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WEAK CONVERGENCE OF SOME CLASSES
OF MARTINGALES WITH JUMPS

By Yoichi Nishiyama

Institute of Statistical Mathematics

This paper deals with weak convergence of stochastic integrals with
respect to multivariate point processes. The results are given in terms of an
entropy condition for partitioning of the index set of the integrands, which
is a sort ofL2-bracketing. We also consider �∞-valued martingale difference
arrays, and present natural generalizations of Jain–Marcus’s and Ossian-
der’s central limit theorems. As an application, the asymptotic behavior of
log-likelihood ratio random fields in general statistical experiments with
abstract parameters is derived.

1. Introduction. Let �E�� � be a Blackwell space. For every n ∈ �, let µn

be an E-valued multivariate point process defined on a stochastic basis Bn =
��n�� n�Fn = �� n

t �t∈�+�Pn�, and let νn be the predictable compensator of µn.
Let � n = �Wn�ψ � ψ ∈ 
	 be a class of predictable functions on �n × �+ ×E,
indexed by an arbitrary set 
. [Throughout this paper, we follow the standard
definitions and notations of martingale theory, which can be found in the book
by Jacod and Shiryaev (1987).] The main goal of this paper is to present some
sufficient conditions for the weak convergence of the sequence of processes
�t�ψ��Xn�ψt , given by

X
n�ψ
t =Wn�ψ ∗ �µn − νn�t ∀ t ∈ �+ ∀ψ ∈ 
�

as n→∞.
Our result has its roots in the modern theory of empirical processes for i.i.d.

random sequences indexed by classes of sets or functions, which was initiated
by the prominent work by Dudley (1978), and has been well developed by many
authors in the 80s including Ossiander (1987) and Andersen, Giné, Ossiander
and Zinn (1988). The recent book by van der Vaart and Wellner (1996) gives a
comprehensive exposition of such results up to row-independent cases as well
as a lot of applications to statistics. On the other hand, it is also important
from a practical point of view to remove the assumption of independence. This
problem has been considered in the last few years by several authors: see
Arcones and Yu (1994), Doukhan, Massart and Rio (1995), Bae and Levental
(1995) and Nishiyama (1997).
In order to explain the crucial point of our work, let us quote here a general

criterion for the weak convergence of �∞�T�-valued random elements, which
we shall use in Sections 3 and 4. See Theorem 1.5.4 and 1.5.6 of van der Vaart
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and Wellner (1996) for the proof. In what follows, the notation⇒Pn means the
weak convergence under the sequence of probability measures Pn [see, e.g.,
Definition 1.3.3 of van der Vaart and Wellner (1996)]; we denote by P∗ and E∗

the outer probability and expectation with respect to the probability measure
P, respectively.

Theorem 1.1. Let T be an arbitrary set. For every n ∈ �, let ��n�� n�Pn�
be a probability space and Xn a mapping from �n to �∞�T�. Consider the
following statements:

(i) Xn converges weakly in �∞�T� to a tight, Borel law.
(ii) Every finite-dimensional marginal of Xn converges weakly to a (tight,)

Borel law.
(iii) For every ε�η > 0 there exists a finite partition �Tk � 1 ≤ k ≤ N	 of T

such that

lim sup
n→∞

Pn∗
(
max
1≤k≤N

sup
t� s∈Tk

�Xn�t� −Xn�s�� > ε
)
≤ η�

Then, there is the equivalence (i) ⇔ (ii) + (iii). Furthermore, if the marginals
of a process X = �X�t��t ∈ T� have the same laws as those of the limits in (ii),
then there exists a version X̃ of X such that Xn ⇒Pn X̃.

In our situation, the finite-dimensional convergence can be shown by using
some well-known results for finite-dimensional local martingales [see, e.g., Ja-
cod and Shiryaev (1987)]. Hence the crucial point is to check the condition (iii),
and this is accomplished by means of a maximal inequality given in Section
2, which is described in terms of a certain entropy of series of finite partitions
of the set 
. The inequality is proved by combining a bracketing and chaining
argument which has been developed mainly for empirical processes and an
exponential inequality for local martingales with bounded jumps. The former
is originally due to Ossiander (1987) who established the central limit theo-
rem for i.i.d. sequences under the metric entropy condition for L2-bracketing,
and is refined by van der Vaart and Wellner (1996) who showed no metric
is necessary to formulate a certain entropy condition for L2-bracketing. On
the other hand, Bae and Levental (1995) have already shown that Bernstein–
Freedman’s inequality [Freedman (1975)] works well instead of the classical
inequality of Bernstein for i.i.d. sequences, in their study on a central limit
theorem for ergodic Markov chains. Van de Geer (1995) and Nishiyama (1997a,
b) have taken such approaches in some situations of continuous-time martin-
gales. It should be noted that the idea of the partitioning entropy condition
introduced in Section 3 comes from those of Theorem 2.11.9 of van der Vaart
and Wellner (1996) and Proposition 1.1 of Bae and Levental (1995). Although
the results in Section 3 do not contain Theorem 2.2 of Nishiyama (1997), the
conditions have been considerably refined. The refinement is partly due to the
use of the tightness criterion in terms of partitioning [i.e., (iii) of Theorem 1.1
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above] rather than the well-known stochastic ρ-equicontinuity criterion. Van
der Vaart and Wellner (1996) are apparently the first to present the partition-
ing criterion.
Section 4 is devoted to the case of discrete-time martingales. Let 
 be an

arbitrary set. Let Bn = ��n�� n�Fn�Pn� be a discrete-time stochastic basis,
where ��n�� n�Pn� is a probability space and Fn = �� n

i 	i∈�0 is a nondecreas-
ing sequence of sub-σ-fields of � n indexed by �0 = �0	 ∪�.

Definition 1.2. �ξni 	i∈� = ��ξn�ψi �ψ ∈ 
�	i∈� is called an �∞�
�-valued
martingale difference array on Bn if:

(i) ξni is a mapping from �
n to �∞�
� for every i ∈ �;

(ii) �ξn�ψi 	i∈� is an �-valued martingale difference array on Bn for every
ψ ∈ 
.

It is required in (ii) that ξn�ψi is � n
i -measurable and E

n
i−1ξ

n�ψ
i = 0 almost

surely, for every ψ ∈ 
, where Eni−1 denotes the � n
i−1-conditional expectation;

the exceptional sets may depend on ψ. Notice also that we do not require any
measurability of the �∞�
�-valued random element ξni . In Section 4, starting
from a maximal inequality again, we give some sufficient conditions to ensure
the weak convergence of sequences of �∞�
�-valued random elements

σn∑
i=1
ξni =

(
σn∑
i=1
ξ
n�ψ
i

∣∣∣∣∣ψ ∈ 

)
�

where σn is a finite stopping time on Bn. Our result generalizes that of Os-
siander (1987). A natural generalization of Jain and Marcus’s (1975) central
limit theorem is also given. A major part of this section, as well as Section 5,
was originally presented in Nishiyama (1996).
The asymptotic behavior of log-likelihood ratio random fields have been

studied by many authors. The work by Vostrikova (1987), who considered
a continuous-time semimartingale model, seems the most general result for
cases of Euclidean parameters. In Section 5, we get a result for a discrete-time
statistical experiment with general parameters in terms of the partitioning
entropy of the parameter space. An application to ergodic Markov chains is
also presented.
As mentioned above, van de Geer (1995) has successfully taken a bracketing

entropy approach, which has the same nature as that in the present paper,
to nonparametric maximum likelihood estimation for counting processes. She
derived a probability inequality based on her generalization of Bernstein’s
inequality for martingales under a higher order moment condition on the size
of jumps. Although our maximal inequalities presented in Sections 2 and 4
require that the jumps be uniformly bounded, this assumption can be replaced
by a higher order moment based on Bernstein–van de Geer’s inequality. See
Nishiyama (1998) for the details.



688 Y. NISHIYAMA

Throughout this paper, the notation “�” means that the left-hand side is not
bigger than the right up to a universal multiplicative constant. The notation
“→Pn” means the convergence in Pn-probability.

2. Maximal inequality. Let us begin by preparing two definitions.

Definition 2.1. Let �� �� � λ� be a σ-finite measure space. For a given
mapping Z � � → �∪ �∞	, we denote by �Z�� � λ any � -measurable function
U � � → � ∪ �∞	 such that:
(i) U ≥ Z holds identically.
(ii) Ũ ≥ U holds λ-almost everywhere, for every � -measurable function Ũ

such that Ũ ≥ Z holds λ-almost everywhere.
The existence of such a random variable �Z�� � λ and its uniqueness up to a

λ-negligible set follow from Lemma 1.2.1 of van der Vaart and Wellner (1996).
They showed those facts when �� �� � λ� is a probability space, but it is clear
from their proof that λ may be replaced by a σ-finite measure.

Definition 2.2. Let 
 be an arbitrary set. � = ���ε�	ε∈�0� ���, where �� ∈�0�∞� ∩�, is called a decreasing series of finite partitions (abb. DFP) [resp.,
nested series of finite partitions (abb. NFP)] of 
 if it satisfies the following
(i), (ii) and (iii) [resp., (i), (ii) and (iii′)]:

(i) Each ��ε� = �
�ε�k� � 1 ≤ k ≤ N��ε�	 is a finite partition of 
; that
is, 
 = ⋃N��ε�k=1 
�ε�k�.
(ii) N����� = 1 and limε↓0N��ε� = ∞.
(iii) N��ε� ≥N��ε′� whenever ε ≤ ε′.
(iii′) ��ε� ⊃ ��ε′� whenever ε ≤ ε′.
The ε-entropy H��ε� and the modified ε-entropy H̃��ε� of a DFP � are

defined by:

H��ε� =
√
logN��ε��

H̃��ε� =
√
log�1+N��ε���

Notice that any NFP is a DFP. Although the converse is not true, we can
sometimes construct a new NFP from a given DFP, due to Lemma 2.4, given
later, without loss of generality for our purpose.
Let us now turn to the context of multivariate point processes. Let �E�� �

be a Blackwell space. Let µ be an E-valued multivariate point process defined
on a stochastic basis B = ���� �F = ��t�t∈�+�P�, and ν a “good” version of the
predictable compensator of µ. We put �̃ = �×�+ ×E and 	̃ = 	 ⊗� , where
	 is the predictable σ-field on �×�+. We introduce the Doléans measureMPν
on ��̃� 	̃ �, which is 	̃ -σ-finite, given by

MPν �dω�dt� dx� = P�dω�ν�ω�dt�dx�
[see Theorem II.1.8 and III.3.15 of Jacod and Shiryaev (1987)].
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Let � = �Wψ� ψ ∈ 
	 be a family of predictable functions on �̃ indexed by
an arbitrary set 
. We give a definition, using the notation of Definition 2.1,
which plays the key role in our context.

Definition 2.3. The predictable envelope W of � = �Wψ� ψ ∈ 
	 is de-
fined by

W =
[
sup
ψ∈


�Wψ�
]
	̃ �MPν

�

For a given DFP � of 
, the quadratic �-modulus �� �� of � = �Wψ� ψ ∈

	 is defined as the �+ ∪ �∞	-valued predictable process t� �� ��� t given by

�� ��� t = sup
ε∈�0� ���∩�

max
1≤k≤N��ε�

√�W�
�ε�k���2 ∗ νt
ε

∀ t ∈ �+�

where

W�
′� =
[
sup
ψ�φ∈
′

�Wψ −Wφ�
]
	̃ �MPν

∀
′ ⊂ 
�(2.1)

Here, and in the sequel, the notation of the stochastic integral “W ∗ µ”
always means the pathwise Lebesgue–Stieltjes integral [see II.1.5 of Jacod
and Shiryaev (1987)]. The stochastic integral in the L2-sense does not appear
in this paper. Notice that both W and �� �� depend on F, P and ν, through
	̃ andMPν .

Lemma 2.4. For any DFP � such that
∫ ��
0 H��ε�dε < ∞, there exists a

NFP �′ such that

��′ = ���∫ ��′
0
H�′ �ε�dε ≤ 4

∫ ��
0
H��ε�dε�∫ ��′

0
H̃�′ �ε�dε ≤ 4

∫ ��
0
H̃��ε�dε�

�� ��′� t ≤ �� ��� t ∀ t ∈ �+�

Proof. For every ε ∈ �0� ���, let us define
�′�ε� = ∨

i0≤j≤i
��2−j� if ε ∈ �2−i�2−i+1� ∩ �0� ���� i ≥ i0�

where i0 = min�i ∈ 
 � 2−i ≤ ��	. Then, the constructed �′ = ��′�ε�	ε∈�0� ��′ �
is a NFP such that ��′ = ��. The two inequalities for the integrals can be
shown by a standard way [see, e.g., Lemma 2.4 of Andersen, Giné, Ossiander
and Zinn (1988), Lemma 3.6 of Nishiyama (1997) or Lemma 2.2.2 of Nishiyama
(1998)]. The last assertion is trivial from the construction of �′. ✷
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Suppose that the increasing process t�W ∗ νt is locally integrable, and
define the random variables Xψt and X

a�ψ
t by

X
ψ
t =Wψ ∗ �µ− ν�t ∀ t ∈ �+ ∀ψ ∈ 
(2.2)

and

X
a�ψ
t =Wψ1�W≤a	 ∗ �µ− ν�t ∀ t ∈ �+ ∀ψ ∈ 
 ∀a > 0�(2.3)

respectively. Then, the process t�Xψt is a local martingale and the process
t�Xa�ψt is a locally square-integrable martingale on B, both of which have
finite variation [see Proposition II.1.28 of Jacod and Shiryaev (1987)]. The fol-
lowing theorem gives some maximal inequalities for these processes in terms
of �� ��.

Theorem 2.5. Let µ be an E-valued multivariate point process defined on
a stochastic basis B, and ν a “good” version of the predictable compensator of
µ. Let � = �Wψ � ψ ∈ 
	 be a family of predictable functions on �̃, indexed
by an arbitrary set 
, such that the increasing process t�W ∗ νt is locally
integrable. Then, the following (i) and (ii) hold for any stopping time τ such
that ν��0� τ� ×E� <∞ almost surely:

(i) For any NFP � of 
 and any constants δ ∈ �0� ��� and K > 0,

E∗ sup
t∈�0� τ�

sup
1≤k≤N��δ�
ψ�φ∈
�δ�k�

�Xa�ψt −Xa�φt �1��� ��� τ≤K	 �K
∫ δ
0
H̃��ε�dε�

where the random variables X
a�ψ
t are defined by (2.3) with a = a�δ�K� =

δK/H̃��δ/2�.
(ii) For any DFP � of 
 and any constants K�L > 0,

E∗ sup
t∈�0� τ�

sup
ψ�φ∈


�Xψt −Xφt �1��� ��� τ≤K� �W�2∗ντ≤L	 �K
∫ ��
0
H̃��ε�dε+

L

��K
�

where the random variables X
ψ
t are defined by (2.2).

Remark. As stated in Section 1, the notation “�” means that the left-hand
side is not bigger than the right up to a multiplicative universal constant.

Proof of Theorem 2.5(i). Fix any δ�K > 0; we may assume δ ∈ � with-
out loss of generality. For every integer p ≥ 0, we set

ap = 2−p+1δK/H̃��2−p−1δ��
Next, choosing an element ψp�k from each partitioning set 
�2−pδ�k� such
that

�ψp�k� 1 ≤ k ≤N��2−pδ�	 ⊂ �ψp+1� k� 1 ≤ k ≤N��2−�p+1�δ�	�
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we define for every ψ ∈ 
{
πpψ = ψp�k�
�pψ = 
�2−pδ�k�� if ψ ∈ 
�2−pδ�k��

For every integer q ≥ 1, we introduce the stopping time

τq = inf
{
t ∈ �+� ν��0� t� ×E� >

�H̃��2−q−2δ��2
16

− 1
}
∧ τ�

Since ν��0� τ� × E� < ∞ almost surely and limε↓0N��ε� = ∞, it holds that
τq ↑ τ as q→∞ almost surely. Hence it is enough to show that

E∗ sup
t∈�0� τq�

sup
ψ∈


�Xa�ψt −Xa�π0ψt �1��� ��� τ≤K	 �K
∫ δ
0
H̃��ε�dε ∀q ≥ 1�(2.4)

where a = a�δ�K�.
Let us now fix any integer q ≥ 1, and denote τ = τq (there should be no risk

of confusion). For every p = 0�1� � � � � q, we consider the predictable functions
W��pψ� on �̃ defined by (2.1). Since � = ���ε�	ε∈�0� ��� is nested, it follows
from Definition 2.1 that

2W ≥W��0ψ� ≥W��1ψ� ≥ · · · ≥W��qψ��(2.5)

MPν -almost everywhere. Defining the values on the exceptional sets as zero,
we can choose some versions such that the above inequality holds identi-
cally. Notice also thatW��pψ� =W��pφ� holds identically, whenever ψ� φ ∈

�2−qδ�k� for some k. Next, let us introduce the following predictable func-
tions on �̃:

Ap�ψ� = 1�W��0ψ�≤a0�����W��p−1ψ�≤ap−1�W��pψ�≤ap	� p = 0�1� � � � � q�
Bp�ψ� = 1�W��0ψ�≤a0�����W��p−1ψ�≤ap−1�W��pψ�>ap	� p = 1� � � � � q�
B0�ψ� = 1�W��0ψ�>a0	�

It is important that Ap�ψ� and Bp�ψ� depend on ψ only through the subsets
�0ψ� � � � ��pψ of 
. Next observe the identity

Wψ −Wπ0ψ = �Wψ −Wπ0ψ�B0�ψ�

+
q∑
p=1

�Wψ −Wπpψ�Bp�ψ�

+�Wψ −Wπqψ�Aq�ψ�

+
q∑
p=1

�Wπpψ −Wπp−1ψ�Ap−1�ψ��

Since a0 = 2a�δ� K�, we have B0�ψ� ≤ 1�W>a�δ�K�	. Hence we obtain

sup
t∈�0� τ�

sup
ψ∈


�Xa�δ�K�� ψt −Xa�δ�K�� π0ψt � ≤ �I1� + �I2� + �II1� + �II2� + �III��
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where

�I1� = sup
ψ∈


q∑
p=1
W��pψ�Bp�ψ� ∗ µτ�

�I2� = sup
ψ∈


q∑
p=1
W��pψ�Bp�ψ� ∗ ντ�

�II1� = sup
ψ∈

W��qψ�Aq�ψ� ∗ µτ�

�II2� = sup
ψ∈

W��qψ�Aq�ψ� ∗ ντ�

�III� = sup
t∈�0� τ�

sup
ψ∈


q∑
p=1

∣∣�Wπpψ −Wπp−1ψ�Ap−1�ψ� ∗ �µ− ν�t∣∣ �
Further, it holds that �I1� ≤ �I′1� + �I2� where

�I′1� = sup
ψ∈


q∑
p=1

∣∣W��pψ�Bp�ψ� ∗ �µ− ν�τ∣∣ �
and that �II1� ≤ �II′1� + �II2� where

�II′1� = sup
ψ∈


∣∣W��qψ�Aq�ψ� ∗ �µ− ν�τ∣∣ �
Hereafter we will obtain bounds for the terms �I′1�� �I2�� �II′1�� �II2� and �III�.
[Estimation of �I2� and �II2�.] We can easily see that

�I2� ≤ sup
ψ∈


q∑
p=1

1
ap
�W��pψ��2Bp�ψ� ∗ ντ

≤ max
1≤p≤q

sup
ψ∈


�W��pψ��2Bp�ψ� ∗ ντ
�2−pδ�2

q∑
p=1

�2−pδ�2
ap

≤K
q∑
p=1
2−p−1δH̃��2−p−1δ� on the set ��� ��� τ ≤K	�

On the other hand, it follows from Schwarz’s inequality that

�II2� ≤ sup
ψ∈


√
�W��qψ��2 ∗ ντ

√
ν��0� τ� ×E�

≤ 2−qδKH̃��2
−q−2δ�
4

�

Hence we have

E��I2� + �II2��1��� ��� τ≤K	 ≤K
q+1∑
p=1
2−p−1δH̃��2−p−1δ�

≤ 2K
∫ δ
0
H̃��ε�dε�
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[Estimation of �I′1�, �II′1� and �III�.] Let us consider the term �I′1�. We will
apply Bernstein–Freedman’s inequality for local martingales with bounded
jumps [see, e.g., Section 4.13 of Liptser and Shiryaev (1989) or Corollary 3.3 (a)
of Nishiyama (1997)] to the processes

t�Mt =W��pψ�Bp�ψ� ∗ �µ− ν�t�
It follows from

0 ≤W��pψ�Bp�ψ� ≤W��p−1ψ�Bp�ψ� ≤ ap−1
that ��M� ≤ ap−1; it is also clear that

#M�M$τ ≤ �W��pψ��2Bp�ψ� ∗ ντ
≤ �2−pδK�2 on the set ��� ��� τ ≤K	�

Thus we have

P

(
sup
t∈�0� τ�

∣∣W��pψ�Bp�ψ� ∗ �µ− ν�t∣∣ > ε� �� ��� τ ≤K
)

≤ 2 exp
(
− ε2

2�ap−1ε+ �2−pδK�2�

)
∀ ε > 0�

Hence it follows from Lemma 2.2.10 of van der Vaart and Wellner (1996) with
an appropriate truncation that

E sup
ψ∈


sup
t∈�0� τ�

∣∣W��pψ�Bp�ψ� ∗ �µ− ν�t∣∣1��� ��� τ≤K	

�ap−1�H̃��2−pδ��2 + 2−pδKH̃��2−pδ�
≤ 5K2−pδH̃��2−pδ��

where it should be noted that “supψ∈
” of the left-hand side is actually
“max1≤k≤N��2−p�.” We therefore obtain

E��I′1��1��� ��� τ≤K	 � 5K
q∑
p=1
2−pδH̃��2−pδ�

≤ 5K
∫ δ
0
H̃��ε�dε�

Exactly the same calculation as for �I′1� yields some bounds for �II′1� and �III�,
which lead to inequality (2.4). ✷

Proof of Theorem 2.5 (ii). Due to Lemma 2.4, it suffices to show the as-
sertion in the case of � being a NFP. We extend given NFP � = ���ε�	ε∈�0� ���
to � = ���ε�	ε∈�0�2��� where N��ε� = 1 for all ε ∈ ����2���. In order to apply
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the assertion (i) with δ = 2��, we consider the truncated processes Xa�ψt with
a = a�2���K� = 2��K/

√
log 2; notice that

sup
t∈�0� τ�

sup
ψ�φ∈


�Xψt −Xφt � ≤ sup
t∈�0� τ�

sup
ψ�φ∈


�Xa�ψt −Xa�φt �

+2W1�W>a	 ∗ µτ + 2W1�W>a	 ∗ ντ�

First we have

W1�W>a	 ∗ ντ ≤
�W�2 ∗ ντ
a

≤ L
a

on the set ��W�2 ∗ ντ ≤ L	�

Next, let us introduce the predictable time

S = inf�t ∈ �+ � �W�2 ∗ νt > L	�
Take an announcing sequence �Sn	 for S [see I.2.16 of Jacod and Shiryaev
(1987)]. Since 0 ≤ Sn < S almost surely on the set �S > 0	, it holds that
�W�2∗νSn ≤ L almost surely. Thus it follows also from Doob’s stopping theorem
that

EW1�W>a	 ∗ µSn∧Tm = EW1�W>a	 ∗ νSn∧Tm

≤ E�W�
2 ∗ νSn∧Tm
a

≤ L

a
�

where �Tm	 is a localizing sequence for the local martingale t�W1�W>a	∗�µ−
ν�t. By letting n�m → ∞, we obtain EW1�W>a	 ∗ µS ≤ L/a. The predictable
time S appeared in this inequality can be replaced by τ on the set ��W�2 ∗ντ ≤
L	.
Hence it follows from the assertion (i) with δ = 2�� that

E∗ sup
t∈�0� τ�

sup
ψ�φ∈


�Xψt −Xφt �1��� ��� τ≤K� �W�2∗ντ≤L	

�K
∫ 2��
0
H̃��ε�dε+ 4

L

2��K/
√
log 2

≤ 2
{
K
∫ ��
0
H̃��ε�dε+

L

��K

}
� ✷

3. Weak convergence theorems. Let �E�� � be a Blackwell space and

 an arbitrary set. For every n ∈ �, let µn be an E-valued multivariate point
process defined on a stochastic basisBn = ��n�� n�Fn = �� n

t �t∈�+�Pn�, and νn
a “good’ version of the predictable compensator of µn. Let � n = �Wn�ψ � ψ ∈ 
	
be a family of predictable functions on �̃n = �n × �+ ×E indexed by 
. Let
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a DFP � of 
 be given. Notice that �E�� �, 
 and � do not depend on n,
while all other objects are indexed by n ∈ �. In the same way as Section 2,
we introduce the following notations:

1. the predictable envelope W
n
of � n;

2. the quadratic �-modulus �� n�� of � n.

Further, let a stopping time τn on Bn be given. Throughout this section, we
shall assume:

the process t�W
n ∗ νnt is locally integrable�(3.1)

νn��0� τn� ×E� <∞ Pn-almost surely�(3.2)

As in Section 2, we define the local martingales t�X
n�ψ
t and the locally

square-integrable martingales t�Xn�a�ψ on Bn by

X
n�ψ
t =Wn�ψ ∗ �µn − νn�t ∀ t ∈ �+ ∀ψ ∈ 


and

X
n�a�ψ
t =Wn�ψ1�W≤a	 ∗ �µn − νn�t ∀ t ∈ �+ ∀ψ ∈ 
 ∀a > 0�

respectively. We will derive the asymptotic behavior of the processes ψ�X
n�ψ
τn

and �t�ψ��Xn�ψt , as n→∞.
Let us now introduce several conditions. The first one is the partitioning

entropy condition, which is a natural generalization of the metric entropy
condition for L2-bracketing in the i.i.d. case.

[PE] There exists a DFP � of 
 such that

�� n��� τn = OPn�1� and
∫ ��
0
H��ε�dε <∞�

Notice that, due to Lemma 2.4, under [PE] we can always construct a new
NFP � which satisfies the displayed conditions. Next, we shall also consider
two kinds of Lindeberg conditions:

[L1] W
n
1�Wn>ε	 ∗ νnτn→Pn 0 for every ε > 0;

[L2] �Wn�21�Wn>ε	 ∗ νnτn→Pn 0 for every ε > 0.

When we mention [L2], the assumption that

the process t� �Wn�2 ∗ νnt is locally integrable(3.3)

is also implicitly imposed in addition to (3.2), and in this case the process
t�X

n�ψ
t is a locally square-integrable martingale on Bn. It is trivial that [L2]

implies [L1].
Here, we introduce some conditions prescribing the asymptotic behavior of

the quadratic covariations. Let S be a subset of �+, and suppose that the
family �C�ψ�φ�t � t ∈ �+� �ψ� φ� ∈ 
2	 of constants in the following satisfies that

t�C
�ψ�φ�
t is continuous for every �ψ�φ� ∈ 
2�(3.4)
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[C1] �Xn�ψ�Xn�φ�t→Pn C
�ψ�φ�
t for every t ∈ S and �ψ� φ� ∈ 
2;

[C2] #Xn�ψ�Xn�φ$t→Pn C
�ψ�φ�
t for every t ∈ S and �ψ� φ� ∈ 
2;

[C1a] �Xn�a�ψ�Xn�a�φ�t→Pn C
�ψ�φ�
t for every t ∈ S and �ψ� φ� ∈ 
2, for every

a > 0;
[C2a] #Xn�a�ψ�Xn�a�φ$t→Pn C

�ψ�φ�
t for every t ∈ S and �ψ� φ� ∈ 
2, for every

a > 0.

Similarly to the remark following [L2], the assumption (3.3) is implicitly im-
posed when we mention [C2]. It is well known that the quadratic covariations
are given by

�Xn�ψ�Xn�φ�t =
∑
s≤t
�Xn�ψs �X

n�φ
s

and

#Xn�ψ�Xn�φ$t = �Wn�ψWn�φ� ∗ νnt −
∑
s≤t
Ŵn�ψs Ŵ

n�φ
s �

where Ŵn�ψt �ω� = ∫EWn�ψ�ω� t� x�ν�ω� �t	 × dx�, respectively.
Using the constants �Cψ�φt 	 appearing in the conditions above, we set (for-

mally)

ρ��t�ψ�� �s�φ�� =
√
C
�ψ�ψ�
t +C�φ�φ�s − 2C�ψ�φ�t∧s(3.5)

for every �t�ψ�� �s�φ� ∈ �+ × 
. Either of [C1], [C2], [C1a] or [C2a] im-
plies that the value in the inside of the square-root is nonnegative for every
�t�ψ�� �s�φ� ∈ S × 
, hence the �+-valued function ρ is well defined by the
formula (3.5) at least on �S×
�2. Further, by virtue of (3.4), this is true also
on ��0� τ� ×
�2 if S is a dense subset of the finite interval �0� τ� with τ being
a constant.

Lemma 3.1.

(i) The condition [L1] implies the following:

(i1) W
n
1�Wn>ε	 ∗ µnτn→Pn 0 for every ε > 0;

(i2) supt∈�0� τn� supψ∈
 �Xn�ψt −Xn�a�ψt �→Pn∗ 0 for every a > 0;

(i3) supt∈�0� τn� ��W
n ∗ µnt �→Pn 0 and supt∈�0� τn� ��W

n ∗ νnt �→Pn 0;

(i4) supt∈�0� τn� supψ∈
 ��Xn�a�ψt �→Pn∗ 0 for every a > 0.

(ii) Let τn ≡ τ be a fixed constant, and suppose that S is a subset of the finite
interval �0� τ�. Then, under [L1] it holds that [C1] ⇔ [C1a] ⇔ [C2a]. Under
[L2], the condition [C2] is also equivalent to either of them.

Proof. It follows from Lenglart’s inequality that

Pn
(
W
n
1�Wn>ε	 ∗ µnτn ≥ η

)
≤ η+Pn

(
W
n
1�Wn>ε	 ∗ νnτn ≥ η2

)
∀η > 0�
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hence the condition [L1] implies (i1). The assertions (i2), (i3) and (i4) are im-
mediate from (i1).
Next we show the part (ii) of the lemma. By polarization it is enough to

consider the case φ = ψ. Observe that∣∣�Xn�ψ�Xn�ψ�t − �Xn�a�ψ�Xn�a�ψ�t∣∣
=
∣∣∣∣∣∑s≤t��Xn�ψs + �Xn�a�ψs ���Xn�ψs − �Xn�a�ψs �

∣∣∣∣∣
≤ 2∑

s≤t

∣∣�Wn�ψ1�W>a	 ∗ �µn − νn�s∣∣ on the set �n1

≤ 2
∣∣∣Wn1�W>a	 ∗ µnτ +Wn1�W>a	 ∗ νnτ ∣∣∣ �

where �n1 = �supt∈�0� τ� ��Xn�ψt � ≤ 1	 ∪ �supt∈�0� τ� ��Xn�a�ψt � ≤ 1	. The assertion
that [C1] ⇔ [C1a] under [L1] is now derived from (i1), (i3) and (i4). Theorem
VIII.3.6 of Jacod and Shiryaev (1987), with minor changes, says that [C1a]⇔
[C2a] under [L1] (see the Appendix for the details). The equivalence that [C2]
⇔ [C2a] under [L2] follows from the inequality∣∣#Xn�ψ�Xn�ψ$t − #Xn�a�ψ�Xn�a�ψ$t∣∣

≤ �Wn�21�Wn>a	 ∗ νnτ
+∑
t≤τ

∫
E
2W

n�t� x�ν��t	 × dx�
∫
E
W
n�t� x�1�Wn�t� x�>a	ν��t	 × dx�

≤ �Wn�21�Wn>a	 ∗ νnτ + 2W
n
1�Wn>a	ν

n
τ on the set �n2 �

where �n2 = �supt∈�0� τ� ��W
n ∗ νnt � ≤ 1	. ✷

The first result of this section is concerned with the processes ψ�X
n�ψ
τn .

Theorem 3.2. Consider the above situation with (3.1) and (3.2). Suppose

that every finite-dimensional marginal of Xnτn = �Xn�ψτn �ψ ∈ 
� converges
weakly to a (tight,) Borel law, and also that the conditions [PE] and [L1] are
satisfied. Then Xnτn converges weakly in �∞�
� to a tight, Borel law.

The result above is a direct consequence of the next lemma, applying
Theorem 1.1.

Lemma 3.3. The conditions [PE] and [L1] imply that for every ε�η > 0
there exists a finite partition �
k � 1 ≤ k ≤N	 of 
 such that

lim sup
n→∞

Pn∗

 sup
t∈�0� τn�

sup
1≤k≤N
ψ�φ∈
k

�Xn�ψt −Xn�φt � > ε
 ≤ η�
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Proof. Take a NFP � which satisfies the requirements of [PE]. Fix any
ε�η > 0. First notice that for any δ ∈ �0� ��� and K > 0,

Pn∗

 sup
t∈�0� τn�

sup
1≤k≤N��δ�
ψ�φ∈
�δ�k�

�Xn�a�δ�K�� ψt −Xn�a�δ�K�� φt � > ε
 ≤ �I� + �II��(3.6)

where the terms of the right-hand side are given by

�I� = Pn��� n��� τn > K��

�II� = 1
ε
En∗ sup

t∈�0� τn�
sup

1≤k≤N��δ�
ψ�φ∈
�δ�k�

�Xn�a�δ�K�� ψt −Xn�a�δ�K�� φt �1��� n��� τn≤K	�

where a�δ�K� = δK/H̃��δ/2�. It follows from (i) of Theorem 2.5 that there
exists a universal constant C > 0 such that

�II� ≤ CK
ε

∫ δ
0
H̃��ε�dε�(3.7)

Now, the first condition of [PE] yields that there exists a constant K =
Kη > 0 such that lim supn→∞�I� ≤ η/2. Next, since H̃��ε� ≤ 1 + H��ε�,
the second condition of [PE] implies that we can choose a sufficiently small
constant δ = δε�η > 0 such that the right-hand side of (3.7) is not bigger
than η/2. Consequently, (i2) of Lemma 3.1 with a = a�δε�η�Kη� yields the
assertion. ✷

The next result deals with the processes �t�ψ��Xn�ψt .

Theorem 3.4. Consider the above situation with (3.1) and (3.2) where τn ≡
τ is a fixed positive constant, and let S be a dense subset of the finite interval
�0� τ� containing τ. Suppose that either [PE] + [L1] + [C1] or [PE] + [L2]
+ [C2] is satisfied. Then, it holds that Xn ⇒Pn X in �∞��0� τ� × 
�, where

each marginal �Xψ1t1 � � � � �X
ψd
td
� has the normal distribution N�0� 8� with 8 =

�C�ψi�ψj�ti∧tj 	ij. Furthermore, the formula (3.5) defines a pseudo-metric ρ on �0� τ�×

 such that �0� τ� ×
 is totally bounded with respect to ρ and that almost all
paths of X are uniformly ρ-continuous.

The following lemma, which is rather well known, is used to show the result
above.

Lemma 3.5. Under [L1] + [C1], for every ψ ∈ 
 and every ε�η > 0 there
exists δ > 0 such that

lim sup
n→∞

Pn

 sup
t� s∈�0� τ�
�t−s�≤δ

�Xn�ψt −Xn�ψs � > ε
 ≤ η�
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Proof. Fix any N ∈ � for a while, and put a = N−1. By (ii) of Lemma
3.1 we may assume [L1] + [C2a]. It always holds that C�ψ�ψ�0 = 0 and that
t�C

�ψ�ψ�
t is nondecreasing, because so does t�#Xn�a�ψ�Xn�a�ψ$t. We may

assume C�ψ�ψ�τ > 0 without loss of generality. Since t�C
�ψ�ψ�
t is continuous

and S is dense in �0� τ�, we can choose some points τi ∈ S �i = 1� � � � �N� such
that C�ψ�ψ�τi − C�ψ�ψ�τi−1 ≤ 2C�ψ�ψ�τ N−1, where τ0 = 0. It follows from Bernstein–
Freedman’s inequality that for every ε > 0,

Pn

(
sup

t∈�τi−1� τi�
�Xn�a�ψt −Xn�a�ψτi−1 � > ε� �nN

)
≤ 2 exp

(
− ε2

2�εa+ 3C�ψ�ψ�τ N−1�

)
�

where

�nN =
N⋂
i=1

{
#Xn�a�ψ�Xn�a�ψ$τi − #Xn�a�ψ�Xn�a�ψ$τi−1 ≤ 3C�ψ�ψ�τ N−1

}
�

Hence we have

Pn

(
max
1≤i≤N

sup
t∈�τi−1� τi�

�Xn�a�ψt −Xn�a�ψτi−1 � > ε� �nN
)
≤ 2N exp

(
− ε2N

2�ε+ 3C�ψ�ψ�τ �

)
�

Here notice that limn→∞Pn��nN� = 1. Choosing a large number N, and then
letting n→∞, we can easily deduce the assertion from (i2) of Lemma 3.1. ✷

Proof of Theorem 3.4.. Let us check the conditions of Theorem 1.1. First,
Theorem VIII.3.11 of Jacod and Shiryaev (1987) says that either of [L1]+ [C1a]
or [L2] + [C2a] implies the finite-dimensional convergence of Xn�a for any
a > 0 [recall also (i4) of Lemma 3.1]. Thus the finite-dimensional convergence
of Xn follows from (i2) and (ii) of Lemma 3.1. The condition (iii) of Theorem
1.1 can be shown by means of Lemmas 3.3 and 3.5.
The last assertion of the theorem, concerning the pseudo-metric ρ defined

by (3.5), follows from the Gaussian property of the limits by virtue of Example
1.5.10 of van der Vaart and Wellner (1996). ✷

Let us close this section with a brief explanation of the verification of [PE].
The partitioning entropy condition is essentially the same as the bracketing
entropy condition. When a class of random weight functions � n = �Wn�ψ � ψ ∈

	 is given, the quadratic �-modulus is the minimum value of the random
coefficient Kn that appears in constructing the brackets, that is,√

�Wn�ε� l −Wn�ε�u�2 ∗ νnτn ≤Knε�
where �Wn�ε� l�Wn�ε�u� is a pair of the brackets of random weight functions.
Notice that, in the i.i.d. case, the standard L2-bracketing is Kn ≡ 1. In the
present case, [PE] is checked by choosing a large Kn that is bounded in prob-
ability, and by choosing the brackets as above. Then, an appropriate DFP
� = ���ε�	 is constructed from the brackets. The reason why we introduced
[PE] rather than the bracketing entropy is for simplicity, especially in the case
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where the weight functions are random; in practice, it is often more convenient
to construct a DFP directly than to do it by way of the bracketing. When 

is a compact set of a Euclidean space, the partition ��ε� should be generated
from some εq-balls. This q > 0 may be arbitrary because of the logarithm of
the entropy condition.

4. Discrete-time case. Let �ξi	i∈� be an �∞�
�-valued martingale dif-
ference array on a discrete-time stochastic basis B = ���� �F = ��i	i∈�0�P�
(recall Definition 1.2). Based on the notation of Definition 2.1, we make the
following definition.

Definition 4.1. The adapted envelope �ξi	i∈� of �ξi	i∈� is defined by

ξi =
[
sup
ψ∈


�ξψi �
]
�i�P

∀ i ∈ ��

For a given DFP � of 
, the quadratic �-modulus �ξ�� of �ξi	i∈� is defined
as the �+ ∪ �∞	-valued adapted process ��ξ��� i	i∈� given by

�ξ��� i = sup
ε∈�0� ���∩�

max
1≤k≤N��ε�

√∑i
j=1Ej−1�ξj�
�ε�k���2

ε
∀ i ∈ ��

where

ξi�
′� =
[
sup
ψ�φ∈
′

�ξψi − ξφi �
]
�i�P

∀ i ∈ � ∀
′ ⊂ 
�

Theorem 4.2. Let �ξi	i∈� be an �∞�
�-valued martingale difference array
defined on a discrete-time stochastic basis B. Then, the following (i) and (ii)
hold for any finite stopping time σ .

(i) For any NFP � of 
 and any constants δ ∈ �0� ��� and K > 0,

E∗ max
1≤m≤σ

sup
1≤k≤N��δ�
ψ�φ∈
�δ�k�

∣∣∣∣∣ m∑
i=1
�ξa�ψi − ξa�φi �

∣∣∣∣∣1��ξ���σ≤K	 �K
∫ δ
0
H̃��ε�dε�

where ξ
a�ψ
i = ξψi 1�ξi≤a	 with a = a�δ�K� = δK/H̃��δ/2�.

(ii) For any DFP � of 
 and any constants K�L > 0,

E∗ max
1≤m≤σ

sup
ψ�φ∈


∣∣∣∣∣ m∑
i=1
�ξψi − ξφi �

∣∣∣∣∣1��ξ���σ≤K� ∑σ1 Ei−1�ξi�2≤L	 �K
∫ ��
0
H̃��ε�dε+

L

��K
�

Proof. Fix any δ�K > 0, and define ap, πp and �p for every integer p ≥ 0
in the same way as the first paragraph of the proof of Theorem 2.5(i). For every
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integer q ≥ 1 we introduce the finite stopping time

σq = inf
{
i ∈ � � i > �H̃��2−q−2δ��2

16
− 1
}
∧ σ�

Then, we have σq ↑ σ as q → ∞ almost surely. Hence it is enough to show
the assertion (i) with σ replaced by σq for every q ≥ 1.
Now, choose some “good” versions of ξi and ξi��pψ�� p = 0�1� � � � � q [recall

the argument about (2.5)]. The rest of the proof is also quite similar to that of
Theorem 2.5(i), although a careful discussion about the choice of versions of
conditional expectations is needed here.

We first define

Ai�p�ψ� = 1�ξi��0ψ�≤a0�����ξi��p−1ψ�≤ap−1� ξi��pψ�≤ap	� p = 0�1� � � � � q�
Bi�p�ψ� = 1�ξi��0ψ�≤a0�����ξi��p−1ψ�≤ap−1� ξi��pψ�>ap	� p = 1� � � � � q�
Bi�0�ψ� = 1�ξi��0ψ�>a0	�

Since a0 = 2δKH̃��δ/2� we have that Bi�0�ψ�1�ξi≤a�δ�K�	 = 0, and that

E∗
(
sup
ψ∈


∣∣∣Ei−1�ξψi − ξπ0ψi �Bi�0�ψ�
∣∣∣1�ξi≤a�δ�K�	

)

≤ E
(
sup
ψ∈


∣∣Ei−1ξi��0ψ�Bi�0�ψ�∣∣1�ξi≤a�δ�K�	
)

since (4.3) holds identically

≤ 2E
(
ξiBi�0�ψ�1�ξi≤a�δ�K�	

)
= 0�

and thus

sup
ψ∈


∣∣∣Ei−1�ξψi − ξπ0ψi �Bi�0�ψ�
∣∣∣1�ξi≤a�δ�K�	 = 0(4.1)

almost surely. Noting also that Ei−1ξ
ψ
i = Ei−1ξπ0ψi = 0 almost surely (we may

take them to be zero identically without loss of generality), we therefore can
write in the same way as before that

max
1≤m≤σq

sup
ψ∈


∣∣∣∣∣ m∑
i=1
�ξa�ψi − ξa�π0ψi �

∣∣∣∣∣ ≤ �I′1� + 2�I2� + �II′1� + 2�II2� + �III��(4.2)

where

�I′1� = sup
ψ∈


q∑
p=1

∣∣∣∣∣
σq∑
i=1

{
ξi��pψ�Bi�p�ψ� −Ei−1ξi��pψ�Bi�p�ψ�

}∣∣∣∣∣ �
�I2� = sup

ψ∈


q∑
p=1

σq∑
i=1
Ei−1ξi��pψ�Bi�p�ψ��
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�II′1� = sup
ψ∈


∣∣∣∣∣
σq∑
i=1

{
ξi��qψ�Ai�q�ψ� −Ei−1ξi��qψ�Ai�q�ψ�

}∣∣∣∣∣ �
�II2� = sup

ψ∈


σp∑
i=1
Ei−1ξi��qψ�Ai�q�ψ��

�III� = max
1≤m≤σq

sup
ψ∈


q∑
p=1

∣∣∣∣∣ m∑
i=1

{
�ξπpψi − ξπp−1ψi �Ai�p−1�ψ�

−
m∑
i=1
Ei−1�ξ

πpψ

i − ξπp−1ψi �Ai�p−1�ψ�
}∣∣∣∣∣ �

In order to make this inequality hold identically, and to apply Bernstein–
Freedman’s inequality for local martingales with bounded jumps, we have
to choose certain versions of conditional expectations for which the following
inequalities hold identically:

�Ei−1�ξψi−ξπ0ψi �Bi�0�ψ�� ≤ Ei−1ξi��0ψ�Bi�0�ψ��(4.3)

�Ei−1�ξψi − ξ
πpψ

i �Bi�p�ψ�� ≤ Ei−1ξi��pψ�Bi�p�ψ�(4.4)

≤ ap−1� p = 1� � � � � q�

�Ei−1�ξ
πpψ

i −ξπp−1ψi �Ai�p−1�ψ�� ≤ ap−1�(4.5)

To do so, first choose some versions of the terms Ei−1ξi��p�ψ��Bi�p�ψ� of
(4.3) and (4.4), which are nonnegative and the second inequalities of (4.4) are
fulfilled, identically; next, on the exceptional sets of (4.1), (4.2), (4.3), (4.4) and
(4.5), we define the values of all other conditional expectations as zero. Then,
the values of Ei−1ξi��pψ�Bi�p�ψ� and Ei−1�ξ

πpψ

i −ξπp−1ψi �Ai�p−1�ψ� depend on
ψ only through �0ψ� � � � ��pψ and πp−1ψ�πpψ, respectively, while (4.1), (4.2),
(4.3), (4.4) and (4.5) hold identically for all ψ ∈ 
. [See Nishiyama (1998) for
more details.]
To get assertion (i), we can perform the estimations for terms �I′1�� �I2��

�II′1�� �II2� and �III� on the right-hand side of (4.2) exactly in the same way
as those of the proof of Theorem 2.5(i).
The assertion (ii) can be proved in the same way as that of Theorem 2.5(ii),

paying attention to the choice of conditional expectations; introduce a con-
tinuous-time stochastic basis and repeat the argument with an announcing
sequence [see page 14 and I.2.43 of Jacod and Shiryaev (1987)]. ✷

Let us turn to weak convergence results. We give some analogies of Theo-
rems 3.2 and 3.4; those can be shown using Theorem 4.2(i) instead of Theorem
2.5(i); thus the proofs are omitted. Let 
 be an arbitrary set and � a DFP of 
.
For every n ∈ �, let �ξni 	i∈� be an �∞�
�-valued martingale difference array
on a discrete-time stochastic basis Bn = ��n�� n�Fn = �� n

i 	i∈�0�Pn�. In the
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same way as Section 3, we introduce the following notation:

1. the adapted envelope �ξni 	i∈� of �ξni 	i∈�;
2. the quadratic �-modulus ��ξn��� i	i∈� of �ξni 	i∈�.
We shall always assume

Enξ
n

i <∞ ∀ i ∈ ��(4.6)

For a given finite stopping time σn, we make the following conditions:

[PE′] There exists a DFP � of 
 such that

�ξn���σn = OPn�1� and
∫ ��
0
H��ε�dε <∞�

[L1′]
∑σn
i=1E

n
i−1ξ

n

i 1�ξni >ε	→Pn0 for every ε > 0;

[L2′]
∑σn
i=1E

n
i−1�ξ

n

i �21�ξni >ε	→Pn0 for every ε > 0.

When we mention [L2′], the assumption that

En�ξni �2 <∞ ∀ i ∈ ��(4.7)

which is stronger than (4.6), is implicitly imposed. It is clear that [L2′] implies
[L1′].

Corollary 4.3. Consider the above situation with (4.6). Suppose that ev-
ery finite-dimensional marginal of Xn = �Xn�ψ�ψ ∈ 
� given by Xn�ψ =∑σn
i=1 ξ

n�ψ
i converges weakly to a (tight,) Borel law, and also that the condi-

tions [PE′] and [L1′] are satisfied. Then Xn converges weakly in �∞�
� to a
tight, Borel law.

Next, let us consider the process �t�ψ��X
n�ψ
t given by

X
n�ψ
t =

σnt∑
i=1
ξ
n�ψ
i ∀ t ∈ �0� τ� ∀ψ ∈ 
�(4.8)

where τ > 0 is a constant, and �σnt �t∈�0� τ� is a family of finite stopping times
on Bn such that σn0 = 0 and that each path t�σnt is increasing, cad, with
jumps equal to 1. We introduce two kinds of conditions, in which the family
�C�ψ�φ�t � t ∈ �+� �ψ�φ� ∈ 
2	 of constants should satisfy (3.4):
[C1′]

∑σnt
i=1 ξ

n�ψ
i ξ

n�φ
i →PnC

�ψ�φ�
t for every t ∈ S and �ψ� φ� ∈ 
2;

[C2′]
∑σnt
i=1E

n
i−1ξ

n�ψ
i ξ

n�φ
i →PnC

�ψ�φ�
t for every t ∈ S and �ψ� φ� ∈ 
2.

Similarly to the remark following [L2′], the assumption (4.7) is implicitly
imposed when we mention [C2′].

Corollary 4.4. Let S be a dense subset of the finite interval �0� τ� con-
taining τ. Consider the above situation with (4.6), and assume [PE′] with
σn = σnτ . Suppose also that either [L1′] + [C1′] or [L2′] + [C2′] is satisfied.
Then, the same conclusion as Theorem 3.4 holds for the sequence of processes

Xn = �Xn�ψt ��t� ψ� ∈ �0� τ� ×
� defined by (4.8).
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Let us close this section with stating a generalization of Jain–Marcus’s
(1975) central limit theorem to the case of martingale difference arrays. We
denote by N�
�ρ� ε� the ε-covering number of a pseudo-metric space �
�ρ�.

Proposition 4.5. Let �
�ρ� be a totally bounded pseudo-metric space. For
every n ∈ �, let �ξni 	i∈� be an �∞�
�-valued martingale difference array on a
discrete-time stochastic basis Bn such that

�ξn�ψi − ξn�φi � ≤Kni ρ�ψ� φ� ∀ψ� φ ∈ 
�
where �Kni 	i∈� is an �+-valued adapted process. For given finite stopping time
σn, a sufficient condition for [PE′] is

σn∑
i=1
Eni−1�Kni �2 = OPn�1� and

∫ 1
0

√
logN�
�ρ� ε�dε <∞�

5. Log-likelihood ratio random fields.

5.1. Results. For every n ∈ �, let Bn = ��n�� n�Fn = �� n
i 	i∈�0�Pn� be a

discrete-time stochastic basis. Let Pn = �Pn�ψ� ψ ∈ 
	 be a family of probabil-
ity measures on ��n�� n�, indexed by an arbitrary set 
, such that Pn�ψ & Pn
for every ψ ∈ 
. We denote

Z
n�ψ
i = dP

n�ψ
i

dPni
�

where Pn�ψi [resp. Pni ] is the restriction of P
n�ψ [resp. Pn] on the σ-field � n

i .
We assume Pn�ψ0 = Pn0 for every ψ ∈ 
, hence we can set Zn�ψ0 = 1. For a
given finite stopping time σn on Bn, we suppose also that the random element
logZnσn = �logZn�ψσn �ψ ∈ 
� takes values in �∞�
�. Here we set

ζ
n�ψ
i =

√√√√ Z
n�ψ
i∧σn

Z
n�ψ
�i−1�∧σn

− 1 ∀ i ∈ � ∀ψ ∈ 
�

Theorem 5.1. In the above situation, suppose that the following conditions
hold:

(a1)
∑σn
i=1 4E

n
i−1ζ

n�ψ
i ζ

n�φ
i →PnC�ψ� φ� (some constant) for every ψ� φ ∈ 
;

(a2) supψ∈

∣∣∣∑σni=1 4Eni−1�ζn�ψi �2 −C�ψ� ψ�

∣∣∣→Pn∗0;

(b)
∑σn
i=1E

n
i−1�ζni �21��ζni �>ε	→Pn0 for every ε > 0;

(c) there exists a DFP � of 
 such that

�ζn���σn = OPn�1� and
∫ ��
0
H��ε�dε <∞�



CONVERGENCE OF MARTINGALES WITH JUMPS 705

Then, it holds that logZnσn '⇒Pn X, where each marginal �X�ψ1�� � � � �X�ψd��
has the normal distribution N�− 12diag 8�8� with 8 = �C�ψi�ψj�	ij. Further-
more, the formula

ρ�ψ�φ� =
√
C�ψ�ψ� +C�φ�φ� − 2C�ψ�φ� ∀ψ�φ ∈ 


defines a pseudo-metric on 
 such that �
�ρ� is totally bounded and that
almost all paths of X are uniformly ρ-continuous.

Remark. If a version of the conditional expectation Eni−1ζ
n�ψ
i ζ

n�φ
i satisfies

the assumption (a1), then so does any version. However, this is not true in (a2);
the assumption means that there exist some versions of Eni−1�ζn�ψi �2’s which
satisfy the requirement.

Example (Ergodic Markov chain). Let �Xi	i∈�0 be an ergodic Markov chain,
defined on a probability space ���� �P�, with values in an arbitrary state
space �E�� �. Let µ�dx� denote the initial distribution, p�x�dy� the transition
distribution, and π�dx� the invariant distribution. Let us equip the space
� 2 = � 2�E×E�π�dx�p�x�dy�� with the “inner product” given by

#h1� h2$� 2 =
∫
E×E
h1�x�y�h2�x�y�π�dx�p�x�dy� ∀h1� h2 ∈ � 2�

The meaning of the quotation marks is that �h�� 2 =
√#h�h$� 2 is merely a

“semi-”norm. Next we define the subset � 2
0 of �

2 by

� 2
0 =

{
h ∈ � 2 �

∫
E
h�x�y�p�x�dy� = 0 ∀x ∈ E and h > −1

}
�

Fix a subset � ⊂ � 2
0 . For every n ∈ �, let us consider a family of proba-

bility measures Pn = �Pn�h � h ∈ � 	 on ���� � such that, under Pn�h, the
process �Xi	i∈�0 is the Markov chain with initial distribution µ and transition
distribution pn�h given by

pn�h�x�dy� =
(
1+ h�x�y�√

n

)
p�x�dy��

Here we set �i = σ�X0� � � � �Xi	. Then it holds that

Z
n�h
i = dP

n�h
i

dPi
=

i∏
j=1

(
1+ h�Xj−1�Xj�√

n

)
�

We need some more notation to state the following result, which concerns
the asymptotic behavior of the process logZnn = �logZn�hn �h ∈ � �. For given
K ∈ � 2�E�π�dx�� we define the pseudo-metric ρK on � 2 by

ρK�h1� h2� = sup
x∈E

ρx�h1� h2�
�K�x�� ∨ 1 ∀h1� h2 ∈ � 2�

where

ρx�h1� h2� =
√∫
E
�h1�x�y� − h2�x�y��2p�x�dy� ∀x ∈ E�
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For every ε > 0 the ε-bracketing number N� ��� � ρK� ε� is defined as the
smallest N such that: there exist N-pairs lk� uk ∈ � 2 such that ρK�lk� uk� <
ε �k = 1� � � � �N� and that for every h ∈ � the relation lk ≤ h ≤ uk holds for
some k.

Proposition 5.2. Let �Xi	i∈�0 , ���� �F = ��i	i∈�0�P� and Pn = �Pn�h �
h ∈ � 	 as above be given. Suppose that there exists h∗ ∈ � 4�E × E�π�dx�
p�x�dy�� such that suph∈H �h� ≤ h∗, and also that there exists K ∈ � 2�E�π
�dx�� such that ∫ 1

0

√
logN� ��� � ρK� ε�dε <∞�

Then, it holds that logZnn ⇒P X in �∞�� �, where X�h� = − 12�h�2� 2 + G�h�
and h�G�h� is a zero-mean Gaussian process such that EG�h1�G�h2� =
#h1� h2$� 2 . Furthermore, almost all paths ofX are uniformly �·�� 2 -continuous.

This result is easily derived from the ergodic theorem and Theorem 5.1,
hence the proof is omitted.
Here we give a statistical application. Fix a subset � ⊂ � 2

0 such that
�h�� 2 > 0 for every h ∈ � , and let us consider the testing problem:

hypothesisH0 � p
against Hn1 � pn�h for some h ∈ � �

We propose the test statistics

Sn = sup
h∈�

∣∣ 1
2�h�2� 2 + logZn�hn

∣∣ �
Assume the same conditions as in Proposition 5.2. Then, it holds that

Sn ⇒ Pn�u sup
h∈�

�#h�u$� 2 +G�h�� in � ∀u ∈ �0	 ∪� �

where the process h�G�h� is as above. This fact follows easily from Propo-
sition 5.2, which implies local asymptotic normality and contiguity, together
with Le Cam’s third lemma and the continuous mapping theorem. In view of
Anderson’s lemma [e.g., Lemma 3.11.4 of van der Vaart and Wellner (1996)],
the statistics Sn seems reasonable.

5.2. Proof of Theorem 5.1. Let us denote

Z̃
n�ψ
i = Z

n�ψ
i∧σn

Z
n�ψ
�i−1�∧σn

∀ i ∈ � ∀ψ ∈ 
�

λ
n�a�ψ
i = log Z̃n�ψi 1�ζni ≤a	 ∀ i ∈ � ∀ψ ∈ 
 ∀a > 0�
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The process ψ� logZn�ψσn = ∑σni=1 log Z̃n�ψi can be well approximated by the
process ψ�?n�a�ψ =∑σni=1 λn�a�ψi . As a matter of fact, it holds that

sup
ψ∈

1�logZn�ψσn *=?n�a�ψ	 ≤

σn∑
i=1
1�ζni >a	

≤ 1
a2

σn∑
i=1
�ζni �21�ζni >a	�

hence using also Lenglart’s inequality we obtain

sup
ψ∈


� logZn�ψσn − ?n�a�ψ� P
n∗

−→ 0�

We consider the decomposition

?n�a�ψ =
σn∑
i=1
Eni−1λ

n�a�ψ
i +

σn∑
i=1

{
λ
n�a�ψ
i −Eni−1λn�a�ψi

}
�(5.1)

We will derive the uniform convergence of the first term in (outer) probability
and apply Corollary 4.4 to the martingale difference array �ξni 	i∈�0 of the
second term, that is, ξn�ψi = λn�a�ψi −Eni−1λn�a�ψi . We use the following lemma
which will be proved later.

Lemma 5.3. For every a ∈ �0�1�, there exist some versions of the conditional

expectations Eni−1λ
n�a�ψ
i such that:

(i) If supψ∈
 C�ψ�ψ� < ∞ then supψ∈

∣∣∣∑σni=1Eni−1λn�a�ψi + 1

2C�ψ�ψ�
∣∣∣

→Pn∗ 0.
(ii)
∑σn
i=1E

n
i−1λ

n�a�ψ
i λ

n�a�φ
i →PnC�ψ� φ� for every ψ�φ ∈ 
.

(iii)
∑σn
i=1 �Eni−1λn�a�ψi �2→Pn0 for every ψ ∈ 
.

Remark (i) We will see later that the conditions of the theorem actually
imply that supψ∈
 C�ψ�ψ� < ∞. (ii) The choice of versions of the conditional
expectations Eni−1λ

n�a�ψ
i λ

n�a�φ
i is not important.

Let us proceed with the main part of the proof. It is clear that there exists
a constant δ ∈ �0�1� such that � log x − log y� ≤ 2�√x − √y� whenever x�y ∈
�1− δ�1+ δ�. We consider the decomposition (5.1) for a = √

1+ δ− 1; then it
holds that �x� �√x− 1� ≤ a	 ⊂ �x� �x− 1� ≤ δ	.
First we show the weak convergence of the second term of the decomposition

(5.1). The condition [C2′] is direct from (ii) and (iii) of Lemma 5.3. It is also easy
to see that the assumption (b) implies the Lindeberg condition [L2′]. Finally,
recalling the choice of δ and the relationship between a and δ, we have for
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any subset 
′ ⊂ 
,

Eni−1

[
sup
ψ�φ∈
′

�λn�a�ψi − λn�a�φi �
]2
� n
i �P

n

= Eni−1
[
sup
ψ�φ∈


� log Z̃n�ψi − log Z̃n�φi �1�ζni ≤a	
]2
� n
i �P

n

≤ Eni−1
[
sup
ψ�φ∈
′

2�ζn�ψi − ζn�φi �
]2
� n
i �P

n

�

Thus the assumption (c) implies the condition [PE′]. Consequently, Corollary
4.4 yields

∑n
i ξ
n
i ⇒Pn Y, where �Y�ψ1�� � � � �Y�ψd�� has the normal distribu-

tion N�0� 8� with 8 = �C�ψi�ψj�	ij.
Next we consider the first term of the decomposition. Observe that√
C�ψ�ψ� =

√
E�Y�ψ��2

≤
√
E�Y�ψ� −Y�φ��2 +

√
E�Y�φ��2 = ρ�ψ�φ� +

√
C�ψ�φ��

The inequality above and the total boundedness of �
�ρ�, a consequence of
Corollary 4.4, imply that supψ∈
 C�ψ�ψ� <∞. Hence (i) of Lemma 5.3 works
to show the uniform convergence of the first term of (5.1). Also, it is trivial
from the above inequality that ψ�

√
C�ψ�ψ� is uniformly ρ-continuous; thus

so is ψ�C�ψ�ψ�.

Proof of Lemma 5.3. For every ε > 0 we denote

Bn�ε�ψ� =
σn∑
i=1
Eni−1λ

n� ε�ψ
i �

Cn� ε�ψ� φ� =
σn∑
i=1
Eni−1λ

n� ε�ψ
i λ

n�ε�φ
i �

Step 1. First we prove the following facts: for given a ∈ �0�1� there exist
constants K1�K2�K3 > 0 such that for every ε ∈ �0� a�,

sup
ψ∈


∣∣Bn�ε�ψ� + 1
2C�ψ� ψ�

∣∣ ≤ εK1 + oPn�1��(5.2)

∣∣Cn�ε�ψ�φ� −C�ψ�φ�∣∣ ≤ εK2 + oPn�1� ∀ψ� φ ∈ 
�(5.3)

σn∑
i=1
�Eni−1λn� ε�ψi � ≤ 1

2C�ψ�ψ� + εK3 + oPn�1� ∀ψ ∈ 
�(5.4)

In order to show (5.2), first notice that there exists a constant K > 0 such
that � log x−�x−1�+2�√x−1�2� ≤K�√x−1�3 whenever �√x−1� ≤ a. Hence,
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for fixed ε ∈ �0� a� we obtain∣∣∣∣∣Bn�ε�ψ� + 2 σ
n∑
i=1
Eni−1�ζn�ψi �21�ζni ≤ε	

∣∣∣∣∣
≤ εK

σn∑
i=1
Eni−1�ζn�ψi �21�ζni ≤ε	 +

∣∣∣∣∣ σ
n∑
i=1
Eni−1�Z̃n�ψi − 1�1�ζni ≤ε	

∣∣∣∣∣
almost surely. Since Eni−1�Z̃n�ψi − 1� = 0 almost surely, the last term of the
right-hand side equals∣∣∣∣∣ σ

n∑
i=1
Eni−1�Z̃n�ψi − 1�1�ζni >ε	

∣∣∣∣∣
≤
σn∑
i=1
Eni−1�Z̃n�ψi − 1�1�ζni >ε	

≤ ε+ 2
ε

σn∑
i=1
Eni−1�ζn�ψi �21�ζni >ε	

almost surely. Thus we obtain∣∣∣∣Bn�ε�ψ� + 12C�ψ�ψ�
∣∣∣∣

≤ �2+ εK�
∣∣∣∣∣ σ

n∑
i=1
Eni−1�ζn�ψi �2 − 1

4
C�ψ�ψ�

∣∣∣∣∣+ εK14C�ψ�ψ�(5.5)

+
(
2+ ε+ 2

ε

) σn∑
i=1
Eni−1�ζ

n

i �21�ζni >ε	

almost surely. In order to get the estimate for all ω ∈ �n, we can choose
the versions of conditional expectations as follows: first, we may without loss
of generality choose a version of Eni−1�ζ

n

i �21�ζni >ε	 which is nonnegative iden-
tically; next, on the union of all exceptional sets for the estimates appearing
above, we define the values of all other conditional expectations as zero. Then,
the inequality (5.5) holds identically for all ψ ∈ 
. By taking the supremum of
(5.5) with respect to ψ ∈ 
 and letting n→∞, we obtain the assertion (5.2).
A similar argument yields (5.4). In fact, it is much easier than (5.2), because

the assertion of (5.4) is ψ-wise, for which we do not need any argument about
versions of conditional expectations. Also, it is easy to show (5.3) if we notice
the following fact: for given a ∈ �0�1� there exists a constant K > 0 such that
� log x · log y − 4�√x − 1��√y − 1�� ≤ Kmax��√x − 1�3� �√y − 1�3	 whenever
max��√x− 1�� �√y− 1�	 ≤ a.

Step 2. Next we prove the following facts:

sup
ψ∈


�Bn�a�ψ� −Bn�ε�ψ�� P
n∗

−→ 0 ∀ ε ∈ �0� a��(5.6)

�Cn�a�ψ�φ� −Cn�ε�ψ�φ�� P
n

−→ 0 ∀ψ�φ ∈ 
 ∀ ε ∈ �0� a��(5.7)



710 Y. NISHIYAMA

In order to show (5.6), notice that for given a ∈ �0�1� there exists a constant
K > 0 such that � log x� ≤ K�√x − 1�2 whenever �√x − 1� ≤ a. For every
ε ∈ �0� a� it holds that∣∣∣∣∣ σ

n∑
i=1
Eni−1λ

n�a�ψ
i −

σn∑
i=1
Eni−1λ

n� ε�ψ
i

∣∣∣∣∣
=
∣∣∣∣∣ σ

n∑
i=1
Eni−1 log Z̃

n�ψ
i 1�ε<ζni ≤a	

∣∣∣∣∣(5.8)

≤K
σn∑
i=1
Eni−1�ζn�ψi �21�ε<�ζni �≤a	

≤K
σn∑
i=1
Eni−1�ζ

n

i �21�ζni >ε	�

almost surely. We can choose some versions of conditional expectations such
that the estimate above holds identically for all ψ ∈ 
, in the same way as in
the proof of (5.2). Take the supremum of (5.8) with respect to ψ ∈ 
 and let
n→∞; then we get (5.6). A similar computation yields (5.7).

Step 3. Now it is easy to see that (5.2) and (5.6) imply the assertion (i) and
that (5.3) and (5.7) do so for assertion (ii); first choose ε > 0 small enough, and
then let n→∞. In order to show assertion (iii), notice that for any ε ∈ �0� a�,∣∣∣∣∣ σ

n∑
i=1
�Eni−1λn�a�ψi �2 −

σn∑
i=1
�Eni−1λn� ε�ψi �2

∣∣∣∣∣
=
∣∣∣∣∣ σ

n∑
i=1
Eni−1�λn�a�ψi + λn� ε�ψi �Eni−1�λn�a�ψi − λn� ε�ψi �

∣∣∣∣∣
≤ 2� log�1− a2��

σn∑
i=1

∣∣∣Eni−1 log Z̃n�ψi 1�ε<ζni ≤a	
∣∣∣ = oPn�1��

hence
σn∑
i=1
�Eni−1λn�a�ψi �2 =

σn∑
i=1
�Eni−1λn� ε�ψi �2 + oPn�1�

≤ � log�1− ε2��
σn∑
i=1
�Eni−1λn� ε�ψi � + oPn�1��

We therefore obtain (iii) by virtue of (5.4); first choose ε > 0 small enough and
then let n→∞. ✷

APPENDIX

Supplement to the Proof of Lemma 3.1. We state here a proof of the
equivalence [C1a] ⇔ [C2a] under [L1] in (ii) of Lemma 3.1, following exactly
the same line as that of Theorem VIII.3.6 of Jacod and Shiryaev (1987).



CONVERGENCE OF MARTINGALES WITH JUMPS 711

Fix any ψ ∈ 
 and a > 0, and we set Yn = �Xn�a�ψ�Xn�a�ψ� − #Xn�a�ψ�
Xn�a�ψ$. We will prove that sups∈�0�t� ��Yns �

Pn−→ 0 for every t ∈ S under either
[L1]+ [C1a] or [L1]+ [C2a]. SinceXn�a�ψ is a locally square-integrable martin-
gale, we have that Yn is a local martingale and that so is �Yn�2−�Yn�Yn� [see
Proposition I.4.50 of Jacod and Shiryaev (1987)]. Hence Lenglart’s inequality
yields that for every ε�η > 0,

Pn

(
sup
s∈�0�t�

�Yns �2 ≥ ε
)
≤ 1
ε

(
η+En sup

s∈�0� t�
��Yn�Yn�s

)
+Pn��Yn�Yn�t ≥ η�

≤ 2η
ε
+
(
16a4

ε
+ 1
)
Pn��Yn�Yn�t ≥ η��

because ��Yn�Yn� = ��Yn�2 ≤ ����Xn�a�ψ�Xn�a�ψ��2 ∨ ��#Xn�a�ψ�Xn�a�ψ$�2� ≤
16a4. Thus it suffices to show that

�Yn�Yn�t
Pn−→ 0 ∀ t ∈ S(A.1)

under either [L1] + [C1a] or [L1] + [C2a].
Since the local martingale Yn has finite variation, we have

�Yn�Yn�t =
∑
s≤t
��Yns �2

≤∑
s≤t
���Xn�a�ψ�Xn�a�ψ�s�2 +

∑
s≤t
��#Xn�a�ψ�Xn�a�ψ$s�2

≤ αnt Ant + βnt Bnt �
where

αnt = sup
s∈�0� t�

��Xn�a�ψ�Xn�a�ψ�s� Ant = �Xn�a�ψ�Xn�a�ψ�t�
βnt = sup

s∈�0� t�
�#Xn�a�ψ�Xn�a�ψ$s� Bnt = #Xn�a�ψ�Xn�a�ψ$t�

Using (ii3) of Lemma 3.1, we obtain that α
n
t→Pn0 and β

n
t→Pn0 for every t ∈ S,

under [L1]. On the other hand, Lenglart’s inequality yields that

Pn�Ant ≥ ε� ≤
η+ 2a2
ε

+Pn�Bnt ≥ η� ∀ ε�η > 0
and that

Pn�Bnt ≥ ε� ≤
η+ 4a2
ε

+Pn�Ant ≥ η� ∀ ε�η > 0�
Hence [C2a] implies that A

n
t = OPn�1�, and [C1a] does that Bnt = OPn�1�. The

assertion (A.1) has been established. ✷
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