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STABILITY OF THE OVERSHOOT FOR LÉVY PROCESSES

BY R. A. DONEY AND R. A. MALLER1

University of Manchester and University of Western Australia

We give equivalences for conditions like X(T (r))/r → 1 and X(T ∗(r))/
r → 1, where the convergence is in probability or almost sure, both as
r → 0 and r → ∞, where X is a Lévy process and T (r) and T ∗(r) are the
first exit times of X out of the strip {(t, y) : t > 0, |y| ≤ r} and half-plane
{(t, y) : t > 0, y ≤ r}, respectively. We also show, using a result of Kesten,
that X(T ∗(r))/r → 1 a.s. as r → 0 is equivalent to X “creeping” across a
level.

1. Introduction. Our Lévy process has exponent �(θ), so that EeiθX(t) =
e−t�(θ) where

�(θ) = 1
2σ

2θ2 − iγ θ +
∫
(−∞,∞)

(
1 − eiθx + iθx1{|x|≤1}

)
�(dx),

(1.1)
θ ∈ R,

and � is a measure satisfying∫
(−∞,∞)

{x2 ∧ 1}�(dx) <∞.(1.2)

We use the functions (all on x > 0)

N(x) = �
(
(x,∞)

)
, M(x)=�

(
(−∞,−x)

)
,

L(x) = N(x)+M(x), D(x)=N(x)−M(x),

A(x)= γ +D(1)−
∫ 1

x
D(y) dy = γ +

∫
(x,1]

y dD(y)+ xD(x)

and

U(x)= σ 2 + 2
∫ x

0
yL(y) dy.

As is explained in Doney and Maller (2002), A and U play the rôles that the
truncated mean and truncated variance do in the random walk situation.

We assume throughout that L(0+) > 0; in the contrary case X is either a pure
drift, or a Brownian motion, and our results are essentially trivial.
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2. Stability of X at 0. We begin with weak stability. Define the “two-sided”
exit time

T (r)= inf
{
t > 0 : |X(t)| > r

}
, r > 0.(2.1)

THEOREM 1. We have

|X(T (r))|
r

P→ 1 as r ↓ 0,(2.2)

if and only if

X ∈D0(N)∪RS (at 0).(2.3)

To explain (2.3): D0(N) (at 0) is the domain of attraction of uncentered X

to normality, as t ↓ 0; precisely, X ∈ D0(N) (at 0) if there is a non-stochastic

(measurable) function b(t) > 0 such that X(t)/b(t)
D→N(0,1) as t ↓ 0.

RS (at 0) is the class of processes relatively stable at 0; X ∈ RS (at 0) if

there is a non-stochastic b(t) > 0 such that X(t)/b(t)
P→ ±1 as t ↓ 0. Equivalent

analytic conditions for D0(N) and RS (both at 0 and at ∞) along with further
discussion are in Doney and Maller (2002). In particular under our assumption
that L(0+) > 0, we have that X ∈D0(N) (at 0) if and only if

U(x)

x2L(x)+ x|A(x)| → ∞ as x ↓ 0,(2.4)

and when this happens U(x) is slowly varying as x ↓ 0. Also X ∈RS (at 0) if and
only if σ 2 = 0 and

|A(x)|
xL(x)

→ ∞ or, equivalently,
x|A(x)|
U(x)

→ ∞ as x ↓ 0,(2.5)

and in this case A(x) is slowly varying as x ↓ 0.
D0(N) (at ∞) and RS (at ∞) are defined in an exactly analogous way, and we

have X ∈D0(N) (at ∞) if and only if (2.4) holds (with x → ∞ rather than x ↓ 0),
and X ∈RS (at ∞) if and only if (2.5) holds (with x → ∞ rather than x ↓ 0).

We mention a result related to Theorem 1 which crops up during the proof of
the theorem:

THEOREM 2.

X(T (r))

r
is tight as r ↓ 0,(2.6)

if and only if

lim
λ→∞ lim sup

x→0+
x2L(xλ)

x|A(x)| +U(x)
= 0.(2.7)
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The next theorem characterizes a.s. stability.

THEOREM 3. We have
|X(T (r))|

r

a.s.→ 1 as r ↓ 0,(2.8)

if and only if

σ 2 > 0 or σ 2 = 0,
∫ 1

0
L(x)dx <∞ and δ = lim

x→0+A(x) �= 0.(2.9)

REMARK 1. It should be noted that the two situations in which (2.9) hold are
completely different. In the first case the probability that X exits the interval at the
top tends to 1/2, whereas in the second case X has bounded variation, δ is its drift
coefficient, and X(T (r))/r

a.s.→ 1 if δ > 0 and
a.s.→ −1 if δ < 0.

Now define the “one-sided” exit time

T ∗(r)= inf
{
t > 0 :X(t) > r

}
, r > 0.(2.10)

Let Z+ be the upward ladder height subordinator associated with X, and let δ+ be
its drift. (Similarly Z− will be the ladder height process for −X, and δ− its drift.)
Define

T ∗+(r)= inf
{
t > 0 :Z+(t) > r

}
, r > 0.(2.11)

Then clearly

X
(
T ∗(r)

)= Z+
(
T ∗+(r)

)
.(2.12)

THEOREM 4. We have
X(T ∗(r))

r

a.s.→ 1 as r ↓ 0,(2.13)

if and only if δ+ > 0.

REMARK 2. The process X is said to creep across the height r0 > 0 if its
overshoot X(T ∗(r0))− r0 at r0 is zero with positive probability, that is,

P
{
X
(
T ∗(r0)

)= r0
}
> 0.(2.14)

Millar [(1973), Corollary 3.3] shows (under some basic assumptions) that X
creeps across (some) r0 > 0 if and only if

P
{
X
(
T ∗(r)

)= r
}→ 1 as r ↓ 0(2.15)

[and then (2.14) holds for all r0 > 0]. This suggests a connection of creeping with
the (weak) stability of X(T ∗(r)). In fact, the connection is closer with strong
stability, as Kesten (1969) showed that X creeps (at some, hence all, r > 0) if
and only if δ+ > 0. Thus we have:
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COROLLARY 1. X creeps if and only if (2.13) holds.

So far we do not have an analytic equivalence for (2.13), but one is conjectured
in the next section.

REMARK 3. The above discussion suggests saying that the modulus creeps
across the level r0 > 0 if

P
{∣∣X(T (r0)

)∣∣= r0
}
> 0.(2.16)

An interesting problem is that of finding a necessary and sufficient condition,
in terms of the characteristics of X, for (2.16) to hold. In view of the one-sided
results, it is tempting to think that (2.16) is equivalent to (2.8). However there
are examples of Lévy processes which have infinite variation and no Brownian
component [so that (2.9), and hence (2.8) fail] which have δ+ > 0, and then (2.16)
holds.

3. Stability of X at ∞. The next three results parallel Theorems 1–3 of
Section 2; their proofs are merely sketched in Section 6.

THEOREM 5. We have

|X(T (r))|
r

P→ 1 as r → ∞,(3.1)

if and only if

X ∈D0(N)∪RS (at ∞).(3.2)

THEOREM 6.

X(T (r))

r
is tight as r → ∞,(3.3)

if and only if

lim
λ→∞ lim sup

x→∞
x2L(xλ)

x|A(x)| +U(x)
= 0.(3.4)

THEOREM 7. We have

|X(T (r))|
r

a.s.→ 1 as r → ∞,(3.5)

if and only if

EX2 <∞ and EX = 0 or 0 < |EX| ≤ E|X|<∞.(3.6)
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REMARK 4. It should again be noted that the two situations in which (3.6)
hold are completely different. In the first case the probability that X exits the
interval at the top tends to 1/2, whereas in the second case X(T (r))/r

a.s.→ 1 if
EX > 0 and

a.s.→ −1 if EX < 0.

Finally we consider one-sided stability at ∞.

THEOREM 8. Assume X oscillates as t → ∞. Then the following are equiva-
lent:

X(T ∗(r))
r

a.s.→ 1 as r → ∞;(3.7)

X
(
T ∗(r)

)− r is tight as r → ∞;(3.8)

X
(
T ∗(r)

)− r has a (proper) limiting distribution as r → ∞;(3.9)

E
(
Z+(1)

)
<∞;(3.10)

E
(
X
(
T ∗(r)

))
<∞ for all r > 0;(3.11)

E

(
X(T ∗(r))

r

)
→ 1 as r → ∞;(3.12)

E|X(1)|<∞, E(X(1))= 0 and

J :=
∫
[1,∞)

xN(x) dx∫ x
0 dy

∫∞
y M(z) dz

< ∞.
(3.13)

Alternatively, if X(t) → ∞ a.s. as t → ∞, then (3.7)–(3.12) hold if and only if
0 <EX(1)≤ E|X(1)|<∞.

REMARK 5. Note that when X oscillates M(0+) > 0, so the denominator
in (3.13) is positive. The oscillatory behavior of X as t → ∞ is well understood.
Rogozin (1966) shows that limt→∞ Xt = ∞ a.s., limt→∞ Xt = −∞ a.s., or

−∞ = lim inf
t→∞ Xt < lim sup

t→∞
Xt = +∞ a.s.

Integral tests for these [based, essentially, on results of Bertoin (1997)], are in
Doney and Maller (2002).

REMARK 6. We conjecture that a variant of the integral in (3.13) is the right
one to test for “creeping,” that is, a.s. stability of X(T ∗(r))/r , as r ↓ 0; namely∫ 1

0

N(x)dx∫ 1
x M(y) dy

<∞.(3.14)
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4. Preliminary results for the proofs. Our first result is similar, in content
and proof, to Proposition 2 of Bertoin [(1996), page 76]. Let

Ur(dy)=
∫ ∞

0
P

{
sup

0≤u<t

|X(u)| ≤ r,X(t−) ∈ dy

}
dt.

LEMMA 1. For 0 ≤ |y| ≤ r < |z| we have

P
{
X
(
T (r)− ) ∈ dy,X

(
T (r)

) ∈ dz
}= Ur(dy)�(dz− y).(4.1)

PROOF. Write 't = X(t) − X(t−) for the jump in X at time t [we will
sometimes write '(t)]. We proceed as in Bertoin, using the “compensation
formula” [Bertoin (1996), page 7] to get, for Borel functions f (·) and g(·), and
r > 0,

E
(
f
(
X
(
T (r)− ))

g
(
X
(
T (r)

)))
= E

(∑
t≥0

f
(
X(t−)

)
g
(
X(t)

)
1
{
T (r)= t

})

=E

(∑
t≥0

f
(
X(t−)

)
g
(
X(t−)+'t

)

× 1
{

sup
0≤u<t

|X(u)| ≤ r, |X(t−)+'t |> r

})

=
∫ ∞

0
dt E

(
f
(
X(t−)

)
1
{

sup
0≤u<t

|X(u)| ≤ r

}

×
∫ ∞
−∞

g
(
X(t−) + s

)
1
{∣∣X(t−)+ s

∣∣> r
}
�(ds)

)
=
∫ ∞

0
dt

∫
|y|≤r

f (y)

∫
s:|y+s|>r

g(y + s)�(ds)

× P

{
sup

0≤u<t

|X(u)| ≤ r, X(t−) ∈ dy

}

=
∫
|y|≤r

∫
|z|>r

f (y)g(z)�(dz− y)

∫ ∞
0

P

{
sup

0≤u<t

|X(u)| ≤ r,X(t−) ∈ dy

}
dt

=
∫
|y|≤r

∫
|z|>r

f (y)g(z)�(dz− y) Ur(dy),

and the result follows. �

COROLLARY 2. For |z|> r > 0,

P
{
X
(
T (r)

) ∈ dz
}=

∫
|y|≤r

�(dz− y)Ur(dy).(4.2)



194 R. A. DONEY AND R. A. MALLER

COROLLARY 3. For all λ > 0, r > 0,

P
{∣∣X(T (r))∣∣− r > λ

}
=
∫
|y|≤r

{
�
(
(λ+ r − y,∞)

)+�
((−∞,−(λ + r + y)

))}
Ur(dy)(4.3)

=
∫
|y|≤r

{
N(λ+ r − y)+M(λ+ r + y)

}
Ur(dy).

Corollary 3 generalizes Proposition 3.1 of Griffin and McConnell (1992).

COROLLARY 4. For all r > 0, λ > 1,

L
(
(λ+ 1)r

)
E
(
T (r)

)≤ P

{ |X(T (r))|
r

> λ

}
≤ L

(
(λ− 1)r

)
E
(
T (r)

)
.(4.4)

PROOF. Replace λ by (λ− 1)r , where λ > 1, in Corollary 3 to get

P
{∣∣X(T (r))∣∣> λr} =

∫
|y|≤r

(
N(λr − y)+M(λr + y)

)
Ur(dy)

≤ (
N
(
(λ− 1)r

)+M
(
(λ− 1)r

))
Ur([−r, r])

= L
(
(λ− 1)r

)
E
(
T (r)

)
,

because

Ur

([−r, r])=
∫ ∞

0
P
{

sup
0≤u<t

|X(u)| ≤ r, |X(t)| ≤ r
}
dt

=
∫ ∞

0
P
{

sup
0≤u≤t

|X(u)| ≤ r
}
dt(4.5)

=
∫ ∞

0
P
{
T (r) > t

}
dt =E

(
T (r)

)
.

Similarly,

P
{∣∣X(T (r))∣∣> λ

}≥ L
(
(λ+ 1)r

)
E
(
T (r)

)
,

and the result follows. �

The next lemma is based on inequalities of Pruitt (1981). Let

X(t) = sup
0≤s≤t

|X(s)|

and write

k(x)= x−1|A(x)|+x−2U(x), x > 0.(4.6)
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LEMMA 2. There are positive constants c1, c2, c3, c4 such that, for all r > 0,
t > 0,

P
{
X(t) ≥ r

}≤ c1tk(r), P
{
X(t) ≤ r

}≤ c2

tk(r)
(4.7)

and

c3

k(r)
≤ E

(
T (r)

)≤ c4

k(r)
.(4.8)

Moreover,

1

λ3 ≤ k(λx)

k(x)
≤ 3 for all x > 0 and λ > 1.(4.9)

PROOF. Pruitt gives (4.7), but using a certain function h(x) in place of our
k(x), and he also takes σ 2 = 0; assume this for the moment. A straightforward
calculation shows that Pruitt’s h(x) is, in our notation,

h(x)= |A(x)− xD(x)|
x

+ U(x)

x2 = |γ + ∫
(x,1] y dD(y)|

x
+ U(x)

x2 .

Since |D(x)| ≤ N(x)+M(x) =L(x)≤ U(x)/x2, we have immediately that

h(x) ≤ 2
( |A(x)|

x
+ U(x)

x2

)
= 2k(x).

Also

k(x) = |A(x)|
x

+ U(x)

x2

≤ |γ + ∫
(x,1] y dD(y)|

x
+ xL(x)+ U(x)

x2

≤ |γ + ∫
(x,1] y dD(y)|

x
+ 2U(x)

x2 ≤ 2h(x).

In other words, for all x > 0,

1
2k(x)≤ h(x)≤ 2k(x).

Thus indeed (4.7) holds, provided we can insert σ 2 in the definition of U(x), as
we have it. A perusal of Pruitt’s proof shows that we can do this (just replace his
process X1 by X1 + σ 2B, where B is an independent BM). Hence (4.7) holds.
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Now for λ > 1,

k(λx) = |A(xλ)|
xλ

+ U(xλ)

(xλ)2

≤ |A(x)|
xλ

+ (λ− 1)

λ
L(x)+ U(x)

(xλ)2
+ (λ2 − 1)L(x)

λ2
(4.10)

≤ |A(x)|
x

+ 3U(x)

x2 ≤ 3k(x).

Also

k(x) ≤ |A(λx)|
x

+ (λ− 1)L(x)+ U(x)

x2

≤ λ
|A(λx)|

λx
+ (λ− 1)U(x)

x2
+ U(x)

x2

≤ λ
|A(λx)|

λx
+ λ3U(λx)

λ2x2
≤ λ3k(λx).

This gives (4.9).
The proof of (4.8) is essentially the same as that of Pruitt’s Theorem 1. First

note that for y > t/2, X̃(y) = X(y) − X(t/2) is independent of X(t/2), so for
r > 0,

P
{
X(t)≤ r

}= P

{
X(t/2) ≤ r, sup

t/2<y≤t

∣∣X(t/2)+ X̃(y)
∣∣≤ r

}

≤ P
{
X(t/2)≤ r

}
P

{
sup

t/2<y≤t

∣∣X(y)−X(t/2)
∣∣≤ 2r

}
≤ P

{
X(t/2)≤ r

}
P
{
X(t/2)≤ 2r

}≤ (
P
{
X(t/2) ≤ 2r

})2
.

So, for any N > 0,

E(T (r)) =
∫ ∞

0
P
{
T (r) > t

}
dt =

∫ ∞
0

P
{
X(t) ≤ r

}
dt

≤ N +
∫ ∞
N

P
{
X(t) ≤ r

}
dt

≤ N +
∫ ∞
N

(
P
{
X(t/2) ≤ 2r

})2
dt

= N + 2
∫ ∞
N/2

(
P
{
X(t) ≤ 2r

})2
dt ≤ N + 2

∫ ∞
N/2

c2
2

t2k2(2r)
dt

= N + 4c2
2

Nk2(2r)
.
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Now choose N = 1/k(2r) and use (4.9) to get

E
(
T (r)

)≤ 1 + 4c2
2

k(2r)
≤ c4

k(r)
.(4.11)

For a lower bound, note that t ≤ {2c1k(r)}−1 implies P {X(t) > r} ≤ 1/2 by (4.7),
so

E
(
T (r)

)≥ ∫ {2c1k(r)}−1

0
P
{
X(t) ≤ r

}
dt ≥

∫ {2c1k(r)}−1

0

1

2
dt = 1

4c1k(r)
,

which together with (4.11) gives (4.8). �

For the one-sided case, let

U∗
r (dy)=

∫ ∞
t=0

P
{
X(t−) ∈ dy,X∗(t−) ≤ r

}
dt,

where

X∗(t) = sup
0≤u≤t

X(u).

Similar working to Lemma 1 gives:

LEMMA 3. Suppose U∗
r ((−∞, r]) < ∞ for all r ≥ 0. Then for −∞ < y ≤

r < z,

P
{
X
(
T ∗(r)− ) ∈ dy,X

(
T ∗(r)

) ∈ dz
}=�(dz− y)U∗

r (dy).(4.12)

COROLLARY 5. Suppose U∗
r ((−∞, r]) < ∞ for all r ≥ 0. Then for z>

r > 0,

P
{
X
(
T ∗(r)

) ∈ dz
}=

∫
y≤r

�(dz− y)U∗
r (dy)(4.13)

and

P
{
X
(
T ∗(r)

)
> z

}=
∫
y≤r

N(z− y)U∗
r (dy).(4.14)

5. Proofs for Section 2.

PROOF OF THEOREM 1. From (4.4) and Lemma 2 we see that there are
constants c3 > 0, c4 > 0 such that for all λ > 1, r > 0,

c3r
2L((λ+ 1)r)

r|A(r)| +U(r)
≤ P

{ |X(T (r))|
r

> λ

}
≤ c4r

2L((λ− 1)r)

r|A(r)| +U(r)
.(5.1)
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Hence we obtain using (4.9): |X(T (r))|/r P→ 1 as r ↓ 0 if and only if

r|A(r)| +U(r)

r2L(r)
→ ∞ as r ↓ 0.(5.2)

The next lemma, based on Proposition 3.1 of Griffin and McConnell (1995) [see
also Lemma 2.1 of Kesten and Maller (1998)] allows us to break (5.2) up into
component parts [cf. Griffin and Maller (1998)].

LEMMA 4. In the following, (5.3) implies (5.4) and (5.5), and (5.5)
implies (5.3):

x|A(x)| +U(x)

x2L(x)
→ ∞ as x ↓ 0;(5.3)

x|A(x)|
U(x)

→ 0 as x ↓ 0 or lim
x↓0

inf
x|A(x)|
U(x)

> 0;(5.4)

|A(x)|
xL(x)

→ ∞ as x ↓ 0 or
U(x)

x|A(x)| + x2L(x)
→ ∞ as x ↓ 0.(5.5)

PROOF. Let (5.3) hold. Suppose (5.4) fails, so

lim sup
x↓0

x|A(x)|
U(x)

> 0 and lim
x↓0

inf
x|A(x)|
U(x)

= 0.(5.6)

Then, by the continuity of A and U, we can find ε > 0 and rk ↓ 0, sk ↓ 0 with
rk < sk such that

rk|A(rk)|
U(rk)

= ε >
sk|A(sk)|
U(sk)

= ε

2
(5.7)

and

y|A(y)|
U(y)

≤ ε for all y ∈ [rk, sk].(5.8)

Take a further subsequence if necessary so that

sk

rk
→ λ ∈ [1,∞].(5.9)

Choose a constant D > 1 as follows: if λ < ∞ take D = λ + 1, otherwise D > 1
is arbitrary. Then choose η = η(ε,D) > 0 so that

1 + ηε + ηε2

1 − η − ηε
<D ∧ 3λ/2.(5.10)
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By (5.3) we can assume rk so small that

rkL(rk)≤ ηε

D2

(
U(rk)

rk
+ |A(rk)|

)
.(5.11)

Take any y ∈ [rk,Drk]. Then

|A(y)| =
∣∣∣∣γ +D(1)−

∫ 1

y
D(z) dz

∣∣∣∣≥ |A(rk)| −
∣∣∣∣∫ y

rk

D(z) dz

∣∣∣∣
≥ |A(rk)| − yL(rk) ≥ |A(rk)| −DrkL(rk)

≥ |A(rk)| − ηε

D

(
U(rk)

rk
+ |A(rk)|

)
[by (5.11)]

≥ |A(rk)| − ηε|A(rk)|(1/ε + 1) [by(5.7) and D > 1]
= (1 − η − ηε)|A(rk)|.

Next,

U(y) = σ 2 + 2
∫ y

0
zL(z) dz= U(rk)+ 2

∫ y

rk

zL(z) dz

≤ U(rk)+ y2L(rk) ≤U(rk)+D2r2
kL(rk)

≤ U(rk)+ ηε
(
U(rk)+ rk|A(rk)|) [by(5.11)]

= (1 + ηε + ηε2)U(rk) [by (5.7)].
Consequently, for y ∈ [rk,Drk],

y|A(y)|
U(y)

≥
(
y

rk

)
(1 − η − ηε)rk|A(rk)|
(1 + ηε + ηε2)U(rk)

=
(
y

rk

)
(1 − η − ηε)

(1 + η + ηε2)
ε.(5.12)

If λ < ∞ take y = sk in (5.12) to get [by (5.7)]

ε

2
= sk|A(sk)|

U(sk)
≥
(
sk

rk

)(
1 − η − ηε

1 + η + ηε2

)
ε → λ

(1 − η − ηε)

(1 + η + ηε2)
ε.(5.13)

But by (5.10) the last quantity exceeds 2ε/3, giving a contradiction. If λ = ∞ take
y =Drk in (5.12) to get

Drk|A(Drk)|
U(Drk)

≥ D
(1 − η − ηε)

(1 + η + ηε2)
ε > ε [by (5.10)].(5.14)

But since Drk ≤ sk for large k (since sk/rk → ∞), Drk ∈ [rk, sk], so (5.8) implies
that the left-hand side of (5.14) is no greater than ε. Again this is a contradiction.
Hence ( 5.3) implies (5.4).

If (5.3) holds then x|A(x)| = o(U(x)) from the left-hand side of (5.4), which
together with (5.3) gives the right-hand side of (5.5), or else U(x) = O(x|A(x)|)
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from the right-hand side of (5.4) which together with (5.3) gives the left-hand side
of (5.5). Finally, (5.5) obviously implies (5.3).

Theorem 1 is now immediate from (5.2), Lemma 4 and (2.4)–(2.5). �

PROOF OF THEOREM 2. This is immediate from (4.4) and (4.8). �

Next we aim to prove Theorem 3. The following results are needed.

LEMMA 5. We have ∫ 1

0

xL(x) dx

x|A(x)| +U(x)
<∞(5.15)

if and only if

σ 2 > 0 or σ 2 = 0,
∫ 1

0
L(x)dx <∞ and δ = lim

x↓0
A(x) �= 0.(5.16)

PROOF. Clearly (5.16) implies (5.15). Let (5.15) hold. If σ 2 > 0 then (5.16)
holds, so suppose σ 2 = 0. Our first step is to show that (5.3) holds. To this end
note that, by (4.9), y ≤ x implies k(x) ≤ 3k(y), thus, given ε > 0, we can choose
y so small that

ε ≥
∫ 2y

y

L(x) dx/x

|A(x)|/x +U(x)/x2

≥ 1

3k(y)

∫ 2y

y

L(x) dx

x
≥ L(2y) log 2

3k(y)
� L(2y)

k(2y)
.

[We use f (y)� g(y) to mean that f (y)/g(y) is bounded away from 0 and ∞ for
all sufficiently small (or large) y.] Hence (5.3) holds.

Now (5.3) implies, by Lemma 4, that (5.5) holds. If the right-hand side of (5.5)
holds, so that x|A(x)| = o(U(x)), and since σ 2 = 0, (5.15) gives

∞>

∫ 1

0

xL(x) dx

U(x)
=
∫ 1

0

xL(x) dx

2
∫ x

0 yL(y) dy
,

which is impossible. Thus the left-hand side of (5.5) holds, and σ 2 = 0, so
U(x)= o(xA(x)) by (2.5). Then (5.15) gives∫ 1

0

L(x)

|A(x)| <∞.(5.17)

Suppose
∫ 1

0 L(x)dx = ∞. Then

∣∣A(x)∣∣≤ ∣∣γ +D(1)
∣∣+ ∫ 1

x
L(y) dy ∼

∫ 1

x
L(y) dy as x ↓ 0.
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But this is impossible, according to (5.17). Hence
∫ 1

0 L(x) dx < ∞ and so δ =
limx↓0A(x) exists. If δ = 0 then

|A(x)| =
∣∣∣∣δ +

∫ x

0
D(y)dy

∣∣∣∣= ∣∣∣∣∫ x

0
D(y)dy

∣∣∣∣≤ ∫ x

0
L(y)dy,

which again is impossible by (5.17). Thus δ �= 0 and again (5.16) holds. �

LEMMA 6. For r > 0 and 0 < ε < 2,

P
{∣∣'(T (r))∣∣> εr

}≤ L(εr)Ur

([−r, r]).(5.18)

For r > 0 and η > 2,

P
{∣∣'(T (r))∣∣> ηr

}=L(ηr)Ur

([−r, r]).(5.19)

PROOF. By Lemma 1,

P
{∣∣'(T (r))∣∣> x

}
= P

{
X
(
T (r)

)
>X

(
T (r)− )+ x

}
+ P

{
X
(
T (r)

)
<X

(
T (r)− )− x

}
=
∫
|y|≤r

(∫
z>(y+x)∨r

+
∫
z<(y−x)∧(−r)

)
�(dz− y)Ur(dy).

(5.20)

By evaluating the inner integral we check the obvious fact that if x ≥ 2r,

P
{∣∣'(T (r))∣∣> x

}= M(x)Ur

([−r, r])+N(x)Ur

([−r, r])
= L(x)Ur

([−r, r]),
which establishes (5.19). When 0 < x < 2r, the same calculation gives

P
{∣∣'(T (r))∣∣> x

}=
∫
−r≤y≤r−x

N(r − y)Ur(dy)+N(x)Ur

(
(r − x, r])

+M(x)Ur

([−r,−r + x])+ ∫
−r+x<y≤r

M(r + y)Ur(dy).

Now put x = εr,0 < ε < 2. Then the right-hand side of this does not exceed

N(εr)Ur

([−r, (1 − ε)r])+M(εr)Ur

(
(−(1 − ε)r, r])

+N(εr)Ur

(
(1 − ε)r, r])+M(εr)Ur

([−r,−(1 − ε)r])
=L(εr)Ur

([−r, r]),
which establishes (5.18). �
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PROOF OF THEOREM 3. Let (2.9) hold, so by Lemma 5,∫ 1

0

L(x)dx

xk(x)
=
∫ 1

0

xL(x) dx

x|A(x)| +U(x)
< ∞.(5.21)

Choose 0 < λ< 1 and 0 < ε < 1. By Lemma 2, Ur([−r, r]) =E(T (r))� 1/k(r),
and by (4.9), k(εr)� k(r). So by (5.18), for some c > 0,∑
n≥0

P
{∣∣'(T (λn))∣∣> ελn

} ≤ c
∑
n≥0

L(ελn)

k(ελn)
≤ c

∑
n≥0

λ−n

1 − λ

∫ λn

λn+1

L(εy) dy

k(ελn)

≤ 3cλ−3

1 − λ

∑
n≥0

∫ λn

λn+1

L(εy)

yk(εy)
dy = 3cλ−3

1 − λ

∫ 1

0

L(εy) dy

yk(εy)

= 3cλ−3

1 − λ

∫ ε

0

L(y)dy

yk(y)
<∞.

Thus
'(T (λn))

λn
→ 0 a.s., as n → ∞.(5.22)

It follows that, for all large n,

λn <
∣∣X(T (λn))∣∣= ∣∣X(T (λn)− )+'

(
T (λn)

)∣∣≤ λn + o(λn) a.s.,

so ∣∣X(T (λn))∣∣/λn → 1 a.s., as n → ∞.

Then, given r > 0, choose n = n(λ, r) such that λn+1 ≤ r < λn. This gives

1 <
|X(T (r))|

r
≤ |X(T (λn))|

λn+1 → 1

λ
a.s., as r → 0 + .

Then let λ ↑ 1 to get (2.8).
Conversely, let (2.8) hold. Then, as n→ ∞,

|'(T (2−n))|
2−n

= |X(T (2−n))−X(T (2−n)−)|
2−n

a.s.≤ (1 + ε)+ 1 = 2 + ε.

Thus

P
{∣∣'(T (2−n)

)∣∣> (2 + ε)2−n i.o.
}= 0.(5.23)

Suppose we have ∑
P
{∣∣'(T (2−n)

)∣∣> (2 + ε)2−n
}
<∞.(5.24)

Then, using (5.19) and the same sort of manipulations as in the first part of the
proof, we get ∫ 1

0

xL(x) dx

x|A(x)| +U(x)
< ∞;(5.25)

hence, via Lemma 5, we have (2.9).
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So we need to deduce (5.30) from (5.23). We do this using a version of
the Borel–Cantelli lemma, modifying the working of Griffin and Maller (1998).
With ε > 0 fixed put rn = 2−n, xn = (2 + ε)rn and Bn = {|'(T (rn))| > xn}, so
that (5.30) is

∑
P (Bn) < ∞. Then for 1 ≤ m < l < ∞ we have P (Bm ∩ Bl)

=61 +62, where

61 =E

( ∑
0≤t<u<∞

1
{
T (rl) = t, T (rm)= u, |'t |> xl, |'u|> xm

})
(5.26)

and

62 =E

( ∑
0≤t<∞

1
{
T (rl)= t, T (rm)= t, |'t |> xm

})
.(5.27)

To estimate 61, note that on the event {T (rl)= t, T (rm)= u} we have X(t−) ≤ rl,

and supt≤z<u |X(z)−X(t)| ≤ 2rm. Thus 61 is not bigger than

E

( ∑
0≤t<u<∞

1
{
X(t−) ≤ rl, sup

t≤z<u
|X(z)−X(t)| ≤ 2rm, |'t |> xl, |'u|> xm

})
,

and this equals

∑
0≤t<u<∞

P
{
X(t−) ≤ rl, |'t |> xl

}
P

{
sup

0≤z<u−t

|X(z)| ≤ 2rm, |'u−t |> xm

}

=
(∫ ∞

0
P
{
X(t−) ≤ rl

}
dt L(xl)

)(∫ ∞
0

P
{
X(v−)≤ 2rm

}
dv L(xm)

)
(5.28)

=E
(
T (rl)

)
L(xl)E

(
T (2rm)

)
L(xm).

Similarly, on the event {T (rl) = T (rm) = t} we have X(t−) ≤ rl, and |'t | >
rm − rl, so

62 ≤ E

(∑
t≥0

1
{
X(t−) ≤ rl, |'t |> xm ∧ (rm − rl)

})
(5.29)

≤ E
(
T (rl)

)
L(rm/2).

Since E(T (r))� 1/k(r) as r → 0 by (4.8), we can find bounds for (5.29). In fact
we have, for some c > 0,

61 ≤ cL(xl)L(xm)

k(rm)k(rl)
� P (Bm)P (Bl) [by (5.19)].(5.30)
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At this point we note that (2.8) implies the weak stability of |X(T (r))| at 0,
so by Theorem 1, X is in RS (at 0) or in D0(N) (at 0). In the first case A(x) is
positive (say) and A(x)/x dominates U(x)/x2 (by (2.5)), while in the second case
U(x)/x2 dominates A(x)/x at 0 (by (2.4)). In other words k(x) is asymptotically
equivalent to A(x)/x or to U(x)/x2 as x ↓ 0. Now, as mentioned in Section 2, in
the first case A(x) is slowly varying and in the second case U(x) is slowly varying,
so k(x) is regularly varying with index −1, or regularly varying with index −2, as
x ↓ 0. So, for λ > 0,

k(λx)

k(x)
→ λ−1 or λ−2 as x ↓ 0.

Thus by well known uniform bounds for regularly varying functions, certainly
there is a c > 0 such that for all λ > 1, x > 0,

k(λx)

k(x)
≤ c√

λ
.(5.31)

From this it follows that

L(rm/2)

k(rl)
≤ cL(rm/2)

k(rm/2)
√

2l−m
≤ c′

√
2l−m

P (Bm) [by (5.19)].(5.32)

Combining (5.29), (5.30) and (5.32) gives

P (Bm ∩Bl)=61 +62 ≤ c1P (Bm)P (Bl)+ c2√
2l−m

P (Bm).

Thus, for N > 1,
N−1∑
m=1

N∑
l=m+1

P (Bm ∩Bl)

(5.33)

≤ c1

(
N∑

m=1

P (Bm)

)2

+ c2

N∑
m=1

P (Bm)

N∑
l=m+1

1√
2l−m

.

The second term on the right-hand side of (5.33) is O(
∑N

m=1 P (Bm)). Thus if we
assume

∑
n≥1 P (Bm)= ∞ we have

N−1∑
m=1

N∑
l=m+1

P (Bm ∩Bl)≤ (
c1 + o(1)

)( N∑
m=1

P (Bm)

)2

.(5.34)

By Spitzer [(1976), page 317] this implies P (Bn i.o.) > 0, which is impossible if
(5.23) holds. Hence

∑
n≥1 P (Bn) < ∞ and we have (5.30). �

PROOF OF THEOREM 4. Simply use (2.12) to see that (2.13) is equivalent to
Z+(T ∗+(r))/r → 1 a.s. Since Z+(·) ≥ 0 a.s., T ∗+(r) is also the two-sided exit time
for Z+(·), so (2.9) holds for Z+(·), and conversely. This is only possible if δ+ > 0.
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6. Proofs for Section 3.

PROOF OF THEOREMS 5–7. These proofs are very similar to corresponding
results for random walks given in Griffin and Maller (1998), and can be obtained
by modifying the results in Section 2 of the present paper. In fact, (5.1) shows that
(3.1) holds if and only if (5.2) holds with r → ∞ rather than r ↓ 0; then similar
working as in Lemma 4 gives the equivalence of (3.1) and (3.2). Theorem 6 is
immediate from (5.1). For Theorem 7, we need a variant of Lemma 5 which shows
that ∫ ∞

1

xL(x) dx

x|A(x)| +U(x)
<∞(6.1)

if and only if

U(∞) < ∞ and A(∞) = 0,

or
∫ ∞

1
L(x)dx <∞ and A(∞) �= 0.(6.2)

This shows that (6.1) is equivalent to (3.6). Its proof proceeds using (3.2) and
similar working as in Lemma 5. The equivalence of (3.5) and (6.1) is proved as in
Theorem 3 and Griffin and Maller (1998). �

Next we turn to the proof of Theorem 8. Using (2.12) we can reduce most of
the proof to a result concerning subordinators. Thus, let S be a subordinator with
infinite lifetime. Let �s(·) be the Lévy measure and δs the drift of S and put

T ∗
s (r)= inf

{
t > 0 : S(t) > r

}
, r ≥ 0.

LEMMA 7. The following are equivalent:
S(T ∗

s (r))

r
→ 1 a.s. as r → ∞;(6.3)

S
(
T ∗
s (r)

)− r is tight as r → ∞;(6.4)

S
(
T ∗
s (r)

)− r has a (proper) limiting distribution as r → ∞;(6.5)

E
(
S(1)

)
< ∞;(6.6)

E
(
S
(
T ∗
s (r)

))
<∞ for all r > 0,(6.7)

E(S(T ∗
s (r)))

r
→ 1 as r → ∞.(6.8)
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PROOF. We first prove that (6.3) holds if and only if (6.6) holds. Let µs =
E(S(1)) ∈ (0,∞]. Let τ0 = 0 and τn, n ≥ 1 be the times at which S jumps by at
least 1 [i.e., S(τn) − S(τn−) ≥ 1] [assume L(1) > 0,where L(x) = �s((x,∞))]
and let Jn = S(τn)−S(τn−)≥ 1 be the corresponding jumps. Let 'n = S(τn−)−
S(τn−1), n = 1,2, . . . . Then:

(i) J1, J2, . . . are i.i.d. with P {J1 > x} = L(x)/L(1), x ≥ 1;
(ii) (τn)n≥1 are the points of a Poisson (L(1)) process, independent of the J ’s;

(iii) '1,'2, . . . are i.i.d. with the distribution of S(1)(τ1), where S(1) is a
subordinator which results from eliminating the jumps bigger than 1 in S, and
closing up the gaps. S(1) is independent of τ1.

Thus the Laplace exponent of S(1) is

δsλ+
∫
(0,1]

(1 − e−λx)�s(dx) (λ > 0).

Then

E
(
S(1)(t)

)= t

(
δs +

∫
(0,1]

x �s(dx)

)
= tµ(1),

say, and hence

E('1)=µ(1)/L(1) < ∞.

Now

sup
S(τn)≤x<S(τn+1−)

(
S(T ∗

s (x))− x

x

)
≤ 1

S(τn)
→ 0 a.s.,(6.9)

because no overshoot in [S(τn), S(τn+1−)) can exceed 1. Also

sup
S(τn+1−)≤x<S(τn+1)

(
S(T ∗

s (x))− x

x

)
= Jn+1∑n+1

i=1 'i +∑n
i=1Ji

.(6.10)

If µs < ∞ then E(J1) < ∞ so Jn+1/
∑n

i=1Ji → 0 a.s. by the strong law. Then
(6.9) and (6.10) show that (6.6) implies (6.3).

Conversely, if µs = ∞ then (
∑n

i=1 'i +∑n
i=1 Ji)/

∑n
i=1 Ji → 1 a.s. by the

strong law, since
∑n

i=1 'i/n →E'1 <∞ a.s. Thus the right-hand side of (6.10)
has limsup equal to ∞ a.s. by Kesten (1970). Thus (6.3) cannot hold. So we see
that (6.3) and (6.6) are equivalent.

Again let (6.6) hold. Write the Laplace exponent of the subordinator S as

�(λ) = δsλ+
∫
(0,∞)

(1 − e−λx)�s(dx).

Let

Us(dx)=
∫ ∞

0
P
{
S(t) ∈ dx

}
dt
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be the potential measure of S. This is in fact a renewal measure, see Bertoin and
Doney (1994). Now by (6.6) and Wald’s lemma,

E
(
S(τ1)

)=E
(
S(1)

)
E(τ1)=µs/L(1) <∞,

so we have from Bertoin [(1996), Proposition 2, page 76] and the renewal theorem
that

P
{
S
(
T ∗
s (x)

)− x > λ
} =

∫
[0,x)

�s(λ+ x − y)Us(dy)

→ 1

µs

∫ ∞
0

Ls(λ+ y) dy = 1

µs

∫ ∞
λ

Ls(y) dy.

Thus S(T ∗(x))− x converges in this case to the distribution with density

Ls(y)

δs + ∫∞
0 Ls(y) dy

on (0,∞)

and with mass
δs

δs + ∫∞
0 Ls(y) dy

at 0.

Consequently (6.5) holds.
Clearly (6.5) implies (6.4). Next we show that if (6.6) fails, i.e. µs = ∞, then

(6.4) also fails. First note that the process {S(τn), n ≥ 0} is a renewal process
with E{S(τ1)} = µs/L(1) = ∞, by assumption. Thus if {Ox,x ≥ 0} is the

corresponding overshoot (or unexpired lifetime) process, we know that Ox
P→ ∞

as x → ∞. [See, e.g., Feller (1971), Section XI.4.] Now S(T ∗
s (x)) − x = Ox

whenever
n−1∑

1

Ji +
n∑
1

'i ≤ x <

n∑
1

Ji +
n∑
1

'i for some n≥ 1,

and since E('1) <∞ it is easily seen that the probability of this event converges

to 1 as x → ∞. In other words S(T ∗
s (x))−x

P→ ∞ as x → ∞, contradicting (6.4).
Thus (6.4) implies (6.6).

Finally (6.6) and (6.7) are equivalent by Wald’s lemma, and (6.8) is equivalent
to (6.6) by the renewal theorem. �

PROOF OF THEOREM 8. When X either oscillates or → +∞ a.s. as t → ∞
the ladder height process Z+ is a subordinator with infinite lifetime, and so the
equivalence of (3.7)–(3.12) follows directly from Lemma 7, using (2.12). In the
case of drift to +∞ the ladder height process Z− has finite lifetime, and it is an
easy deduction from the Wiener–Hopf factorization of the exponent� [see Bertoin
(1996), page 166] that (3.10) holds if and only if 0 < EX(1) ≤ E|X(1)| < ∞. In
the oscillatory case Z− has infinite lifetime, and now the factorization shows that
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(3.10) implies E|X(1)| < ∞, and hence that E(X(1)) = 0, since otherwise X

drifts to ±∞ as t → ∞.
It remains only to show that, when E|X(1)|<∞ and E(X(1))= 0, then (3.7)–

(3.12) hold if and only if the integral J in (3.13) is finite. Let σn be the nth time
at which X has a jump whose absolute value exceeds 1, and put σ0 = 0. Let the
random walk Z = (Zn,n ≥ 0) be defined by

Zn =X(σn), n ≥ 0,

and let H be the first (strict, increasing) ladder height in this walk. We start by
showing that J <∞ ⇔E(H) <∞. To see this note that we can write

Zn =
n∑
1

Yj =
n∑
1

{Wj + Vj },

where the Wj and the Vj are each i.i.d. sequences, independent of each other and
with W1 = X(σ1−) and V1 = X(σ1) − X(σ1−). Note that the σj form a Poisson
process (independent of the Vj ) with parameter L(1), and the distribution of the
Vj is given by

FV (dx)= P {Vj ∈ dx} = �(dx)

L(1)
, |x|> 1.

With this notation, J <∞ is equivalent to I <∞, where

I =
∫ ∞

0

(1 − FV (z))z dz∫ z
0
∫∞
y FV (−x) dx dy

.(6.11)

The denominator in (6.11) can be written as∫ z

0
yFV (−y) dy + z

∫ ∞
z

FV (−y) dy =
∫
[0,∞)

y(y ∧ z)|dFV (−y)|,(6.12)

and hence is positive for z > 0, since M(0+) > 0 when EX(1)= 0.
Also, E|X(1)| < ∞ implies EV1 < ∞, and, since W1 is the value at the

exponential time σ1 of a Lévy process with no jumps exceeding 1 in absolute
value, it is easily seen that E(W 2

1 ) < ∞. It follows that 0 < E|Z1| < ∞, and,
since σ1 is a stopping time, E(Z1)=E(X(σ1))= 0.

Next note that if we fix z0 with ω = P {W1 ∈ (0, z0)} > 0, and write FY for the
distribution function of Y1 = V1 +W1, for z ≥ z0 we have

1 − FY (z) = P {V1 +W1 > z} ≥
∫ z0

0
P {W1 ∈ dy}P {V1 > z− y}

≥ ωP {V1 > z} = ω
(
1 − FV (z)

)
.

Also

1 − FY (z)= P {V1 +W1 > z} ≤ P {V1 > z/2} + P {W1 > z/2},
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and
∫∞

0 zP {W1 > z/2}dz <∞. It follows that we can replace 1 − FV (z) by
1 − FY (z) in the numerator of (6.11). Similarly, using the fact that∫ ∞

0

∫ ∞
y

P {W1 < x}dx dy < ∞,

we see that we can replace FV (−x) by FY (−x). Thus we conclude that I < ∞ if
and only if Ĩ < ∞, where

Ĩ =
∫ ∞

0

z(1 − FY (z)) dz∫ z
0
∫∞
y FY (−x) dx dy

.(6.13)

Using the same kind of representation as in (6.12), it follows from Chow (1986)
that E(H) <∞ if and only if Ĩ <∞. Thus J < ∞ if and only if E(H) <∞.

Introduce the overshoots in X and Z by putting Or = X(T ∗(r)) − r , and
Ôr = Z(T̂r ) − r, where T̂r = min{n :Zn > r}. Now assume E(H) < ∞. Since
any overshoot in X which exceeds 1 is automatically an overshoot in Z, then for
any λ > 1,

P {Or > λ} = P {Or = Ôr , Ôr > λ} ≤ P {Ôr > λ}.
But a standard renewal theoretic result is that, when E(H) < ∞, Ôr has a non-
degenerate limiting distribution, and hence is tight as r → ∞. Thus (3.8) holds,
and hence (3.7)–(3.12) hold.

Suppose now that E(H)= ∞, and write H1 =H and H1 +H2 + · · · +Hn for
the nth ladder height in Z. Then the H ′s are i.i.d., so by the strong law and Kesten
(1970) we have

lim
n→∞

H1 +H2 + · · · +Hn−1

n

a.s.= ∞
and

lim sup
n→∞

Hn

H1 +H2 + · · · +Hn−1

a.s.= ∞.

So given any ' ∈ (0,∞) with probability one there exist random integers ni ↑ ∞
with

Hni > (4')(H1 +H2 + · · · +Hni−1)

and

H1 +H2 + · · · +Hni−1 > (1 +')ni, i ≥ 1.

Consequently if ri =H1 +H2 +· · ·+Hni−1 we have ri > 'ni and ri+1/ri
a.s.→ ∞.

Putting r̃i = ri(1 + 3
2') we will show that this implies that a.s.

Or̃i > r̃i(6.14)

for all sufficiently large i, and hence that (3.7) [and hence also (3.8)–(3.12)] fails.
To see this put N0 = 0 and for i ≥ 1 let Ni denote the ith ladder index in Z, so that

H1 +H2 + · · · +Hi =ZNi
=X(σNi

), i ≥ 1.
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Also introduce the i.i.d. variables

Mi = sup
σNi−1≤t<σNi

{
X(t)−X(σNi−1)

}
,

and assume for the moment that E(M1) < ∞. Then
∑∞

1 P {Mi > i'/2} < ∞,

and so a.s. there exists i∗ < ∞ such that Mi ≤ i'/2 for all i ≥ i∗. Put M∗ =
supn<i∗ Mi and note that for n ≥ i∗

sup
0≤t<σNn

X(t) ≤ max
1≤j≤n

X(σNj−1)+M∗ + max
i∗≤j≤n

Mj

≤ H1 +H2 + · · · +Hn−1 +M∗ + n'

2
.

Applying this with n= ni and taking '> 1 shows that for all large enough i

sup
0≤t<σNni

X(t) ≤ ri +M∗ + ni'

2
≤ 3ri

2
+M∗

≤
(

1 + 3'

2

)
ri = r̃i .

Since

X(σNni
) =Z(Nni )= ri +Hni > (1 + 4')ri > 2r̃i ,

we have established (6.14), and, noting that β := M(1)+N(1)= 0 is incompatible
with E(H)= ∞, the proof is concluded by the following.

LEMMA 8. Whenever E|X(1)| < ∞,E(X) = 0 and β > 0 it holds that
E(M1) <∞.

PROOF. We prove a stronger result, namely that P {M1 > x} ≤ c0e
−λ0x for

some c0, λ0 > 0 and all x ≥ 0. To see this we write

Xt = X
(1)
t +X

(2)
t , t ≥ 0,

where X(2) is the compound Poisson process defined by

X
(2)
t = Zn =X(σn) for t ∈ [σn,σn+1), n = 0,1, . . . .

Of course X(1) is a Lévy process, independent of X(2), whose characteristics
are the same as those of X, except that its Lévy measure is the restriction of � to
[−1,1]. Introduce

mj = sup
σj−1≤t<σj

X(t), j ≥ 1,
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and note that since X(σj−1)≤ 0 for j ≤ N1 we have

M1 ≤ max
1≤j≤N1

mj .

Here m1,m2, . . . are i.i.d., and we can write

m1 = sup
0≤t<σ1

X(1)(t),

where σ1, being the time of the first jump in X(2), is independent of X(1), and has
the Exp(β) distribution. Also X

(1)
t =X

(0)
t + γ t, where X(0) has Lévy exponent

�(0)(θ)= σ 2θ2

2
+
∫ 1

−1
(1 − eiθx + iθx)�(dx).

Thus X(0) is a martingale whose moment generating function exists, and is given

for all real λ by E(eλX
(0)
t )= etφ

(0)(λ), where

φ(0)(λ) = −�(0)(−iλ) = σ 2λ2

2
+
∫ 1

−1
(eλx − 1 − λx)�(dx).

By a standard martingale inequality

P

{
sup

0≤s<t

X(0)(s) > x

}
≤ e−λxE

(
eλX

(0)
t
)
, λ > 0, x ≥ 0,

and hence

P

{
sup

0≤s<t

X(1)(s) > x

}
≤ P

{
sup

0≤s<t

X(0)(s) > x − t|γ |
}

≤ e−λxet{φ(0)(λ)+|γ |λ}.
Since φ(0)(λ) → 0 as λ ↓ 0, we can choose λ0 such that φ(0)(λ0) + |γ |λ0 ≤ β/2
to conclude, by conditioning on σ1, that

P {m1 > x} ≤
∫ ∞

0
βe−βte−λ0xetβ/2 dt = 2e−λ0x.

Finally, it is clear that

P {M1 > x|N1,Zi, i < N1} ≤
N1∑
j=i

P {mj > x −Zj−1}.

Using the duality lemma [see Feller (1971), Section XV.3], we conclude that

P {M1 > x} ≤
∫ ∞

0
P {m1 > x + z}G−(dz),

where G− is the renewal function in the weak increasing ladder process of −Z. It
follows that

P {M1 > x} ≤
∫ ∞

0
2e−λ0(z+x)G−(dz) := c0e

−λ0x,

and we are finished. �
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