 1

1 p(ωn+1)
p(ω2)

+ 1 · · · 1
...

...
. . .

...

1 1 · · · p(ωn+1)
p(ωn)

+ 1




(see [1], Example 2.4, page 31). We have the corresponding inverse matrix

gij (p)=



p(ω1)

(
1 − p(ω1)

) −p(ω1)p(ω2) · · · −p(ω1)p(ωn)

−p(ω2)p(ω1) p(ω2)
(
1 − p(ω2)

) · · · −p(ω1)p(ωn)
...

...
. . .

...

−p(ωn)p(ω1) −p(ωn)p(ω2) · · · p(ωn)
(
1 − p(ωn)

)


 .
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Let E be a d-dimensional exponential family generated by p0 and v1, . . . , vd .
According to Lemma 4.1, in a neighborhood of ϕ−1(p) we have the representation

πE
(
ϕ(θ)

)
(ω)= exp

(∑d
i=1 li (ϕ(θ))vi(ω)

)
∑

ω′∈� exp
(∑d

i=1 li (ϕ(θ))vi(ω
′)
) , ω ∈�.

With

DE
(
ϕ(θ)

)= n∑
i=1

θi ln
θi

πE(ϕ(θ))(ωi)
+


1 −

n∑
i=1

θi


 ln

(
1 −∑n

i=1 θi
)

πE(ϕ(θ))(ωn+1)
,

elementary calculations lead to

∂iDE (p)= ∂(DE ◦ ϕ)
∂θi

(
ϕ−1(p)

)
= ln

p(ωi)

πE(p)(ωi)
− ln

p(ωn+1)

πE(p)(ωn+1)

+
d∑

j=1

∂(lj ◦ ϕ)
∂θi

(θ)
(
EπE (p)(vj )−Ep(vj )

)
.(4.11)

It is well known that the equation

EπE (p)(x)= Ep(x)(4.12)

holds for all x ∈ V. Thus the term (4.11) vanishes, and with the gradient formula
we get

gradDE(p)=
n∑

i,j=1

gij (p)∂iDE(p)∂j (p)

=
n∑

i,j=1

p(ωi)
(
δij − p(ωj )

)(
ln

p(ωi)

πE(p)(ωi)
− ln

p(ωn+1)

πE(p)(ωn+1)

)
∂j (p)

=
n∑
i=1

p(ωi)

(
ln

p(ωi)

πE(p)(ωi)
−DE(p)

)
∂i(p)

= ∑
ω∈�

p(ω)

(
ln

p(ω)

πE(p)(ω)
−DE (p)

)
eω. �

PROOF OF PROPOSITION 3.2. With aff C we denote the usual affine hull of
a set C ⊂ R

�. We set P := P(suppp) and F := affπ−1
E ({πE(p)}) and define the

(−1)-convex set

S := F ∩P ⊂ domE .
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With DE , the restriction of DE to S attains a locally maximal value in p. Because
of the strict convexity of this restriction, p is an extreme point of S. Furthermore,
S is a relatively open set (i.e., open in aff S). This is only possible in the case in
which S consists of exactly one point: S = {p}. With this, one also has

F ∩ affP = {p}.(4.13)

Finally, we apply the dimension formula:

|�| − 1 = dimP(�)= dim affP(�)≥ dim(F ∪ affP)
= dim F + dim affP − dim(F ∩ affP)︸ ︷︷ ︸

=0, with (4.13)

= (|�| − 1 − dimE)+ | suppp| − 1. �

PROOF OF THEOREM 3.5. Let E be generated by p0 and v1, . . . , vd and p ∈
domE a locally maximal point with respect to DE . From Proposition 3.2 we know
| suppp| ≤ d + 1. Now we choose an injective map ϕ = (ϕ1, . . . , ϕd+1): � →
R
d+1 such that the points ϕ(ω), ω ∈�, are in general position; that is, d ′ elements

of ϕ(�) with d ′ ≤ d + 2 are affinely independent. This guarantees the existence of
real numbers a1, . . . , ad+1, b such that{

ω ∈� :
d+1∑
i=1

aiϕi(ω)= b

}
= suppp(4.14)

holds.
Define E∗ to be generated by p0 and

v1, . . . , vd, ϕ1, . . . , ϕd+1, ϕiϕj ,1 ≤ i ≤ j ≤ d + 1.

We have

dimE∗ ≤ d + (d + 1)+ (d + 1)2 + (d + 1)

2
= 1

2
(d2 + 7d + 4).

Finally, we show that there is a sequence (pn) in E∗ that converges to p. With a
sequence βn ↑∞ and real numbers a1, . . . , ad+1, b satisfying (4.14), we set

x := ln
πE(p)

p0
, r

(n)
i := 2βnbai, s

(n)
ij := −βnaiaj ,

xn := x +
d+1∑
i=1

r
(n)
i ϕi +

d+1∑
i,j=1

s
(n)
ij ϕiϕj − βnb

2 = x − βn

(
d+1∑
i=1

aiϕi − b

)2

and

pn := p0 expxn∑
ω′∈� p0(ω

′) expxn(ω′)
∈ E∗.
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With this, we have

lim
n→∞pn(ω)= πE(p)(ω)

πE(p)(suppp)
Isuppp(ω)= p(ω).

Here, the last equality follows from (3.3). �

PROOF OF LEMMA 3.7. With (4.12), we have

p(suppp ∩A)= p(A)= πEA (p)(A) > 0

and therefore suppp ∩ A �= ∅ for every nonempty set A ⊂ � with A ∈ A or
� \A ∈ A . �

PROOF OF PROPOSITION 3.9. The first statement about the existence and
uniqueness of maximal solutions follows from the regularity of the vector field
(see [15], page 159). To prove the second statement, assume sup I < ∞. Then
p := limτ→sup I γ (τ ) is a projectable element of the boundary P̄(�) \ P(�)
(see [15], page 171). Let U be an open neighborhood of p in R

� as in Lemma 4.1.
Because of the continuous differentiability of the li , there exists an open ball
B ⊂ R

� with p ∈ B ⊂ U such that the function B → R, x �→ max1≤i≤d |li (x)|,
is bounded from above. Now consider the exponential map expc: T(�)→ P(�)
in the centroid c with respect to the (+1)-geodesics:

x �→ ∑
ω∈�

expx(ω)∑
ω′∈� expx(ω′)

eω.

The preimage V := exp−1
c (B ∩P(�)) is an open and unbounded set in T(�) and

we get

‖(gradDE ◦ expc)(x)‖ ≤ ‖x‖ + constant

for all x ∈ V ; that is, the composed vector field is linearly bounded on V . Therefore
the solutions can be extended to all positive times. �

PROOF OF THEOREM 3.12. We know that there exists a solution γ =
(γω)ω∈�: I → P(�) for &E with sup I =∞ and limt→∞ γ (t) = p (Proposi-
tion 3.9). As a continuous function on a compact set, DE is bounded from above
by a number C <∞ and we have∫ t

0

∥∥∥∥dγdt (τ )
∥∥∥∥2

dτ ≤
∫ t

0

∥∥∥∥dγdt (τ )
∥∥∥∥2

γ (τ)

dτ

=
∫ t

0

〈
dγ

dt
(τ ),

dγ

dt
(τ )

〉
γ (τ)

dτ

=
∫ t

0

〈
gradDE

(
γ (τ )

)
,
dγ

dt
(τ )

〉
γ (τ)

dτ



434 N. AY

=DE
(
γ (t)

)−DE
(
γ (0)

)
≤ 2C.

This implies

lim
t→∞

∫ t

0

∥∥∥∥dγdt (τ )
∥∥∥∥2

dτ <∞,

and the sets

A(n,T ) :=
{
τ > T :

∥∥∥∥dγdt (τ )
∥∥∥∥2

≤ 1

n

}
, n= 1,2, . . . , T ∈ I,

are nonempty. We choose a sequence (τn)n∈N of real numbers with

τ0 = 0 and τn ∈A(
n,max{n, τn−1}), n= 1,2, . . . .

Such a sequence obviously has the properties τn ↑∞ and limn→∞‖(dγ /dt)(τn)‖
= 0. Thus

0 = lim
n→∞

dγω

dt
(τn)

= lim
n→∞γω(τn)

(
ln

γω(τn)

πE(γ (τn))(ω)
−DE

(
γ (τn)

))

= p(ω)

(
ln

p(ω)

πE(p)(ω)
−DE (p)

)
.

This proves p(ω)= eDE (p)πE(p)(ω) for all ω ∈ suppp.
To complete the proof, according to Proposition 3.2 it is sufficient to show

that DE attains a locally maximal value in the stable limit point p: The stability
assumption guarantees the existence of a neighborhood U of p in P̄(�) such
that for every initial point p0 ∈ U ∩ P(�) there is a solution for the gradient
field &E with limt→∞ γ (t) = p. Of course, we have DE (p0) ≤ DE(p). The
continuity of DE implies that this inequality also holds for an arbitrary p0 ∈ U =
(U \P(�)) " (U ∩P(�)). �
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