
The Annals of Probability
2002, Vol. 30, No. 1, 62–100

LEVEL SETS OF ADDITIVE LÉVY PROCESSES1
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University of Utah and Microsoft Corporation

We provide a probabilistic interpretation of a class of natural capacities
on Euclidean space in terms of the level sets of a suitably chosen multipara-
meter additive Lévy process X. We also present several probabilistic appli-
cations of the aforementioned potential-theoretic connections. They include
areas such as intersections of Lévy processes and level sets, as well as Haus-
dorff dimension computations.

1. Introduction. An N -parameter, Rd -valued, additive Lévy process X =
{X(t); t ∈RN+} is a multiparameter stochastic process that has the decomposition

X =X1 ⊕ · · · ⊕XN,

whereX1, . . . ,XN denote independent Lévy processes that take their values in Rd .
To put it more plainly,

X(t)=
N∑
j=1

Xj(tj ), t ∈RN+,(1.1)

where ti denotes the ith coordinate of t ∈RN+ (i = 1, . . . ,N ). These random fields
naturally arise in the analysis of multiparameter processes such as Lévy’s sheets.
For example, see Dalang and Mountford [7, 8], Dalang and Walsh [9, 10], Kendall
[33], Khoshnevisan [34], Khoshnevisan and Shi [35], Mountford [40] and Walsh
[51], to cite only some of the references.

Our interest is in finding connections between the level sets of X and capacity in
Euclidean spaces. In order to be concise, we shall next recall some formalism from
geometric probability. See Matheron [38] and Stoyan [48] for further information
and precise details. To any random set K⊂Rd , we assign a set function µK on Rd

as follows:

µK(E)= P{K∩E �=∅}, E ⊂Rd, Borel,(1.2)

and think of µK as the distribution of the random set K.
Let X−1(a) = {t ∈ RN+\{0} :X(t) = a} denote the level set of X at a ∈ Rd . If

a = 0, X−1(0) is also called the zero set of X. Our intention is to show that under
some technical conditions on X, µX−1(a) is mutually absolutely continuous with
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respect to C(E), where C(E) is a natural Choquet capacity of E that is explicitly
determined by the dynamics of the stochastic process X. Our considerations also
determine the Hausdorff dimension dimHX

−1(0) of the zero set of X, under very
mild conditions.

In the one-parameter setting (i.e., when d = N = 1), the closure of X−1(a)

is the range of a subordinator S = {S(t); t ≥0}; cf. Fristedt [21]. Consequently,
in the one-parameter setting, µX−1(a) is nothing but the hitting probability for S.
In particular, methods of probabilistic potential theory can be used to establish
capacitary interpretations of the distribution of the level sets of X; see Bertoin [3],
Fitzsimmons, Fristedt and Maisonneuve [18], Fristedt [20], and Hawkes [26] for
a treatment of this and much more. Unfortunately, whenN > 1, there are no known
connections between X−1(a) and the range of other tractable stochastic processes.
Nevertheless, using techniques from the potential theory of multiparameter
processes, we show that when some technical conditions are met, the distribution
of the level sets of additive Lévy processes do indeed have a potential-theoretic
interpretation. Various aspects of the potential theory of multiparameter processes
have been treated in Evans [16, 17], Fitzsimmons and Salisbury [19], Hawkes [23,
25], Hirsch [27], Hirsch and Song [28, 29], Khoshnevisan [34], Khoshnevisan and
Shi [35], Peres [43], Ren [45] and Salisbury [46].

We conclude the Introduction with the following consequence of our main
results that are Theorems 2.9, 2.10 and 2.12 of Section 2.

THEOREM 1.1. Suppose X1, . . . ,XN are independent isotropic stable Lévy
processes in Rd with index α ∈]0,2] and X =X1 ⊕ · · · ⊕XN . Then:
(i) P{X−1(0) �=∅}> 0 if and only if Nα > d; and

(ii) if Nα > d , then P{dimHX
−1(0)=N − d/α}> 0.

Furthermore, for each M > 1, there exists a constant A > 1, such that
simultaneously for all compact sets E ⊂ [M−1,M]N , and for all a ∈ [−M,M]d ,

1

A
Capd/α(E)≤µX−1(a)(E)≤ACapd/α(E),

where Capβ(E) denotes the Riesz–Bessel capacity of E, of index β .

We recall that for all β > 0,

Capβ(E)=
{

inf
µ∈P(E)

∫ ∫
|s − t|−β µ(ds) µ(dt)

}−1

,(1.3)

where P(E) denote the collection of all probability measures on the Borel set
E ⊂ RN+ and |t| = max1≤j ≤N |tj | denotes the �∞-norm on RN . We shall prove
this theorem in Section 2.

To illustrate some of the irregular features of the level sets in question, we
include a simulation of the zero set of X = X1 ⊕ X2, where X1 and X2 are
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FIG. 1. The zero set of additive Brownian motion.

independent, linear Brownian motions; cf. Figure 1. In this simulation, the darkest
shade of gray represents the set {(s, t) : X1(s) + X2(t) < 0}, while the medium
shade of gray represents the collection {(s, t) :X1(s)+X2(t) > 0}. The respective
“boundaries” of these two extreme shades together reveal the rather irregular zero
set X−1(0).

Throughout this paper, for any c ∈ R+, c denotes the N -dimensional vector
(c, . . . , c) and for any integer k≥1 and any x ∈ Rk , |x| = max1≤�≤ k |x�| and
‖x‖ = {∑k

�=1 x
2
� }1/2 denote the �∞ and �2 norms on Rk , respectively.

The remainder of this paper is organized as follows. In Section 2, after
presenting some preliminary results, we state our main Theorems 2.9, 2.10 and
2.12. We then prove the announced Theorem 1.1. Theorem 2.9 is proved in
Section 3, while the proof of Theorem 2.10 is given in Section 4. In Section
5 we prove Theorem 2.12. Our main arguments depend heavily upon tools
from multiparameter martingale theory. In Section 6, we establish some of the
other consequences of Theorems 2.9, 2.12 and 2.10 together with their further
connection to the existing literature.



LEVEL SETS OF ADDITIVE LÉVY PROCESSES 65

2. Preliminaries and the statement of the main results. Throughout, d and
N represent the spatial and temporal dimensions, respectively. TheN -dimensional
“time” space RN+ can be partially ordered in various ways. The most commonly
used partial order on RN+ is �, where s� t if and only if si≤ ti , for all 1≤ i≤N .
This partial order induces a minimum operation: s � t denotes the element of RN+
whose ith coordinate is si ∧ ti , for all 1≤ i≤N . For s, t ∈RN+ and s� t , we write
[s, t] = [s1, t1] × · · · × [sN, tN ].

Concerning the source of randomness, we let X1, . . . ,XN denote N indepen-
dent Rd -valued Lévy processes and define X =X1⊕ · · ·⊕XN ; see equation (1.1)
for the precise definition. Recall that for each 1≤ j ≤N , the Lévy process Xj is
said to be symmetric, if −Xj and Xj have the same finite-dimensional distribu-
tions. In such a case, by the Lévy–Khintchine formula, there exists a nonnegative
function (called the Lévy exponent of Xj ) �j : Rd→R+, such that for all t ≥0,

E
[
exp

{
iξ ·Xj(t)

}]= exp
{−t�j (ξ)

}
, ξ ∈Rd .

In particular, if �j(ξ) = χj‖ξ‖α for some constant χj > 0, Xj is said to be an
isotropic stable process with index α.

We say that the processXj is absolutely continuous, if for all t > 0, the function
ξ �→ e−t�j (ξ ) is in L1(Rd). In this case, by the inversion formula, the random
vector Xj(t) has the following probability density function:

pj (t;x)= (2π)−d
∫

Rd
exp{−iξ · x} exp

{−t�j (ξ)
}
dξ, t > 0, x ∈Rd .

In all but a very few special cases, there are no known explicit formulæ for
pj (t;x). The following folklore lemma gives some information about the behavior
of pj (t;x) and follows immediately from the above representation.

LEMMA 2.1. Suppose Xj is symmetric and absolutely continuous. Let �j

denote the Lévy exponent of Xj and pj (t; •) the density function of Xj (t). Then,

(i) for all t > 0 and all x ∈Rd ,

pj (t;x)≤pj (t;0)= (2π)−d
∫

Rd
exp

{−t�j (ξ)
}
dξ ;

(ii) t �→ pj (t;0) is nonincreasing; and
(iii) if E ⊂ ]0,∞[ and K ⊂ Rd are both compact, E ⊗K � (t, x) �→ pj (t, x)

is uniformly continuous.

For each t ∈RN+ , the characteristic function of X(t) is given by

E
[
exp

{
iξ ·X(t)}]= exp

{
−

N∑
j=1

tj�j (ξ)

}

= exp
{−t ·�(ξ)}, ξ ∈Rd,
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where �(ξ) = �1(ξ) ⊗ · · · ⊗ �N(ξ), in tensor notation. We will call �(ξ) the
characteristic exponent of the additive Lévy process X, and say that the additive
Lévy process X is absolutely continuous if for each t ∈ RN+\∂RN+ , where ∂RN+
denotes the boundary of RN+ , the function ξ �→ exp{−t ·�(ξ)} ∈ L1(Rd). In this
case, for every t ∈ RN+\∂RN+ , X(t) has a density function p(t; •) that is given by
the formula

p(t;x)= (2π)−d
∫

Rd
exp{−iξ · x} exp

{
−

N∑
j=1

tj�j (ξ)

}
dξ, x ∈Rd .(2.1)

Clearly, if at least one of the Xj ’s are symmetric and absolutely continuous, then
the additive Lévy process X is also absolutely continuous. However, there are
many examples of non-absolutely continuous Lévy processes X1, . . . ,XN , such
that the associated N -parameter additive Lévy process X = X1 ⊕ · · · ⊕ XN is
absolutely continuous. Below, we record the following additive analogue of Lem-
ma 2.1.

LEMMA 2.2. Let X1, . . . ,XN be N independent symmetric Lévy processes
and let X = X1 ⊕ · · · ⊕XN . Suppose X is absolutely continuous, and let p(t; •)
denote the density of X(t) for each t ∈RN+ . Then:

(i) for all t ∈RN+\∂RN+ and all x ∈Rd , p(t;x)≤p(t;0);
(ii) t �→ p(t;0) is nonincreasing with respect to the partial order �; and

(iii) if E ⊂ ]0,∞[N and K ⊂ Rd are both compact, then E ⊗ K � (t, x) �→
p(t;x) is uniformly continuous.

We say that an Rd -valued random variable Y is κ-weakly unimodal if there
exists a positive constant κ such that for all a ∈Rd and all r > 0,

P
{|Y − a|≤ r}≤κP

{|Y |≤ r}.(2.2)

Throughout much of this paper, we will assume the existence of a fixed κ such that
the distribution of X(t) is κ-weakly unimodal for all t ∈ RN+\∂RN+ . If and when
this is so, we say that the process X is weakly unimodal, for brevity.

We now state some remarks in order to shed some light on this weak
unimodality property.

REMARK 2.3. By a well known result of Anderson (cf. [1], Theorem 1), if the
density function p(t, x) of X(t) (t ∈RN+ ) is symmetric unimodal in the sense that
(i) p(t, x)= p(t,−x); and (ii) {x :p(t, x)≥u} is convex for every u (0< u<∞),
then, the inequality (2.2) holds with Y = X(t) and κ = 1. In particular, any
nondegenerate, centered Gaussian random vector satisfies these conditions. Using
this fact, together with Bochner’s subordination, we can deduce that whenever
X = {X(t); t ∈RN+} is an additive isotropic stable Lévy process of index α ∈]0,2]
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(i.e., whenever each Xj is an isotropic stable Lévy process), the density function
of X(t) is symmetric unimodal for each t ∈ RN+ \ {0}. In particular, when X is an
isotropic stable Lévy process, equation (2.2) holds with κ = 1.

REMARK 2.4. Our definition of weak unimodality is closely related to that of
unimodal distribution functions. Recall that a distribution function F(x) on R is
said to be unimodal with mode m, if F(x) is convex on (−∞,m) and concave on
(m,∞). For a multivariate distribution function F(x), (x ∈ Rd), there are several
different ways of defining unimodality of F(x) such as symmetric unimodality
in the sense of Anderson given above and symmetric unimodality in the sense of
Kanter; see Kanter [32] or Wolfe [53]. We refer to Wolfe [54] for a survey of the
various definitions of unimodality and related results.

REMARK 2.5. Some general conditions for the unimodality of infinitely
divisible distributions are known. In this and the next remark (Remark 2.6 below),
we cite two of them for the class of self-decomposable distributions.

Recall that a d-dimensional distribution function F(x) is called self-decompos-
able, or of class L, if there exists a sequence of independent Rd -valued random
variables {Yn} such that for suitably chosen positive numbers {an} and vectors {bn}
in Rd , the distribution functions of the random variables an

∑n
i=1 Yi +bn converge

weakly to F(x), and for every ε > 0,

lim
n→0

max
1≤ i≤nP

{
an|Yi|≥ ε}= 0.

It is well known that F(x) is self-decomposable if and only if for every a ∈ (0,1),
there exists a distribution function Ga(x) on Rd such that F̂ (ξ) = F̂ (aξ) Ĝa(ξ),
where Ĥ denotes the Fourier transform of H . This result, for d = 1, is due to
Lévy [36]. It is extended to higher dimensions in Sato [47]; see also Wolfe [53].
From this it follows readily that convolutions of self-decomposable distribution
functions are also self-decomposable. Sato [47] also proves in his Theorem 2.3
that all stable distributions on Rd are self-decomposable.

REMARK 2.6. Yamazato [55] proves that all self-decomposable distribution
functions on R are unimodal. For d > 1, Wolfe [53] proves that every d-
dimensional symmetric self-decomposable distribution function is unimodal in
the sense of Kanter [32]. In particular, every symmetric—though not necessarily
isotropic—stable distribution on Rd is symmetric unimodal. We should also
mention that Medgyessy [39] and Wolfe [52] give a necessary and sufficient
condition for symmetric infinitely divisible distributions in R to be unimodal in
terms of their Lévy measures. Their class is strictly larger than the class of self-
decomposable distributions.

We now apply these results to derive weak unimodality for the distribution of a
symmetric additive Lévy process X = {X(t); t ∈RN+} in Rd .
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REMARK 2.7. Suppose that for all t ∈ RN+ \ ∂RN+ , the distribution of X(t)
is self-decomposable, e.g., this holds whenever the distribution of Xj(tj ) is self-
decomposable for every j ≥1 and for all tj > 0. According to Remarks 2.4 and 2.6,
the distribution of X(t) is also symmetric unimodal, in the usual sense, when
d = 1. Furthermore, when d > 1, the distribution ofX(t) is symmetric unimodal in
the sense of Kanter [32]. Now, by the proof of Theorem 1 of Anderson [1], we can
see that for all t ∈ RN+\∂RN+ , all a ∈ Rd and all r > 0, (2.2) holds with κ = 1. In
particular, every symmetric–though not necessarily isotropic–additive stable Lévy
process X =X1 ⊕ · · · ⊕XN satisfies weak unimodality (2.2) with κ = 1.

In all cases known to us, weak unimodality holds with κ = 1; cf. equation (2.2).
However, it seems plausible that in some cases, equation (2.2) holds for some
κ > 1. This might happen when the distribution of the process X is not symmetric
unimodal. As we have been unable to resolve when κ > 1, our formulation of weak
unimodality is stated in its current form for maximum generality.

Under the condition of weak unimodality, we can prove the following useful
technical lemma.

LEMMA 2.8. Let X =X1 ⊕ · · · ⊕XN be an additive, weakly unimodal Lévy
process. Then:

(i) [Weak regularity]. For all t ∈RN+\∂RN+ and all r > 0,

P
{|X(t)|≤ 2r

}≤κ2dP
{|X(t)|≤ r};

(ii) [Weak monotonicity]. For all s, t ∈RN+\∂RN+ with s� t ,

P
{|X(t)|≤ r}≤κP

{|X(s)|≤ r}.
In the analysis literature, our notion of weak regularity is typically known as

volume doubling for the law of |X(t)|.

PROOF. To prove weak regularity, let B(x; r)= {y ∈Rd : |y−x|≤ r} and find
a1, . . . , a2d ∈ [0,2r]d , such that:

(i) the interiors of B(a�; r)’s are disjoint, as � varies in {1, . . . ,2d}; and
(ii)

⋃2d
�=1 B(a�; r)= B(0;2r).

Applying weak unimodality,

P
{|X(t)|≤ 2r

}≤ 2d∑
�=1

P
{|X(t)− a�|≤ r}≤κ2dP

{|X(t)|≤ r}.
To prove weak monotonicity, we fix s, t ∈RN+ with s� t . Then,

P
{|X(t)|≤ r}= P

{∣∣X(s)+ (
X(t)−X(s)

)∣∣≤ r}≤κP
{|X(s)|≤ r},
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where the inequality follows from the independence of X(s) and X(t)−X(s) and
weak unimodality. This concludes our proof. �

The following function 0 plays a central role in our analysis of the process X:

0(s)= p(s;0), s ∈RN,(2.3)

where s is the element of RN+ , whose ith coordinate is |si|. Clearly, s �→0(s) is
nonincreasing in each |si| and, equally clearly, 0(0)=+∞. We will say that 0 is
the gauge function for the multiparameter process X. Corresponding to the gauge
function 0, we may define the 0-capacity of a Borel set E ⊂RN+ as

C0(E)=
{

inf
µ∈P(E)

∫ ∫
0(s − t)µ(ds)µ(dt)

}−1

,(2.4)

where P(E) denotes the collection of all probability measures on E. For any
µ ∈ P(E), we define the 0-energy of µ by

E0(µ)=
∫ ∫

0(s − t)µ(ds)µ(dt).(2.5)

Thus, the 0-capacity of E is defined by the principle of minimum energy:

C0(E)=
{

inf
µ∈P(E)

E0(µ)
}−1

.

It is not hard to see that C0 is a capacity in the sense of G. Choquet; cf. Bass [2]
and Dellacherie and Meyer [11].

We are ready to state the main results of this paper. We denote Leb(A) the
d-dimensional Lebesgue measure of the Lebesgue measurable set A⊂Rd .

THEOREM 2.9. Let X1, . . . ,XN be N independent symmetric Lévy processes
on Rd and letX =X1⊕· · ·⊕XN . SupposeX is absolutely continuous and weakly
unimodal. If 0 denotes the gauge function of X, the following are equivalent:

(i) 0 ∈L1
loc(R

N);
(ii) P{Leb{X([c,∞[N)}> 0} = 1, for all c > 0;

(iii) P{Leb{X([c,∞[N)}> 0}> 0, for all c > 0;
(iv) P{Leb{X([c,∞[N)}> 0}> 0, for some c > 0;
(v) P{X−1(0)∩ [c,∞[N �=∅}> 0, for all c > 0;

(vi) P{X−1(0)∩ [c,∞[N �=∅}> 0, for some c > 0.

When X−1(0) �=∅, it is of interest to determine its Hausdorff dimension. Our
next theorem provides upper and lower bounds for dimHX

−1(0) in terms of the
following two indices associated to the gauge function 0:

γ = inf
{
β > 0: lim inf

s→0
‖s‖N−β0(s) > 0

}
,

γ = sup
{
β > 0:

∫
[0,1]N

1

‖s‖β 0(s) ds <∞
}
.
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It is easy to verify that 0≤γ ≤γ ≤N .
Henceforth, ‖s‖ designates the N -dimensional vector (‖s‖, . . . ,‖s‖).
THEOREM 2.10. Given the conditions of Theorem 2.9, for any 0 < c < C <

∞,

P
{
γ ≤dimH

(
X−1(0)∩ [c,C]N )≤γ }> 0.(2.6)

Moreover, if there exists a constant K1 > 0 such that

0(s)≤0(
K1‖s‖) for all s ∈ [0,1]N,(2.7)

then, P{dimH(X
−1(0)∩ [c,C]N)= γ }> 0.

REMARK 2.11. Clearly, if X1, . . . ,XN have the same Lévy exponent, then
(2.7) holds.

Our next theorem further relates the distribution of the level sets of an additive
Lévy process to 0-capacity.

THEOREM 2.12. Given the conditions of Theorem 2.9, for every c > 0, all
compact sets E ⊂ [c,∞[N and for all a ∈Rd ,

A1 sup
µ∈P(E)

[∫ p(s;a) µ(ds)]2
E0(µ)

≤µX−1{a}(E)≤A2C0(E),(2.8)

where A1 = κ−22−d
{
0(c)

}−1
and A2 = κ325d+3N0(c).

The following is an immediate, but useful, corollary.

COROLLARY 2.13. Given the conditions and the notation of Theorem 2.12,
for all a ∈Rd and for all compact sets E ⊂ [c,∞[N ,

A1C0(E)≤µX−1(a)(E)≤A2C0(E),

where A1 = κ−22−d
{
0(c)

}−1
I 2
E(a), A2 = κ325d+3N0(c) and IE(a) =

infs∈E p(s;a).
Applying Lemma 2.2(iii), we can deduce that there exists an open neighborhood

G of 0 (that may depend on E), such that for all a ∈G, IE(a) > 0. In particular,
µX−1(0)(E) is bounded above and below by nontrivial multiples of C0(E).

We can now use Theorems 2.9, 2.10 and 2.12 to prove Theorem 1.1.

PROOF OF THEOREM 1.1. Note that for all t ∈RN+ and all ξ ∈Rd ,

E
[
exp{iξ ·X(t)}]= exp

{
−

N∑
j=1

tj χj‖ξ‖α
}
.
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By (2.1), for all t ∈RN ,

0(t)= (2π)−d
∫

Rd
exp

{
−

N∑
j=1

|tj |χj‖ξ‖α
}
dξ

= λ

(
N∑
j=1

|tj |χj
)−d/α

,

where λ= (2π)−d
∫
Rd+ e

−‖ζ‖α dζ . In particular,

λN−d/αχ −d/α|t|−d/α≤0(t)≤λχ−d/α|t|−d/α,(2.9)

where χ =max{χ1, . . . , χN } and χ =min{χ1, . . . , χN }, respectively. Consequent-
ly, 0 ∈ L1

loc(R
N) if and only if Nα > d ; and γ = γ = N − d/α. Hence, the first

two assertions of Theorem 1.1 follow from Theorems 2.9 and 2.10, respectively.
We also have

λ−1χd/αCapd/α(E)≤C0(E)≤λ−1Nd/αχ d/αCapd/α(E).

In light of Corollary 2.13, it remains to show that

inf
a∈[−M,M]d

inf
s∈[M−1,M]N

p(s;a) > 0.

This follows from Taylor [50]. �

3. Proof of Theorem 2.9. We prove Theorem 2.9 by demonstrating the
following Propositions 3.1 and 3.2.

PROPOSITION 3.1. Under the conditions of Theorem 2.9, the following are
equivalent:

(i) C0([0,1]N) > 0;
(ii) P{X−1(0)∩ [c,∞[N �=∅}> 0, for all c > 0;

(iii) P{X−1(0)∩ [c,∞[N �=∅}> 0, for some c > 0;
(iv) 0 ∈L1

loc(R
N).

Moreover, given any constants 0< c <C <∞, then for all a ∈Rd ,

κ−22−d
{
0(c)

}−1 [
∫
[c,C]N p(s;a) ds]2

E0(Leb)
≤µX−1{a}

([c,C]N )
≤κ523d+6N0(c)C0

([c,C]N )
.

(3.1)

Proposition 3.1 rigorously verifies the folklore statement that the “equilibrium
measure” corresponding to sets of the form [c,C[N is, in fact, the normalized
Lebesgue measure. It is sometimes possible to find direct analytical proofs of this
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statement. For example, suppose that the gauge function 0 is a radial function of
form f (|s − t|), where f is decreasing. Then, the analytical method of Pemantle
et al. [42] can be used to give an alternative proof that the equilibrium measure is
Lebesgue’s measure. In general, we only know one probabilistic proof of this fact.

PROPOSITION 3.2. Under the conditions of Theorem 2.9, the following are
equivalent:

(i) C0([0,1]N) > 0;
(ii) P{Leb{X([c,∞[N)}> 0} = 1, for all c > 0;

(iii) P{Leb{X([c,∞[N)}> 0}> 0, for all c > 0;
(iv) P{Leb{X([c,∞[N)}> 0}> 0, for some c > 0.

In order to prove Proposition 3.1, we first prove that (i) ⇒ (ii) ⇒ (iii) ⇒ (iv)
⇒ (i). We call this the first part of the proof; this is given in Subsection 3.1. The
asserted capacitary estimates in (3.1)—the second part of Proposition 3.1—will
be demonstrated in Section 3.2. All of these are achieved in a sequence of lemmas
that we will prove in the next two subsections. Finally, we prove Proposition 3.2
in Subsection 3.3.

We shall have need for some notation. For all i = 1, . . . , k, Fi = {
Fi (t); t≥0

}
denotes the complete, right-continuous filtration generated by the process Xi . We
can define the N -parameter filtration F = {F(t); t ∈RN+} as

F(t)=
N∨
i=1

Fi (ti), t = (t1, . . . , tN ) ∈RN+ .

Then, F = {F(t); t ∈ RN+} satisfies Condition (F4) of Cairoli and Walsh (cf. [6,
51]).

3.1. Proof of the first part of Proposition 3.1. We now start our proof of the
first part by demonstrating that assertion (i) of Proposition 3.1 implies (ii). We
first note that C0([0,1]N) > 0 implies C0([0, T ]N) > 0 for all T > 1. To see this
directly, we assume that σ is a probability measure on [0,1]N such that∫

[0,1]N

∫
[0,1]N

0(s − t) σ (ds) σ (dt) <∞,(3.2)

and let µ = µ
T

be the image measure of σ under the mapping s �→ T s. Then,
µ is a probability measure on [0, T ]N . It follows from Lemma 2.2(ii), and from
equation (3.2), that ∫

[0,T ]N

∫
[0,T ]N

0(s − t) µ(ds) µ(dt) <∞.(3.3)
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Hence, C0([0, T ]N) > 0. Equation (3.3) also implies that
∞∑

m1=1

· · ·
∞∑

mN=1

∫
[0,T ]N

∫
A(s)

0(s − t) µ(ds) µ(dt) <∞,

where for all s ∈RN+ , A(s) designates the annulus,

A(s)= {
t ∈RN : 2−mj < |tj − sj |≤2−mj+1, for all 1≤ j ≤N}

.

Thus, for each j = 1, . . . ,N , we can find an increasing sequence of positive
numbers {am,j }∞m=1, such that limm→∞ am,j =+∞ and

∞∑
m1=1

· · ·
∞∑

mN=1

N∏
�=1

am�,�

∫
[0,T ]N

µ(ds)

∫
A(s)

0(s − t) µ(dt) <∞.(3.4)

We define N decreasing continuous functions 9j : (0,∞)→ [1,∞) such that
9j (2−m) = am,j and the function 9̄: RN → [1,∞) by 9̄(s) = ∏N

j=1 9j (|sj |).
Clearly, for every s0 ∈ RN with s̄0 ∈ ∂RN+ , we have lims→s0 9̄(s) =∞ and (3.4)
implies ∫

[0,T ]N

∫
[0,T ]N

9̄(s − t)0(s − t) µ(ds) µ(dt) <∞.(3.5)

For each ε > 0, T > 1 and for the probability measure µ of equation (3.3), we
define a random measure Jε,T on [1, T ]N by

Jε,T (B)= (2ε)−d
∫
B

1
{|X(s)|≤ ε}µ(ds),(3.6)

where B ⊆ [1, T ]N denotes an arbitrary Borel set. (It may help to recall that
|x| = max1≤j ≤d |xj | denotes the �∞ norm of x ∈ Rd .) We will denote the total
mass Jε,T ([1, T ]N) of this random measure by ‖Jε,T ‖.

The following lemma is an immediate consequence of Lemma 2.2 and the
dominated convergence theorem.

LEMMA 3.3. For any T > 1,

lim
ε→0+E

{‖Jε,T ‖}= ∫
[1,T ]N

0(s)µ(ds).

Next, we consider the energy of Jε,T with respect to the kernel 9̄ and state a
second moment bound for ‖Jε,T ‖.

LEMMA 3.4. SupposeK: RN+ ×RN+ →R+ is a measurable function. For any
T > 1 and for all ε > 0,

E

{∫
[1,T ]N

∫
[1,T ]N

K(s, t)Jε,T (ds)Jε,T (dt)

}
≤κ20(1)ε−d

∫
[1,T ]N

∫
[1,T ]N

K(s, t)P
{|X(s)−X(t)|≤ ε}µ(ds)µ(dt).(3.7)
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In particular,

E

{∫
[1,T ]N

∫
[1,T ]N

K(s, t)Jε,T (ds)Jε,T (dt)

}
≤κ22d0(1)

∫
[1,T ]N

∫
[1,T ]N

K(s, t)0(s − t)µ(ds)µ(dt).

(3.8)

PROOF. Recalling Lemma 2.2(i), and the fact that |x| =maxj |xj |, we obtain

P
{|X(s)|≤ ε}≤(2ε)d0(s).

Thus, equation (3.8) indeed follows from (3.7). Hence, we only need to verify
(3.7). By Fubini’s Theorem,

E

{∫
[1,T ]N

∫
[1,T ]N

K(s, t)Jε,T (ds)Jε,T (dt)

}
= (2ε)−2d

∫
[1,T ]N

∫
[1,T ]N

K(s, t)P
{|X(s)|≤ ε, |X(t)|≤ ε}µ(ds)µ(dt).

We define
Z1 =X(s)−X(s � t),

Z2 =X(t)−X(s � t).

Clearly,

P
{|X(s)|≤ ε, |X(t)|≤ ε}
= P

{|X(s � t)+Z1|≤ ε, |X(s � t)+Z2|≤ε}(3.9)

≤P
{|X(s � t)+Z1|≤ε,

∣∣Z1 −Z2|≤2ε
}
.

Elementary properties of Lévy processes imply that X(s � t), Z1 and Z2 are three
independent random vectors in Rd . Moreover, by the weak unimodality of the
distribution of X(s � t) and by Lemma 2.2,

P
{|X(s � t)+Z1|≤ε |Z1,Z2

}≤ κP
{|X(s � t)|≤ ε}

≤ κ(2ε)d0(s � t)

≤ κ(2ε)d0(1).

Since Z1 −Z2 =X(s)−X(t), equation (3.9) implies

P
{|X(s)|≤ ε, |X(t)|≤ ε}≤κ(2ε)d ·0(1)P{|X(s)−X(t)|≤ 2ε

}
.

Thus, we have demonstrated that

E

{∫
[1,T ]N

∫
[1,T ]N

K(s, t)Jε,T (ds)Jε,T (dt)

}
≤κ(2ε)−d0(1)

∫
[1,T ]N

∫
[1,T ]N

K(s, t)P
{|X(s)−X(t)|≤ 2ε

}
µ(ds)µ(dt).

The lemma follows from this and weak regularity; cf. Lemma 2.8. �
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REMARK 3.5. A little thought shows that we can apply Lemma 3.4 with
K(s, t)≡ 1 to obtain

E
{‖Jε,T ‖2}≤κ20(1)ε−d

∫
[1,T ]N

∫
[1,T ]N

P
{|X(s)−X(t)|≤ ε}
×µ(ds)µ(dt).

(3.10)

In particular,

E
{‖Jε,T ‖2}≤κ22d0(1)

∫
[1,T ]N

∫
[1,T ]N

0(s − t)µ(ds)µ(dt).(3.11)

If µ is chosen to be the N -dimensional Lebesgue measure on [1, T ]N , then, by the
symmetry of Lévy processes Xj (j = 1, . . . ,N), equation (3.10) becomes

E
{‖Jε,T ‖2}≤κ22N(T − 1)N0(1)ε−d

∫
[0,T−1]N

P
{|X(s)|≤ ε}ds.(3.12)

That is, Lemma 3.4 implies an energy estimate.

We can now prove the following.

LEMMA 3.6. In Proposition 3.1, (i) ⇒ (ii).

PROOF. Upon changing the notation of the forthcoming proof only slightly,
we see that it is sufficient to prove that

P
{
0 ∈X([1,2]N)}> 0.

We will prove this by constructing a random Borel measure on the zero set X−1(0)
∩[1,2]N . Let {Jε,2} be the family of random measures on [1,2]N defined by (3.6).
Lemmas 3.3 and 3.4 with K(s, t) = 9̄(s − t) and equation (3.11), together with
a second moment argument (see Kahane [31], pages 204–206, or LeGall, Rosen
and Shieh [37], pages 506–507), imply that there exists a subsequence {Jεn,2} that
converges weakly to a random measure J2 such that

E

{∫
[1,2]N

∫
[1,2]N

9̄(s − t)J2(ds)J2(dt)

}
≤κ22d0(1)

∫
[1,2]N

∫
[1,2]N

9̄(s − t)0(s − t) µ(ds) µ(dt).

(3.13)

Moreover, letting A= κ−22−d
{
0(1)

}−1
, we have

P
{‖J2‖> 0

}≥ A

{∫
[1,2]N

0(s)µ(ds)

}2

×
{∫
[1,2]N

∫
[1,2]N

0(s − t)µ(ds)µ(dt)

}−1

,

(3.14)
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which is positive. The first integral is clearly positive and the second is finite,
thanks to equation (3.3).

It remains to prove that the random measure J2 is supported on X−1(0) ∩
[1,2]N . To this end, it is sufficient to show that for each δ > 0, J2(D(δ))= 0, a.s.,
where D(δ) = {s ∈ [1,2]N : |X(s)| > δ}. We employ an argument that is similar,
in spirit, to that used by LeGall, Rosen and Shieh [37], pages 507–508.

Since the sample functions of each Lévy process Xj (j = 1, . . . ,N) are right
continuous and have left limit everywhere, the limit lim

t
(A)−→ s−

X(t) exists for every

A ∈> and s ∈RN+ , where t
(A)−→ s− means tj ↑ sj for j ∈A and tj ↓ sj for j ∈A�.

Note that lim
t
(∅)−→ s−

X(t)=X(s). Let

D1(δ)=
{
s ∈ [1,2]N :

∣∣∣∣ lim
t
(A)−→ s−

X(t)

∣∣∣∣> δ for all A ∈>
}

and

D2(δ)=
{
s ∈ [1,2]N : |X(s)|> δ and

∣∣∣∣ lim
t
(A)−→ s−

X(t)

∣∣∣∣≤ δ for some A ∈>
}
.

Then, we have the decomposition: for all δ > 0,

D(δ) \D1(δ)⊆D2(δ).

We observe that D1(δ) is open in [1,2]N , and D2(δ) is contained in a countable
union of hyperplanes of form {t ∈ [1,2]N : tj = a for some j}, for various values
of a. These hyperplanes are solely determined by the discontinuities of Xi ’s.

Directly from the definition of Jε,2, we can deduce that for all ε > 0 small
enough, Jε,2(D1(δ))= 0. Hence, J2(D1(δ))= 0, almost surely. On the other hand,
equations (3.5) and (3.13) together imply that the following holds with probability
one:

J2
{
t ∈ [1,2]N : tj = a for some j

}= 0 ∀a ∈R+.

Consequently, J2(D2(δ)) = 0, a.s., for each δ > 0. We have proved that with
positive probability, 0 ∈X([1,2]N), which verifies the lemma. �

In Proposition 3.1, the implications of (ii)⇒ (iii) and (iv)⇒ (i) are obvious. To
prove (iii) ⇒ (iv), we define the N -parameter process M = {M(t); t ∈RN+} by

M(t)= E
{‖Jε,3‖ | F(t)}, t ∈RN+,(3.15)

where Jε,3 is described in equation (3.6) with µ replaced by the N -dimensional
Lebesgue measure. Clearly, M is an N -parameter martingale in the sense of Cairo-
li [6]. We shall tacitly work with Doob’s separable version modification of M .
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LEMMA 3.7. Suppose t ∈ [1,2]N and ε > 0. Then, a.s.,

1
{
|X(t)|≤ ε

2

}
≤κ(4ε)dM(t)

[∫
[0,1]N

P
{|X(s)|≤ ε}ds]−1

.

PROOF. Clearly, for t� s, X(s)−X(t) is independent of F(t). Hence

M(t) ≥ (2ε)−d
∫
[1,3]N

1{s� t} P

{
|X(s)−X(t)|≤ ε

2

}
ds · 1

{
|X(t)|≤ ε

2

}

= (2ε)−d
∫

1{0 � r�3− t}P
{
|X(r)|≤ ε

2

}
ds · 1

{
|X(t)|≤ ε

2

}
.

In particular, for all t ∈ [1,2]N ,

M(t)≥(2ε)−d
∫
[0,1]N

P

{
|X(r)|≤ ε

2

}
dr · 1

{
|X(t)|≤ ε

2

}
.

The lemma follows from weak regularity; cf. Lemma 2.8. �

The last link in our proof of the first part of Proposition 3.1 is given by the
following lemma.

LEMMA 3.8. In Proposition 3.1, (iii) ⇒ (iv).

PROOF. Upon squaring both sides of the inequality of Lemma 3.7, and after
taking the supremum over [1,2]N ∩QN and taking expectations, we obtain

P

{
|X(t)|≤ ε

2
for some t ∈ [1,2]N ∩QN

}

≤κ2(4ε)2d ·E
{

sup
t∈[1,2]N∩QN

|M(t)|2
}
·
[∫
[0,1]N

P
{|X(r)|≤ ε}dr]−2

.

By Cairoli’s maximal inequality ([6], Theorem 1),

E

{
sup

t∈[1,2]N∩QN

|M(t)|2
}
≤ 4NE

{|M(2)|2}
≤ 4NE

{‖Jε,3‖2}.
We now apply (3.12) to obtain

P

{
|X(t)|≤ ε

2
for some t ∈ [1,2]N ∩QN

}

≤κ424d+4N0(1)εd
∫
[0,2]N

P
{|X(r)|≤ ε}dr[∫

[0,1]N
P
{|X(r)|≤ ε}dr]−2

≤κ524d+5N0(1)εd
[∫
[0,1]N

P
{|X(r)|≤ ε}dr]−1

,
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where the last inequality follows from∫
[0,2]N

P
{|X(r)|≤ ε}dr≤κ2N

∫
[0,1]N

P
{|X(r)|≤ ε}dr.

We have used the weak monotonicity property given by Lemma 2.8. By the general
theory of Lévy processes, we can assume t �→ X(t) to be right-continuous with
respect to the partial order �; cf. Bertoin [4]. Consequently,

P

{
|X(t)|≤ ε

2
for some t ∈ [1,2]N

}

≤κ524d+5N0(1)εd
[∫
[0,1]N

P
{|X(r)|≤ ε}dr]−1

.

By Fatou’s Lemma,

lim inf
ε→0+ (2ε)

−d
∫
[0,1]N

P
{|X(r)|≤ ε}dr≥∫

[0,1]N
0(s) ds.

Thus, by the mentioned sample right-continuity,

P
{
X(t)= 0 for some t ∈ [1,2]N }≤κ523d+5N0(1)

[∫
[0,1]N

0(s) ds

]−1

.

In fact, this proof shows that for any c > 0, u ∈ [c,∞)N and h > 0,

P
{
X(t)= 0 for some t ∈ [u,u+ h]N}
≤κ523d+5NhN0(c)

[∫
[0,h]N 0(s) ds

]−1

.
(3.16)

This proves (iii)⇒ (iv), and concludes our proof of the first part of Proposition 3.1.
�

REMARK 3.9. Proposition 3.1 implies that if C0([0,1]N) > 0, then
C0([0, T ]N) > 0 for all T > 0.

3.2. Proof of the second part of Proposition 3.1. The arguments leading to
the second part of our proof are similar to those of the first part. As such, we only
sketch a proof.

For any ε > 0, a ∈ Rd and T > 1, define a random measure Ia;ε,T on [1, T ]N
by

Ia;ε,T (B)= (2ε)−d
∫
B

1
{|X(s)− a|≤ε}ds,(3.17)

where B ⊆ [1, T ]N designates an arbitrary Borel set. Similar arguments that lead
to Lemmas 3.3 and 3.4 can be used to deduce the following.
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LEMMA 3.10. For any a ∈Rd ,

lim
ε→0+E

{‖Ia;ε,T ‖}= ∫
[1,T ]N

p(s;a) ds.(3.18)

Moreover, if K: RN+ ×RN+ →R+ is a measurable function, for any T > 1 and for
all ε > 0,

E

{∫
[1,T ]N

∫
[1,T ]N

K(s, t)Ja;ε,T (ds)Ja;ε,T (dt)
}

≤κ20(1)ε−d
∫
[1,T ]N

∫
[1,T ]N

K(s, t)P
{|X(s)−X(t)|≤ ε}ds dt.(3.19)

In particular,

E
{‖Ia;ε,T ‖2}≤κ20(1)ε−d ·

∫
[1,T ]N

∫
[1,T ]N

P
{|X(t)−X(s)|≤ ε}ds dt.(3.20)

We are ready for the following.

PROOF OF EQUATION (3.1). Without loss of generality, we may and will
assume that c = 1 and C = 2. The lower bound in (3.1) follows from the second
moment argument of Lemma 3.6, using equations (3.18), (3.19) and (3.20) of
Lemma 3.10 with T = 2; see equation (3.14).

To prove the upper bound in (3.1), we follow the lines of proof of Lemma 3.8
and define Ma;ε,3 = {

Ma;ε,3(t); t ∈RN+
}

by

Ma;ε,3(t)= E
[‖Ia;ε,3‖ | F(t)], t ∈RN+ .

This is the analogue of (3.15) and is always an N -parameter martingale. As in
Lemma 3.7, for all t ∈ [1,2]N and ε > 0,

1
{
|X(t)− a|≤ ε

2

}
≤κ(4ε)dM(t)

[∫
[0,1]N

P
{|X(s)|≤ ε}ds]−1

.

The presented proof of Lemma 3.8 can be adapted, using equation (3.20) with
T = 3 in place of equation (3.12), to yield

P
{
X(t)= a for some t ∈ [1,2]N }≤κ523d+5N0(1)

[∫
[0,1]N

0(s) ds

]−1

.

Since ∫
[1,2]N

∫
[1,2]N

0(s − t) ds dt≤2N
∫
[0,1]N

0(s) ds,

this proves the upper bound in (3.1). �
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3.3. Proof of Proposition 3.2. In order to prove (i) ⇒ (ii), we use the Fourier-
analytic ideas of Kahane ([31], Theorem 2, Chapter 14), to show that for every
c > 0

P
{
Leb

{
X
([c,2c]N )}

> 0
}= 1.(3.21)

Suppose assertion (i) holds. Then, by Proposition 3.1,0 ∈ L1
loc(R

N). We denote by
σ the image measure of the restriction of Lebesgue’s measure on [c,2c]N underX.
The Fourier transform of σ is

σ̂ (u)=
∫
[c,2c]N

exp
{
iu ·X(t)} dt.

By Fubini’s Theorem,

E
(|σ̂ (u)|2)= ∫

[c,2c]N

∫
[c,2c]N

exp

{
−

N∑
j=1

|tj − sj |�j(u)

}
ds dt

≤ (2c)N
∫
[0, c]N

exp

{
−

N∑
j=1

tj�j (u)

}
dt.

Hence,

E

∫
Rd
|σ̂ (u)|2 du≤ (2c)N

∫
[0, c]N

∫
Rd

exp

{
−

N∑
j=1

tj�j (u)

}
dudt

= 2N+dπdcN
∫
[0, c]N

0(t) dt,

which is finite, since0 ∈ L1
loc(R

N). Consequently, σ̂ ∈L2(Rd), a.s. By the Riesz–
Fischer theorem and/or Plancherel’s theorem, σ is a.s. absolutely continuous with
respect to the Lebesgue measure on Rd and its density is a.s. in L2(Rd). This
proves equation (3.21); assertion (ii) of Proposition 3.2 follows suit.

The implications (ii) ⇒ (iii) ⇒ (iv) being immediate, we will show (iv) ⇒ (i).
Assuming that (iv) holds, there exists a constant c0 > c and an open set G ⊂ Rd

such that

P
{
Leb

{
X
([c,C]N )∩G}

> 0
}
> 0 for all C≥c0.

It follows from equation (3.1) that for all a ∈Rd ,

P
{
a ∈X([c,C]N )}≤κ523d+6N0(c)C0

([c,C]N )
.

By Fubini’s theorem, we obtain

E
(
Leb

{
X
([c,C]N )∩G})≤κ523d+6N0(c)Leb(G)C0

([c,C]N )
.

Hence, C0([c,C]N) > 0, which implies C0([0,1]N) > 0. This completes our
proof of Proposition 3.2. �
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4. Proof of Theorem 2.10. Without loss of generality, we will assume that
c = 1 and C = 2. With this in mind, we first prove the lower bound in (2.6). For
any β < γ , ∫

[0,1]N
‖s‖−β0(s) ds <∞.

This implies that for any T > 0,∫
[0,T ]N

∫
[0,T ]N

‖s − t‖−β0(s − t) ds dt <∞.(4.1)

We let J2 denote the random measure constructed in the presented proof of Lem-
ma 3.6 with µ being Lebesgue’s measure on [1,2]N . We have already proved
that J2 is supported on X−1(0) ∩ [1,2]N and that it is positive with some
probability η > 0, which is independent of β; see equation (3.14). On the other
hand, Lemma 3.4 with K(s, t)= ‖s − t‖−β and equation (4.1), together imply

E

{∫
[1,2]N

∫
[1,2]N

‖s − t‖−βJ2(ds)J2(dt)

}
<∞.

Hence, P{dimH(X
−1(0) ∩ [1,2]N)≥β} > η. Letting β ↑ γ along a rational

sequence, we obtain the lower bound in (2.6).
Next, we will use the hitting probability estimate (3.16) and a covering argument

to prove the upper bound in (2.6). For any β ′ > γ , we choose β ∈ (γ ,β ′). Then

0(s)≥ 1

‖s‖N−β for all s near 0.

Hence, there exists a constant K2 > 0 such that for all h > 0 small enough∫
[0,h]N

0(s) ds≥K2h
β.(4.2)

Now, we can take n large enough and divide [1,2]N into nN subcubes {Cn,i}nNi=1,
each of which has side 1/n. Let us now define a covering Cn,1, . . . ,Cn,nN of
X−1(0)∩ [1,2]N by

Cn,i =
{
Cn,i, if X−1(0)∩Cn,i �=∅,

∅, otherwise.

It follows from (3.16) and (4.2) that for each Cn,i ,

P
{
X−1(0)∩Cn,i �=∅

}≤K3

(
1

n

)N−β
,
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where K3 is a positive and finite constant. Hence, with the covering {Cn,i}nNi=1 in
mind,

E
[
Hβ ′

(
X−1(0)∩ [1,2]N )]
≤ lim inf

n→∞
nN∑
i=1

(√
Nn−1)β ′P{

X−1(0)∩Cn,i �=∅
}

≤ lim inf
n→∞ K3

√
N
β ′
nβ−β ′ = 0,

where Hβ ′(E) denotes the β ′-dimensional Hausdorff measure of E. This proves
dimH(X

−1(0)∩ [1,2]N)≤β ′ a.s. and hence the upper bound in (2.6).
To prove the second assertion of Theorem 2.10, it suffices to show that under

Condition (2.7), dimH(X
−1(0)∩ [1,2]N)≤γ , a.s. This can be done by combining

the above first moment argument and the following lemma. We omit the details.

LEMMA 4.1. Under condition (2.7), for any β > 0,∫
[0,1]N

‖s‖−β0(s) ds =∞(4.3)

implies that for any u ∈ [1,2]N and any β ′ > β ,

lim inf
h→0

hβ
′−NP

{
X−1(0)∩ [u,u+ h] �=∅

}= 0.(4.4)

PROOF. Under condition (4.3), for any ε > 0 we must have

lim sup
s→0

‖s‖N−β−ε0(s)=∞.

This and equation (2.7) together imply that

lim sup
h→0+

hN−β−ε0(h)=∞.(4.5)

On the other hand, it is not hard to see that 0(s)≥0(‖s‖) and that 0(h) is
nonincreasing in h. Hence, for h > 0,∫

[0,h]N
0(s) ds≥K40(h)hN,(4.6)

for some positive constant K4. It follows from (3.16) and (4.6) that

P
{
X−1(0)∩ [u,u+ h] �=∅

}≤K5
1

0(h)
.(4.7)

Equation (4.4) follows from equations (4.5) and (4.7), upon taking ε ∈ (0, β ′ −β).
This completes our proof of the lemma. �
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5. Proof of Theorem 2.12. Theorem 2.12 is divided into two parts: an upper
bound (on the hitting probability), as well as a corresponding lower bound. The
latter is simple enough to prove: the proof of the lower bound in equation (2.8)
uses Lemma 3.10 and follows the second moment argument of Lemma 3.6 closely;
we omit the details.

Regarding the proof of the upper bound, while we sincerely believe that it
should be a mere abstraction of the corresponding upper bound in Proposition 3.1,
the only justification that we can devise is much more complicated and requires
that we first prove a somewhat different theorem. Interestingly enough, this
(somewhat different) theorem completes a circle of ideas in the literature that is
sometimes referred to as Kahane’s problem and is introduced is Subsection 5.1.
The remaining Subsections 5.2–5.4 prove Kahane’s problem and also derive the
hard part of Theorem 2.12, in succession.

5.1. Lebesgue’s measure of stochastic images. We now intend to demonstrate
the following result on Lebesgue’s measure of the image of a compact set under
the random function X. Throughout this section, Leb denotes Lebesgue’s measure
on Rd .

THEOREM 5.1. Let X1, . . . ,XN be N independent symmetric Lévy processes
on Rd and letX =X1⊕· · ·⊕XN . Suppose thatX is absolutely continuous, weakly
unimodal and has gauge function 0. Then, for any compact set E ⊂RN+ ,

κ−12−dC0(E)≤E
{
Leb[X(E)]}≤25d+3Nκ3C0(E).

The following is an immediate corollary.

COROLLARY 5.2. In the setting of Theorem 5.1, for any compact setE ⊂RN+ ,

E
{
Leb[X(E)]}> 0⇐⇒ C0(E) > 0.

REMARK 5.3. To the knowledge of the authors, this result is new at this level
of generality, even for Lévy processes, that is, N = 1. Special cases of this one-
parameter problem have been treated in Hawkes [24], Theorem 5 (for Brownian
motion); see also Kahane [31], Chapters 16, 17.

Now suppose X1, . . . ,XN are i.i.d. isotropic stable Lévy processes all with
α ∈]0,2]. In this case, the above completes a program initiated by J.-P. Kahane
who has shown that for N = 1,2,

Capd/α(E) > 0'⇒ E
{
Leb[X(E)]}> 0'⇒ Hd/α(E) > 0,(5.1)

where Hβ denotes the β-dimensional Hausdorff measure on RN+ . See Kahane
[30, 31] for this and for a discussion of the history of this result, together with
interesting applications to harmonic analysis. A combination of Corollary 5.2 and
equation (2.9) yields the following that completes equation (5.1) by essentially
closing the “hard half.”
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COROLLARY 5.4. SupposeX1, . . . ,XN are i.i.d. isotropic stable Lévy proces-
ses all with the same index α ∈]0,2]. If X = X1 ⊕ · · · ⊕ XN and if E ⊂ RN+ is
compact,

E
{
Leb[X(E)]}> 0⇐⇒ Capd/α(E) > 0.

Once again, the proof of Theorem 5.1 is divided in two main parts: an upper
bound (on E{· · ·}) and a lower bound (on E{· · ·}). The latter is more or less
standard and will be verified first in Section 5.2 below. The former is the “hard
half” and is proved in Section 5.3.

5.2. Proof of Theorem 5.1: Lower bound. For the purposes of exposition, it is
beneficial to work on a canonical probability space. Recall the space D(R+) of
all functions f : R+ →Rd that are right continuous and have left limits. As usual,
D(R+) is endowed with Skorohod’s topology. DefineA=D(R+)⊕· · ·⊕D(R+),
and let it inherit the topology from D(R+). That is, f ∈ A if and only if there
are f1, . . . , fN ∈ D(R+) such that f = f1 ⊕ · · · ⊕ fN . Moreover, as n→∞,
f n → f∞ in A, if and only if for all � = 1, . . . ,N , limn f

n
� = f∞� in D(R+),

where f n = f n1 ⊕ · · · ⊕ f nN for all 1≤n≤∞.
Let X = {X(t); t ∈RN+} denote the canonical coordinate process on A. That is,

for all ω ∈ A and all t ∈ RN+ , X(t)(ω) = ω(t). Also, let F denote the collection
of all Borel subsets of A. In a completely standard way, one can construct a
probability measure P on (A,F), such that under the measure P, X has the same
finite-dimensional distributions as the process of Theorem 5.1. In fact, one can do
more and define for all x ∈Rd a probability measure Px on (A,F) as follows: for
all G ∈ F,

Px{G} = Px{ω ∈A :ω ∈G} = P{ω ∈A :x +ω ∈G},
where the function x + ω is, as usual, defined pointwise by (x + ω)(t) = x +
ω(t) for all t ∈ RN+ . The corresponding expectation operator is denoted by Ex .
Moreover, PLeb (ELeb, respectively) refers to the σ -finite measure

∫
Px(•) dx

[linear operator
∫

Ex(•) dx, respectively].
It is easy to see that the σ -finite measures PLeb have a similar structure as P;

one can define conditional expectations, (multi-)parameter martingales, etc. We
will use the (probability) martingale theory that is typically developed for P, and
apply it to that for PLeb. It is completely elementary to see that the theory extends
easily and naturally. In a one-parameter, discrete setting, the details can be found
in Dellacherie and Meyer [12], equation (40.2), page 34]. One generalizes this
development to our present multiparameter setting by applying the arguments of
R. Cairoli; cf. Walsh [51].

The above notation is part of the standard notation of the theory of Markov
processes and will be used throughout the remainder of this section. In order to
handle the measurability issues, the σ -field F will be assumed to be complete with
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respect to the measure PLeb. This can be assumed without any loss in generality,
for otherwise, (A,F) will be replaced by its PLeb-completion throughout with no
further changes.

Our proof of Theorem 5.1 relies on the following technical lemma.

LEMMA 5.5. Under the σ -finite measure PLeb, for each t ∈ RN+ the law of
X(t) is Lebesgue’s measure on Rd . Moreover, for all n≥1, all ϕj ∈ L1(Rd) ∩
L∞(Rd), all sj , t ∈RN+ (j = 1, . . . , n) and for Leb-almost all z ∈Rd ,

ELeb

[
n∏

j=1

ϕj
(
X(sj )

)∣∣X(t)= z

]
= E

[
n∏

j=1

ϕj
(
X(sj )−X(t)+ z

)]
.(5.2)

PROOF. The condition that ϕj ∈ L1(Rd) ∩ L∞(Rd) for all j = 1, . . . , n,
implies that

∏n
j=1 ϕj (X(s

j )) ∈ L1(PLeb). Moreover, for any bounded measurable

function g: Rd→R,

ELeb

[
g
(
X(t)

) n∏
j=1

ϕj
(
X(sj )

)]

=
∫

Rd
E

[
g
(
X(t)+ x

) n∏
j=1

ϕj
(
X(sj )+ x

)]
dx

=
∫

Rd
g(y)E

[
n∏

j=1

ϕj
(
X(sj )−X(t)+ y

)]
dy.

Set ϕ1 = ϕ2 = · · · ≡ 1 to see that the PLeb distribution of X(t) is Leb. Since
the displayed equation above holds true for all measurable g, we have verified
equation (5.2). �

REMARKS. (i) Equality (5.2) can also be established using regular conditional
(σ -finite) probabilities.

(ii) There are no conditions imposed on sj (j = 1, . . . , n) and t .

The second, and final, lemma used in our proof of the lower bound is a joint
density function estimate.

LEMMA 5.6. For all ε > 0 and all s, t ∈RN+ ,

κ−12−dεd ≤ PLeb{|X(s)|≤ ε, |X(t)|≤ ε}
P{|X(t)−X(s)|≤ ε} ≤κ(4ε)d ,

where 0÷ 0= 1.
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PROOF. We will verify the asserted lower bound on the probability. The upper
bound is proved by similar arguments that we omit.

PLeb
{|X(s)|≤ ε, |X(t)|≤ ε}
≥PLeb

{
|X(s)|≤ ε, |X(t)|≤ ε

2

}

≥PLeb

{
|X(t)|≤ ε

2

}
inf

z∈Rd : |z|≤ε/2
PLeb

{|X(s)|≤ ε |X(t)= z
}
.

By Lemma 5.5, the first term equals εd and the second is bounded below by
P{|X(t) − X(s)|≤ 1

2ε}. The lower bound on the probability follows from weak
regularity; cf. Lemma 2.8. �

PROOF OF THEOREM 5.1: LOWER BOUND. For any µ ∈ P(E) and all ε > 0,
define

J = (2ε)−d
∫

1{|X(s)|≤ε}µ(ds).(5.3)

By Lemmas 5.5 and 5.6,

ELeb{J } = 1,

ELeb{J 2} ≤ κε−d
∫ ∫

P
{|X(t)−X(s)|≤ ε}µ(ds)µ(dt).(5.4)

Thus, by the Paley–Zygmund inequality applied to the σ -finite measure PLeb,

PLeb
{∃s ∈E : |X(s)|≤ ε}
≥PLeb{J > 0}

≥
[
κε−d

∫ ∫
P
{|X(t)−X(s)|≤ ε}µ(ds)µ(dt)]−1

;

cf. Kahane [31] for the latter inequality. Let ε→ 0+ and use Fatou’s lemma to
conclude that

PLeb
{
0 ∈X(E)}≥κ−12−d [E0(µ)]−1.

On the other hand,

PLeb
{
0 ∈X(E)}= ∫

P
{
x ∈X(E)}dx = E

{
Leb[X(E)]}.

Since µ ∈ P(E) is arbitrary, the lower bound follows. �
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5.3. Proof of Theorem 5.1: Upper bound. The verification of the upper bound
of Theorem 5.1 is made particularly difficult, due to the classical fact that the
parameter space RN+ cannot be well ordered in such a way that the ordering
respects the Markovian structure of RN+ . (Of course, RN+ can always be well
ordered under the influence of the axiom of choice, thanks to a classical theorem of
Zermelo.) This difficulty is circumvented by the introduction of 2N partial orders
that are conveniently indexed by the power set of {1, . . . ,N} as follows: let >
denote the collection of all subsets of {1, . . . ,N} and for all A ∈ >, define the

partial order
(A)

� on RN as

s
(A)

� t⇐⇒
{
si≤ ti , for all i ∈A,
si≥ ti , for all i /∈A.

The key idea behind this definition is that the collection {(A)� ; A ∈>} of partial
orders totally orders RN in the sense that given any two points s, t ∈ RN , there

exists A ∈>, such that s
(A)

� t . By convention, s
(A)

� t is written in its equivalent

form t
(A)

� s and these two ways of writing the same thing are used interchangeably
throughout. (It is worth noting that there are some redundancies in this definition.
While > has 2N elements, one only needs 2N−1 partial orders to totally order RN .
This distinction will not affect our applications and, as such, not deemed important
to this discussion.) Corresponding to each A ∈ >, one defines an N -parameter
filtration FA = {

FAt ; t ∈ RN+} by defining FAt to be the σ -field generated by the

collection {X(r); r (A)� t}, for all t ∈RN+ . The following is proved along the lines of
Khoshnevisan and Shi [35], Lemma 2.1; see also Khoshnevisan [34], Lemma 4.1.

LEMMA 5.7. For each A ∈>, FA is a commuting N -parameter filtration.

In other words, when s
(A)

� t are both in RN+ , FAs ⊂ FAt . Moreover, FA satisfies
condition (F4) of Cairoli and Walsh; see [51].

The following important proposition is an analogue of the Markov property for
additive Lévy processes, with respect to the σ -finite measure PLeb.

PROPOSITION 5.8 (The Markov property). For each fixed A ∈ >, s, t ∈ RN+
with t

(A)

� s, FAt and X(s) are conditionally independent under PLeb, given X(t).
That is, for all ψ ∈L1(Rd)∩L∞(Rd), PLeb almost surely

ELeb
[
ψ
(
X(s)

) ∣∣FAt ]= ELeb
[
ψ
(
X(s)

) ∣∣X(t)].
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PROOF. It is sufficient to prove that for all n≥1, all ϕj ∈ L1(Rd) ∩ L∞(Rd)

and all rj ∈RN+ with rj
(A)

� t (j = 1, . . . , n),

ELeb

[
ψ
(
X(s)

) n∏
j=1

ϕj
(
X(rj )

) ∣∣X(t)]

= ELeb
[
ψ
(
X(s)

) ∣∣X(t)] ·ELeb

[
n∏

j=1

ϕj
(
X(rj )

) ∣∣X(t)].(5.5)

To this end, consider any bounded measurable function g: Rd→R. Then,

ELeb

[
ψ
(
X(s)

) · g(X(t)) · n∏
j=1

ϕj
(
X(rj )

)]

= E

{∫
Rd
ψ
(
X(s)+ x

) · g(X(t)+ x
) · n∏

j=1

ϕj
(
X(rj )+ x)dx}

= E

{∫
Rd
ψ
(
X(s)−X(t)+ y

) · g(y) · n∏
j=1

ϕj
(
X(rj )−X(t)+ y

)
dy

}

=
∫

Rd
E
{
ψ
(
X(s)−X(t)+ y

)} · g(y) ·E{
n∏

j=1

ϕj
(
X(rj )−X(t)+ y

)}
dy.

In the last step, we have used Fubini’s Theorem, together with the independence
of X(s) − X(t) and {X(rj )− X(t); j = 1, . . . , n} under P. By Lemma 5.5, the
PLeb-distribution ofX(t) is Leb. This proves (5.5) and, hence, the proposition. �

The last important step in the proof of the upper bound of Theorem 5.1 is the
following proposition. Roughly speaking, it states that for each t ∈ RN+ , 1{X(t)=0}
is comparable to a collection of reasonably niceN -parameter martingales, not with
respect to probability measures P, but with respect to the σ -finite measure PLeb.

PROPOSITION 5.9. Let ε > 0 and µ ∈ P(E) be fixed and recall J from (5.3).
Then, for every A ∈> and for all t ∈RN+ ,

ELeb
{
J | FAt

}≥(4ε)−dκ−1
∫
s
(A)
� t

P
{|X(t)−X(s)|≤ ε}µ(ds) · 1{|X(t)|≤ε/2},

PLeb-almost surely.

It is very important to note that the conditional expectation on the left hand
side is computed under the σ -finite measure PLeb, under which the above holds
a.s., while the probability term in the integral is computed with respect to the
measure P.
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PROOF. Clearly, for all fixed t ∈RN+ ,

ELeb
{
J | FAt

} ≥ (2ε)−dELeb

{∫
s
(A)
� t

1{|X(s)|≤ε}µ(ds) | FAt
}

= (2ε)−d
∫
s
(A)
� t

PLeb
{|X(s)g|≤ ε | FAt }µ(ds),

PLeb-almost surely. It follows from Proposition 5.8 that

ELeb
{
J | FAt

}≥ (2ε)−d
∫
s
(A)
� t

PLeb
{|X(s)|≤ ε |X(t)}µ(ds)

≥ (2ε)−d
∫
s
(A)
� t

PLeb
{|X(s)|≤ ε |X(t)}µ(ds) · 1{|X(t)|≤ε/2},

PLeb-almost surely. On the other hand, for almost all z ∈Rd with |z|≤ε/2,

PLeb
{|X(s)|≤ ε |X(t)= z

}= P
{|X(t)−X(s)+ z|≤ε}

≥ P
{|X(t)−X(s)|≤ 1

2ε
}

≥ κ−12−dP
{|X(t)−X(s)|≤ ε}.

The first line follows from Lemma 5.5 and the last from weak unimodality. This
proves the proposition. �

PROOF OF THEOREM 5.1: UPPER BOUND. Without loss of generality, we
may assume that E{LebX(E)} > 0, for, otherwise, there is nothing to prove.
Equivalently, we may assume that

PLeb
{
0 ∈X(E)}> 0;

cf. the proof of the lower bound of Theorem 5.1.
Since E is compact, it has a countable dense subset, that we assume to be QN+ ,

to keep our notation from becoming overtaxing. Fix ε > 0 and let Tε denote any
measurable selection of t ∈ E ∩QN+ for which |X(t)|≤ ε/2. If such a t does not
exist, define Tε =I, where I ∈QN+ \E but is otherwise chosen quite arbitrarily.
It is clear that Tε is a random vector in QN+ ∪I. Define µε by

µε(•)= PLeb{Tε ∈ • | Tε ∈E}.
Clearly, µε is a measure on E. Let Ln denote the restriction of Leb to [−n,n]d . It
is not hard to check that for every Borel set B ⊂E,

µε(B)= lim
n→∞PLn{Tε ∈ B | Tε ∈E},

where PLn{•} =
∫
Rd Px{•} Ln(dx). In particular, we have the important observa-

tion that µε ∈ P(E). It is clear that Proposition 5.9 holds simultaneously for all
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t ∈QN+ , PLeb-almost surely. Consequently, since Tε ∈QN+ , Proposition 5.9 can be
applied with t = Tε and µ=µε to yield

ELeb

{[
sup
t∈QN+

ELeb{J | FAt }
]2
}

≥ (4ε)−2dκ−2
∫ [∫

s
(A)
� t

P
{|X(t)−X(s)|≤ ε}µε(ds)]2

µε(dt)

× PLeb{Tε ∈E}

≥ (4ε)−2dκ−2
[∫ ∫

s
(A)
� t

P
{|X(t)−X(s)|≤ ε}µε(ds)µε(dt)]2

× PLeb{Tε ∈E},
by the Cauchy–Schwarz inequality. By Lemma 5.7, the N -parameter process
t �→ ELeb{J |FAt } is an N -parameter martingale with respect to the N -parameter,
commuting filtration FA. As such, by the L2(PLeb)-maximal inequality of Cairoli
(cf. Walsh [51]),

ELeb

{[
sup
t∈QN+

ELeb{J | FAt }
]2}

≤4N sup
t∈RN+

ELeb

{[
ELeb{J | FAt }

]2
}
,

which is bounded above by 4NELeb{J 2}, by the Cauchy–Schwarz inequality for
conditional expectation under PLeb. (As mentioned earlier, some care is needed.
The theory of martingales, as well as that of multiparameter martingales, is often
stated with respect to probability measures. However, our intended applications of
the theory go through with no essential changes for PLeb.) Combining this with
equation (5.4) yields

4N+2dκ3
∫ ∫

P
{|X(s)−X(t)|≤ ε}µε(ds)µε(dt)

≥ (2ε)−d
[∫ ∫

s
(A)
� t

P
{|X(t)−X(s)|≤ ε}µε(ds)µε(dt)]2

× PLeb{Tε ∈E}.
For all nonnegative sequences {xA;A ∈ >}, ∑

A∈> x2
A is bounded below by

2−N [∑A∈>xA]2. Thus, one can sum the above displayed inequality over allA ∈>
and obtain

PLeb{Tε ∈E}≤ 2N+d4N+2dκ3

(2ε)−d
∫∫

P{|X(s)−X(t)|≤ ε}µε(ds)µε(dt) .

As ε→ 0+, the left hand side converges to PLeb{0 ∈X(E)} = E{Leb[X(E)]}. On
the other hand, since µε ∈ P(E) and since E is compact, by Prohorov’s theorem,
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µε has a subsequential weak limit µ0 ∈ P(E). Consequently, by Fatou’s lemma,

ELeb
{
Leb[X(E)]}≤ 2N+d4N+2dκ3

E0(µ0)
;

see Billingsley [5], Chapter 1.6. This proves Theorem 5.1. �

5.4. Conclusion of the Proof of Theorem 2.12. It suffices to show the upper
bound. Suppose there exists η ∈]0,1[ such that E ⊂ [η,η−1]N . Then,

P
{
X−1(0)∩E �=∅

}= ∫
P
{
X(η) ∈ dx}Px{X−1(0)∩ (E + η) �=∅

}
≤0(η)

∫
Px

{
X−1(0)∩ (E + η) �=∅

}
dx

=0(η)PLeb
{
X−1(0)∩ (E + η) �=∅

}
=0(η)E

{
Leb[X(E + η)]},

where E + η = {x − η :x ∈ E}. The main theorem finally follows from
Theorem 5.1 and the simple fact that C0 is translation invariant. �

6. Consequences. In this section, we present some applications of Theo-
rems 2.9 and 2.12. One could also apply the arguments of this section, in
conjunction with Theorem 2.10, in order to compute the Hausdorff dimension of
the intersection of zero sets and the intersection times of independent additive Lévy
processes. We make one such calculation in Example 6.3 below.

6.1. Intersections of zero sets. Let L1, . . . ,Lk denote the zero sets of k

independent N -parameter additive Lévy processes. We shall assume that the
latter processes are symmetric, absolutely continuous and weakly unimodal in the
sense of Section 2. Let 01, . . . ,0k designate their corresponding gauge functions;
cf. (2.3).

THEOREM 6.1. Given the above conditions, the following are equivalent:

(i) P{L1 ∩ · · · ∩Lk ∩ [c,∞[N �=∅}> 0, for all c > 0;
(ii) P{L1 ∩ · · · ∩Lk ∩ [c,∞[N �=∅}> 0, for some c > 0; and

(iii)
∏k
�=10� ∈ L1

loc(R
N). Moreover, for any M > 1, there exists a constant

A> 1, such that for all compact sets E ⊂ [M−1,M]N ,

1

A
C∏k

�=10�
(E)≤µ∩k�=1L�

(E)≤AC∏k
�=10�

(E).

REMARK 6.2. In the special case d = N = 1, one can use the connections
to subordinators (mentioned earlier) to show this result; see Bertoin [3] for this
and more. In the more general case where N ≥1, 0(t) = f (|t|) and where
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f is monotone, one can combine our Theorem 2.9 together with Peres [44,
Corollary 15.4] to provide an alternative proof of the first part of Theorem 6.1
above. In the following, our proof of the first part is based on Theorem 2.9 alone.

PROOF. We need some notation for this proof. For any 1≤�≤k, let X�
1, . . . ,

X�
N denote N independent Lévy processes on Rd and define X� =X�

1⊕ · · ·⊕X�
N .

By choosing the appropriate X�
j ’s, we can ensure that L� = X−1

� {0} for all

1≤�≤k. Let Y = {Y(t); t ∈ RN+} be the Rdk-valued stochastic process defined
by

Y(t)= X1(t)⊗ · · · ⊗ Xk(t), t ∈RN+,

in tensor notation. For each a ∈ Rdk we write it in tensor notation as a = a1 ⊗
· · · ⊗ ak , where a� ∈ Rd , for all 1≤�≤k. Suppose the Lévy exponent of X�

j is

denoted by ��
j . Then, the characteristic exponent of X� is �� = ��

1 ⊗ · · · ⊗��
N

and the characteristic exponent of Y(t) is
∑k

�=1�
�. It should now be clear that Y

is a symmetric, absolutely continuous additive Lévy process; it takes its values in
Rdk , and the density function p(t; •) of Y(t) is

p(t;x)= (2π)−dk
∫

Rdk
e−ix·ξ

k∏
�=1

E
[
exp

{
iξ � · X�(t)}]dξ, t ∈RN+ ,

where ξ = ξ1 ⊗ · · · ⊗ ξk ∈ Rdk , in tensor notation. In particular, if 0� denotes
the gauge function for X� and 0 denotes the gauge function for Y, then 0(t) =∏k
�=10�(t), for all t ∈ RN+ . It remains to verify weak unimodality. For any

t ∈RN+\∂RN+ , a = a1 ⊗ · · · ⊗ ak ∈Rdk and any r > 0, we have

P
{|Y (t)− a|≤ r}≤ P

{|X1(t)− a1|≤ r, . . . , |Xk(t)− ak|≤ rr}
≤ κk

k∏
�=1

P
{|X�(t)|≤ r}

= κkP
{|Y (t)|≤ r}.

Therefore, Theorem 2.9 implies the equivalence of (i)–(iii). To prove the asserted
inequality, we can apply Corollary 2.13, and note that by Lemma 2.2(ii),
infs∈[M−1,M] p(s;0) > 0. �

EXAMPLE 6.3. As an instructive example, let us consider L1, . . . ,Lk to be
the zero sets of k independent processes of the type considered in Theorem 1.1.
Let α1, . . . , αk ∈]0,2] denote the corresponding stable indices. Our proof of the
latter theorem shows us that the Lévy exponent, ��(t), of the �th process is
bounded above and below by a constant multiple of |t|−d/α� . By Theorem 6.1 and

by Lemma 2.2(i),
⋂k
�=1L� is not a.s. empty if and only if

∫
|t|≤1 |t|−d

∑k
�=1 α

−1
� dt
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<∞, which, upon calculating in polar coordinates, is seen to be equivalent to the
condition: N > d

∑k
�=1

1
α�

. Moreover, if α� = α for � = 1, . . . , k and N > kd/α,
then by Theorem 2.10,

P

{
dimH

(
k⋂

�=1

L� ∩ [c,C]N
)
=N − 1

α
kd

}
> 0,

for all 0< c <C <∞. �

6.2. Intersections of the sample paths. In this subsection, we apply The-
orem 2.9 to study the intersections of the sample paths of k independent
N -parameter additive Lévy processes. We will use the same notations as in Sub-
section 6.1.

Let X1, . . . ,Xk be k independent N -parameter absolutely continuous additive
Lévy processes in Rd . Recall that for each 1≤�≤k, X� = X�

1 ⊕ · · · ⊕ X�
N ,

where X�
j ’s are independent symmetric Rd -valued Lévy processes with exponents

��
j , respectively. We will also need the additive Lévy process Z in the proof of

Theorem 6.4 to be weakly unimodal. This follows, for example, if for all 1≤�≤k
and t ∈RN+\∂RN+ , the distribution of X�(t) is self-decomposable. For s̃ ∈RkN , we
write s̃ = s1⊗· · ·⊗ sk , where s� ∈RN for all 1≤�≤k. For all s̃ ∈RkN , we define

0( s̃ )= (2π)−d(k−1)

×
∫

Rd(k−1)
exp

{
−

N∑
j=1

|s1
j |�1

j

(
k−1∑
�=1

v�

)
−

N∑
j=1

k−1∑
�=1

|s�+1
j |��+1

j (v�)

}
dṽ.

(6.1)

THEOREM 6.4. Under the above conditions, the sample paths of X1, . . . ,Xk
intersect with positive probability if and only if 0 ∈L1

loc(R
kN).

PROOF. Let Z= {Z( t̃ ); t̃ ∈RkN+ } be the stochastic process defined by

Z( t̃ )= (
X2(t

2)− X1(t
1)
)⊗ · · · ⊗ (

Xk(t
k)− Xk−1(t

k−1)
)
, t̃ ∈RkN+ .

We observe that the sample paths of X1, . . . ,Xk intersect if and only if Z−1(0) is
nonempty. We now relate the zero set of Z to our previous theorems.

It is not hard to see that Z is a symmetric additive Lévy process. Indeed, Z( t̃ )
equals(−X1(t

1),0, . . . ,0
)+ (

X2(t
2),−X2(t

2),0, . . . ,0
)+ · · · + (

0, . . . ,0,Xk(t
k)
)
,

which is a sum of k independent, symmetric and self-decomposable Rd(k−1)-
valued random vectors. Hence, Z is weakly unimodal. Moreover, since direct
sums of independent additive Lévy processes are themselves additive Lévy
processes, Z is a symmetric, weakly unimodal additive Lévy process. Finally, a
direct calculation reveals that Z is absolutely continuous. Moreover, Z( t̃ ) has a



94 D. KHOSHNEVISAN AND Y. XIAO

continuous density for each ( t̃ ) ∈ RkN+ \∂RkN+ and the gauge function 0 of Z is
given by (6.1). Hence, Theorem 6.4 follows from Theorem 2.9. �

When X1, . . . ,Xk are k independentN -parameter additive stable Lévy processes,
Theorem 6.4 implies the following corollary.

COROLLARY 6.5. Let X1, . . . ,Xk be k independent N -parameter additive
isotropic stable Lévy processes in Rd with indices α� ∈ (0,2] (� = 1, . . . , k), re-
spectively. Then, the sample paths of X1, . . . ,Xk intersect with positive probability
if and only if for every 1≤ j ≤k, N

∑j
�=1 α� > d(j − 1).

PROOF. Recall that ��
j (v

�) = χ�j ‖v�‖α� , where χ�j > 0 are constants. For

simplicity of notations, we assume that χ�j = 1 for all � and j . It follows from
Fubini’s theorem that for any constant T > 0,∫

[0,T ]kN
0( s̃ ) ds̃

= (2π)−d(k−1)
∫

Rd(k−1)

1∥∥∑k−1
�=1 v

�
∥∥α1N

(
1− exp

{
−T

∥∥∥∥∥
k−1∑
�=1

v�

∥∥∥∥∥
α1})N

×
k−1∏
�=1

1

‖v�‖α�+1N

(
1− exp

{−T ‖v�‖α�+1
})N

dṽ.

(6.2)

If there exists a j ≤ k such that N
∑j

�=1 α�≤d(j − 1), we write the integral on the
right hand side of (6.2) as∫

Rd(k−j)

k−1∏
�=j

1

‖v�‖α�+1N

(
1− exp

{−T ‖v�‖α�+1
})N

dvj · · · dvk−1

×
∫

Rd(j−1)

1∥∥∑k−1
�=1 v

�
∥∥α1N

(
1− exp

{
−T

∥∥∥∥∥
k−1∑
�=1

v�

∥∥∥∥∥
α1})N

(6.3)

×
j−1∏
�=1

1

‖v�‖α�+1N

(
1− exp

{−T ‖v�‖α�+1
})N

dv1 · · · dvj−1.

By using spherical coordinates, we see that for every (vj , . . . , vk−1) ∈Rd(k−j), the
inside integral in (6.3) is infinite. Hence, Theorem 6.4 implies that almost surely
the sample paths of X1, . . . ,Xk do not intersect.

Now we assume that N
∑j

�=1 α� > d(j − 1) for j = 1, . . . , k. In order to show
the integral in (6.2) is finite, we first note that if Nαj > d for some j ≤ k (say
Nαk > d) then Theorem 1.1 implies that Xk hits every fixed point with positive
probability and, hence, it will also hit the intersection points of X1, . . . ,Xk−1
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(when the latter is not empty) with positive probability. Therefore, without loss
of generality, we may and will assume Nαj ≤d for j = 1, . . . , k.

In addition, we will make use of the following generalized Hölder’s inequality:
If hj (j = 1,2, . . . , k) are nonnegative functions on Rm and pj > 1 (j =
1,2, . . . , k) such that

∑k
j=1 1/pj = 1, then

∫
Rm

k∏
j=1

hj(x) dx≤
k∏

j=1

[∫
Rm

hj (x)
pj dx

]1/pj
.

For each j = 1, . . . , k, denote

βj = N

k − 1

(
k∑

�=1

α� − (k − 1)αj

)
,

pj =
∑k

�=1 α�∑k
�=1 α� − (k − 1)αj

.

Since Nαj ≤d , βj > 0, for each 1≤ j ≤k. Moreover, pj > 1 and

∑
��=j

β� =Nαj,

k∑
�=1

1

p�
= 1.

Hence, we can write the integrand on the right hand side of (6.2) as

k∏
j=1

∏
��=j

1

‖u�‖βj
(
1− exp

{−T ‖u�‖α�})βj /α�,
where u1 =∑k−1

�=1 v
�, u� = v�+1 for �= 1, . . . , k − 1. Hence, by the generalized

Hölder’s inequality, we see that the integral in (6.2) is bounded above by

k∏
j=1

[∫
Rd(k−1)

∏
��=j

1

‖u�‖βj pj
(
1− e−T ‖u�‖α�

)βjpj/α� dṽ]1/pj

=
k∏

j=1

[∫
Rd(k−1)

∏
��=j

1

‖u�‖βjpj
(
1− e−T ‖u�‖α�

)βjpj /α� dũ]1/pj
.

(6.4)

The last equality follows from the fact that for each j , the linear operator (v1, . . .,
vk−1) �→ (u�, � �= j) on Rd(k−1) is nonsingular with Jacobian 1. Since βjpj > d

for each j = 1, . . . , k, we see that all the integrals in (6.4) are finite. This proves
that 0 ∈ L1

loc(R
kN), and Corollary 6.5 follows. �

REMARK 6.6. When N = 1, Theorem 6.4 describes the following necessary
and sufficient condition for the intersections of k independent, symmetric,
absolutely continuous, self-decomposable Lévy processes in terms of their Lévy
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exponents �� (� = 1, . . . , k): there exists some T > 0, for which the following
integral is finite:∫

Rd(k−1)

1

�1
(∑k−1

�=1 v
�
)(1− exp

{
−T�1

(
k−1∑
�=1

v�

)})

×
k−1∏
�=1

1

��+1(v�)

(
1− exp

{−T��+1(v�)
})
dṽ.

Since the ��’s are nonnegative, we can use the monotone convergence theorem
and conclude that k independent, symmetric and absolutely continuous Lévy pro-
cesses with exponents �1, . . . ,�k intersect if and only if∫

Rd(k−1)

1

1+�1
(∑k−1

�=1 v
�
) · k−1∏

�=1

1

1+��+1(v�)
dṽ <∞.(6.5)

When N = 1, equation (6.5) provides a necessary and sufficient condition for
intersections of k independent symmetric, absolutely continuous, weakly unimodal
Lévy processes. That is, whenN = 1, our condition (6.5) agrees with the necessary
and sufficient conditions of Fitzsimmons and Salisbury [19], Hirsch [27] and
Hirsch and Song [28, 29], specialized to the Lévy processes of the type considered
in this paper. For earlier (partial) results, whenN = 1, see LeGall, Rosen and Shieh
[37] and Evans [16].

In the special case of k independent isotropic stable Lévy processes with indices
α� ∈ (0,2] (� = 1, . . . , k), respectively, and α1≤· · ·≤αk , Corollary 6.5 implies
that their sample paths intersect with positive probability if and only if

∑j
�=1 α� >

d(j − 1) for every 1≤ j ≤ k. This result was essentially proved by Taylor in [49]
and by Fristedt [22] for k independent isotropic stable Lévy processes with the
same index α ∈]0,2].

We conclude this subsection with the following simple example.

EXAMPLE 6.7. Consider 2 independent, isotropic stable Lévy processes on
Rd : X1 = {X1(t); t ≥0} and X2 = {X2(t); t ≥0}. Let αi denote the index of Xi ,
where i = 1,2. We define the 2-parameter additive process X = {X(t); t ∈ R2+}
by X(t)=X1(t1)−X2(t1). By symmetry, this is a special case of (1.1). Clearly,

X−1{0} = {
(s, t) ∈R2+ :X1(s)=X2(t)

}
,

is the collection of all intersection times for X1 and X2. Thus, the paths of X1
and X2 intersect nontrivially (i.e., at points other than the origin) if and only if
α1 + α2 > d . To specialize further, choose α1 = α2 = 2 to recover the classical
fact that two independent Brownian paths in Rd cross if and only if d < 4;
see Dvoretzky, Erdős and Kakutani [13] and Dvoretzky, Erdős, Kakutani and
Taylor [14]. Next, consider an independent copy Y of X. Another application
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of Example 6.3 above shows that X−1{0} ∩ Y−1{0} is nonvoid if and only
if d < 2. That is, while in dimensions 2 and 3, two Brownian paths intersect, their
intersection points are too thin to hit an independent copy of themselves.

6.3. Lebesgue’s measure. Let X = {
X(t); t ∈ RN+

}
denote an N -parameter

stochastic process that takes its values in Rd . The following question has a long
history:

“Given that N > 1, when is it possible that Leb{X(E)}> 0?”

Some results related to this question can be found in Evans [15], Kahane ([31],
Theorem 5, Section 6, Chapter 16) and Mountford [41] and their combined
references. In the special case whenN = 2 andX is additive Brownian motion, the
above question is answered in the affirmative by Khoshnevisan [34]. We can apply
Theorem 5.1 to give a comprehensive and immediate answer to the mentioned
question for any N ≥1, in case X is any of the additive Lévy processes of the
present paper.

COROLLARY 6.8. Suppose X is an N -parameter, Rd -valued, symmetric,
weak unimodal and absolutely continuous additive Lévy process with gauge
function 0. Then, for any given compact set E ⊂ RN+ , the following are
equivalent:

(i) P[Leb{X(E)}> 0] = 1;
(ii) P[Leb{X(E)}> 0]> 0;

(iii) C0(E) > 0.

By symmetrization, one also obtains the following extension of the results of
Evans [15] and Mountford [41] to the multiparameter setting. For simplicity, we
will assume the distributions of X1, . . . ,XN to be self-decomposable.

COROLLARY 6.9. Suppose X1, . . . ,XN are Rd -valued self-decomposable
Lévy processes such that the N -parameter additive Lévy process X given by (1.1)
is absolutely continuous. The following are equivalent:

(i) for all Borel measurable functions f : RN+ →Rd ,

P
[
Leb

{
(X+ f )

([c,∞[N )}
> 0

]= 1 for all c > 0;
(ii) for all Borel measurable functions f : RN+ →Rd ,

P
[
Leb

{
(X+ f )

([c,∞[N )}
> 0

]
> 0 for all c > 0;
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(iii) C0([0,1]N) > 0, where 0 denotes the gauge function for X −X′, where
X′ is an independent copy of X. That is, if �j denotes the Lévy exponent of Xj ,
then for all s ∈RN ,

0(s)= (2π)−d
∫

Rd
exp

{
−2

N∑
�=1

|s�|Re��(ξ)

}
dξ.

PROOF. The proof is very similar to that of Evans [15]: using symmetrization
and Theorem 6.8 for (ii) ⇒ (iii) and Kahane’s argument for (iii) ⇒ (i). We omit
the details. �
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[13] DVORETZKY, A., ERDŐS, P. and KAKUTANI, S. (1950). Double points of paths of Brownian

motion in n-space. Acta Sci. Math. Szeged 12 75–81.
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