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UNIQUENESS OF THE INFINITE ENTANGLED COMPONENT
IN THREE-DIMENSIONAL BOND PERCOLATION

By Olle Häggström

Chalmers University of Technology

We prove uniqueness of the infinite entangled component for bond
percolation on the three-dimensional cubic lattice above the entanglement
critical probability. This improves earlier results by Grimmett and Holroyd.

1. Introduction. In standard bond percolation with retention parameter
p ∈ �0�1�, one takes an infinite locally finite graph G = �V�E�, and deletes
each edge independently with probability 1 − p, thus keeping it with prob-
ability p. Retained and deleted edges are also called open and closed, and
their status is represented by the symbols 1 and 0. We write Pp for the
resulting product probability measure on �0�1	E with marginal distributions
�1 − p�p�. Of central interest is the possible existence of infinite connected
components, and it is well known (and easy to show) that there is a critical
value pc = pc�G� ∈ �0�1� such that

Pp�∃ infinite connected component� =
{
0� for p < pc,
1� for p > pc.

(1)

G is often taken to be a periodic lattice in d-dimensional Euclidean space; the
main example is the cubic lattice Zd with edges between Euclidean nearest
neighbors. In d ≥ 2 dimensions, there is a nontrivial critical phenomenon;
that is, pc is strictly between 0 and 1. One of the main results in percolation
theory says that, for lattices of this kind, there is Pp-a.s. no more than one
infinite connected component. This result is known as uniqueness of the infinite
cluster; see, for example, [2], [5] and [6].

There has recently been some interest in studying percolation processes
with focus on aspects other than connectivity. Instead of considering infinite
connected components, one may look at infinite entangled components (appro-
priate definitions will be given in Section 2). A systematic mathematical study
of entanglement percolation was initiated by Holroyd [11] and Grimmett and
Holroyd [7]. The topic had earlier received attention in the physics literature;
we refer to [11] and [7] for pointers to relevant papers.

The main result (Theorem 3.1) of the present paper establishes uniqueness
of the infinite entangled component above the so-called entanglement critical
probability. We thus provide an affirmative answer to a conjecture in [7] where
weaker versions of our main result were obtained.

In [8], we treat the corresponding problem for so-called rigidity percolation
(see also [10]), which is another alternative to the usual connectivity concept.
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Like the theory of knots, the study of entanglements in bond percolation
is a purely three-dimensional affair. Following [11] and [7], we shall restrict
our study of entanglement percolation to Z3, although our methods certainly
extend to other periodic lattices in three dimensions.

The next section contains a preliminary discussion of entanglements. In
Section 3 we state our uniqueness result for infinite entangled components,
which is then proved in Sections 4 and 5.

2. Entanglement percolation. The stage for the percolation process
considered in this paper is the cubic lattice Z3, with edge set

E = {�x�y	 � x�y ∈ Z3� 
x− y
 = 1
}
�

where 
 · 
 is the Euclidean norm. By a subgraph of Z3, we mean a subset of E,
and we write � for the family of all such subsets. We wish to have a definition
of what it means for a subgraph of Z3 to be entangled. Our treatment of this
issue will be somewhat condensed, and we refer to [11] and [7] for more detail.

By a sphere in three dimensions, we mean a closed two-dimensional sim-
plicial complex in R3 which is homeomorphic to �x ∈ R3 � 
x
 = 1	 (a simpli-
cial complex is, loosely speaking, a compact union of finitely many polyhedral
pieces; see [14] for a precise definition). The complement of a sphere S has
exactly two connected components, which are denoted the inside and the out-
side of S, in the obvious way. For any sphere S and any set A ⊂ R3, we say
that S separates A if A intersects both the inside and the outside of S, but
not S itself.

For any edge e ∈ E, we write �e� for the closed line segment of unit
length in R3 connecting the endpoints of e. For a subgraph F ∈ � , we write
�F� = ⋃

e∈F�e�.
The definition of a finite entangled graph is relatively undisputable: If

F ∈ � is finite, then F is said to be entangled if there does not exist any
sphere which separates �F� (see [7], Proposition 2.1, for some equivalent con-
ditions). Set

� = �F ∈ � � F is finite and entangled	�

For infinite graphs, it turns out to be less clearcut how to define entanglement.
As in [11] and [7], we shall therefore consider a class of possible definitions of
entanglement.

Definition 2.1. Let � be a class of subgraphs of Z3. We call � an entan-
glement system if the following conditions hold:

(E1) The intersection of � with the set of finite subgraphs of Z3 is exactly � .
(E2) For anyA1�A2� � � � ∈ � such that any pairwise intersection of their vertex

sets is nonempty, we have
⋃∞

i=1Ai ∈ � .
(E3) If A ∈ � , then there is no sphere which separates �A�.
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(E4) � is translation invariant; that is, for any A ∈ � and any x ∈ Z3, we
have A+ x ∈ � .

(E5) For any e ∈ E, the event

�the set of open edges contains some infinite subset A∈� containing e	
is measurable with respect to the usual product σ-field for �0�1	E.

The translation invariance requirement in (E4) is not present in [7], although
it does appear in [11]. Translation invariance is needed for our arguments in
Sections 4 and 5, but we feel that (E4) is a very natural assumption, and that
its removal is unlikely to lead to any interesting gain of generality.

For concreteness, we mention two particular (and distinct) entanglement
systems:

�0 = �A ∈ � � A �= � and every finite subgraph of A is contained
in some � -subgraph of A	�

�1 = �A ∈ � � A �= � and A is not separated by any sphere	�
It turns out (see [7]) that �0 and �1 are “extremal” in the sense that �0 ⊆ � ⊆ �1
for any entanglement system � .

For ω ∈ �0�1	E, let K�ω� be the set of edges that are open in ω. Also for
ω ∈ �0�1	E� x ∈ Z3 and an entanglement system � , define

C�
x = C�

x �ω� = ⋃ �A ⊆ K�ω� � A ∈ � and A contains x	�

It is shown in [7] that if C�
x is nonempty, then it is a member of � [note that

since the union may be uncountable, this is not an immediate consequence of
(E2)]. By an � -component (or an entangled component), we mean a maximal
� -subgraph of K�ω�. The set of graphs �C�

x � x ∈ Z3	\��	 turns out to be
precisely the set of � -components, and these sets partition K�ω�.

For any entanglement system � and any p ∈ �0�1�, the Pp-probability that
there exists some infinite � -component is 0 or 1 (simply by the ergodicity
of Pp). This probability is furthermore increasing in p, and we may there-
fore define the entanglement critical probability as the number p�

e ∈ �0�1�
satisfying

Pp�∃ some infinite � -component� =
{
0� for p < p�

e �
1� for p > p�

e �
(2)

analogously to the connectivity critical probability pc in (1). It is a triviality
to show that 0 ≤ p�

e ≤ pc, but the corresponding strict inequalities, provided
in the following result, are highly nontrivial.

Theorem 2.2 (Holroyd [10] and Aizenman and Grimmett [1]). For perco-
lation on Z3 and any entanglement system � , we have

0 < p�
e < pc�(3)
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The first inequality in (3) was proved in [11], where, in fact, it was shown
that p�

e ≥ 1/15616; the second goes back to Aizenman and Grimmett [1].

3. Uniqueness of the infinite entangled component. When the prob-
ability in (2) is 1, it is natural to ask for the number of infinite entangled
components. By ergodicity it is an a.s. constant. We shall prove the following
result.

Theorem 3.1. For percolation on Z3 with any entanglement system � and
any p > p�

e , we have

Pp�∃ a unique infinite � -component� = 1�(4)

This strengthens the uniqueness results in [7], where it was shown that (4)
holds for p sufficiently close to 1, and furthermore that it holds when � = �0
and p is greater than the connectivity critical probability pc. [Observe also
that (4) is trivial for � = �1�]

We note one shortcoming of Theorem 3.1: It is conceivable that the probabil-
ity in (2) might be 1 when p is equal to the entanglement critical probability
p�
e . Theorem 3.1 says nothing about the number of infinite entangled compo-

nents in that case.
Our proof of Theorem 3.1 consists mainly of two parts, which will be handled

in Sections 4 and 5, respectively. The first part is to prove that for p1 < p2 and
the canonical coupling between Pp1

and Pp2
, every infinite � -component on

level p2 a.s. contains some infinite � -component on level p1. This part is based
on the arguments used by Häggström and Peres [9] to prove monotonicity (in
p) of uniqueness of the infinite cluster for percolation on nonamenable Cayley
graphs. We thus note that the intensive recent efforts in percolation theory on
“exotic” graph structures (see [4] and [12] for overviews) turn out to be useful
also in the classical Zd setting. The second part of our proof is a variant of
the famous encounter point argument of Burton and Keane [5] for proving
uniqueness of the infinite connected component.

We remark that it is very tempting to try to dispose of the first half of
the proof, and instead approach the problem directly with Burton–Keane-type
arguments. However, due to the rather “nonlocal” character of entanglement
(compared to connectivity; see [11] or [7] for some striking examples), this
appears to be difficult.

4. First part of the proof of Theorem 3.1: uniqueness monotonicity.
We first recall the usual coupling between Pp1

and Pp2
for p1 < p2: Let Qp1� p2

be the probability measure on �0�1	E × �0�1	E corresponding to letting each
edge e ∈ E independently take value

�0�0� w�p�1− p2�
�0�1� w�p�p2 − p1�
�1�1� w�p�p1�
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We let X = �X1�X2� be a �0�1	E × �0�1	E- valued random element chosen
according to Qp1� p2

. It is clear that X1 and X2 have marginal distributions
Pp1

and Pp2
, and also that the set of open edges in X1 is a.s. contained in the

set of open edges in X2.
The first part of the proof of Theorem 3.1 consists of proving the following

result; an analogous result for infinite connected components in percolation
on Cayley graphs was obtained in [9].

Proposition 4.1. Let � be any entanglement system. Fix p1 and p2 such
that p�

e < p1 < p2 < 1� and pick X1�X2 ∈ �0�1	E according to the coupling
Qp1� p2

. Then� with probability 1� every infinite � -component in X2 contains
some infinite � -component in X1.

Proof. Fix a vertex x ∈ Z3, and let Ax denote the event that x is con-
tained in some infinite � -component of X2 which does not contain any infinite
� -component of X1. Equivalently, Ax can be described as the event that x is
contained in some infinite � -component of X2 which does not even intersect
any finite � -component X1. By translation invariance, it suffices to show that
Qp1� p2

�Ax� = 0. On the event Ax, define the random variable

Kx = min
y� z

dist�y� z��(5)

where y ranges over all vertices in the � -component on level p2 containing
x� z ranges over all vertices contained in the union of all infinite � -components
on level p1, and dist�·� ·� is L1-distance on Z3. The choice of p1 ensures that
Kx is finite, and it therefore suffices to show that

Qp1� p2
�Ax�Kx = k� = 0(6)

for any k ∈ �1�2� � � �	. On the event in (6), let Nx be the number of vertices y
for which the minimum in (5) is attained. Fix k ≥ 1. We will separately show
that

Qp1� p2
�Ax�Kx = k� Nx < ∞� = 0(7)

and that

Qp1� p2
�Ax�Kx = k� Nx = ∞� = 0�(8)

To show that the probability in (7) is 0, we use a so-called mass-transport
argument. Imagine that all vertices of Z3 are equipped with the same amount
of mass and that each vertex sends some of its mass to other vertices according
to some rule depending on the configuration �X1�X2�. If this rule is transla-
tion invariant, then we get as a special case of the mass-transport principle of
Benjamini, Lyons, Peres and Schramm [3] that the expected mass sent from
some (hence any) vertex equals the expected mass received at a vertex.

Consider the following mass-transport rule. If a vertex v sits in an infi-
nite � -component in X2 whose minimum distance to the union of all infinite
� -components in X1 is k, and the minimum is achieved for finitely many (say
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n) of the vertices in v’s � -component in X2, then v sends mass 1/n to each of
these n minimizers. Otherwise v sends no mass at all. This rule is translation
invariant. Each vertex sends at most mass 1, so the expected mass sent from
any vertex is at most 1. On the other hand, if the event in (7) had positive
probability, then some vertices would receive infinite mass, so the expected
mass received would be infinite. This would contradict the mass-transport
principle, and we therefore conclude that (7) holds.

It remains to prove (8). Given X1, define the partition �B1�B2�B3	 of E as

B1 = �e ∈ E � e is in some infinite � -component of X1	�
B2 = �e ∈ E\B1 � at least one endpoint of e is within distance k− 1

from some infinite � -component of X1	�
B3 = E\�B1 ∪B2��

Let Dx be the event that the set of open edges in B3 on level p2 contains some
subgraph which

(i) contains x,
(ii) is in � and
(iii) comes within distane k from B1 in infinitely many places.

Clearly, the event in (8) implies Dx, whence it suffices to show that

Qp1� p2
�Ax 
 Dx� = 0�(9)

On the event Dx, we can find infinitely many disjoint paths γ1� γ2� � � � of length
k from B1 to the � -component of the set of p2-open edges in B3 that contains
x. If we condition not only on Dx, but further on X1 and X2�B3�, then each
edge in B2 is independently open on level p2 with probability at least �p2 −
p1�/�1− p1�. Hence each γi is independently open with probability at least(

p2 − p1

1− p1

)k

and by Borel–Cantelli a.s. at least one of them will be open. But then the
event Ax does not happen, so (9) is established, which in turn implies (8), and
the proof is complete. ✷

5. Second part of the proof of Theorem 3.1: Burton–Keane combina-
torics. Let the coupling Qp1� p2

and �X1�X2� be as in the previous section,

and fix some entanglement system � . Define the extended edge set Ẽ for Z3

as

Ẽ = {�x�y	 � x�y ∈ Z3� x �= y
}
�

and define the edge configuration X̃1 ∈ �0�1	Ẽ by setting

X̃1�e� =
{
1� if the endpoints of e are in the same � -component of X1,
0� otherwise,
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for each e ∈ Ẽ. This gives a natural identification between � -components
in X1 and connected components in X̃1. The advantage of working with X̃1
rather than X1 is that connectivity is a simpler property to deal with than
entanglement; this will allow us to invoke Burton–Keane-type combinatorics
later. Also define the configuration X̃2 ∈ �0�1	Ẽ by setting

X̃2�e� =
{
max

(
X̃1�e��X2�e�

)
� for e ∈ E,

X̃1�e�� for e ∈ Ẽ\E.

Lemma 5.1. Fix p1 and p2 such that p�
e < p1 < p2 < 1. With Qp1� p2

-

probability 1� if X̃2 has a unique infinite connected component� then X2 has a
unique infinite � -component.

Proof. Suppose X̃2 has a unique infinite connected component. Then this
connected component contains all infinite � -components of X1. Hence, by
Proposition 4.1, we have Qp1� p2

-a.s. that every infinite � -component of X2

intersects the infinite connected component of X̃2. However, by repeated use
of property (E2) of entanglement systems, we see that any two vertices in the
infinite connected component of X̃2 are in the same � -component of X2. The
lemma follows. ✷

We shall stick to the assumption that p�
e < p1 < p2 < 1 throughout the rest

of this section. In view of Lemma 5.1, our task is to show that X̃2 has Qp1� p2
-

a.s. a unique infinite connected component. The first step in this direction is
to prove the following result.

Lemma 5.2. The number of infinite connected components in X̃2 is aQp1� p2
-

a.s. constant� which equals either 1 or ∞.

Proof. This follows by a standard Newman–Schulman [13] argument.
First, the a.s. constancy follows by the ergodicity of Qp1� p2

. Second, suppose
as a contradiction that

Qp1� p2

(
X̃2 has exactly k infinite connected components

)
> 0

for some k ∈ �2�3� � � �	. Any configuration ω ∈ �0�1	Ẽ which has exactly
k infinite connected components can be turned into one with strictly fewer
infinite connected components by turning on finitely many edges in E. This,
in combination with the fact that each e ∈ E is present in X̃2 with conditional
probability at least �p2−p1�/�1−p1� given the status of all other edges, easily
implies that

Qp1� p2

(
X̃2 has at most k− 1 infinite connected components

)
> 0�

which contradicts the a.s. constancy of the number of infinite connected
components. ✷
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Next, for N ∈ �1�2� � � �	 and x ∈ Z3, let %N�x denote the set of edges in
E that have both endpoints in �−N�N�3 + x. Also let ∂%N�x denote the set
of edges in E that have exactly one of its endpoints in �−N�N�3 + x. We
emphasize that %N�x and ∂%N�x are subsets of E (and not just of Ẽ).

Lemma 5.3. For any positive integer N and any x ∈ Z3� we have that every

infinite connected component of X̃2 which contains some vertex in �−N�N�3+x�
also contains some edge in ∂%N�x.

Proof. Assume that the vertex y ∈ �−N�N�3+x is in an infinite connected
component of X2. Then there is an infinite self-avoiding path in X̃2 starting at
y. This path must contain some edge e ∈ Ẽ with one endpoint in �−N�N�3+x
and the other in Z3\�−N�N�3+x. If e ∈ E, then e ∈ ∂%N�x and we are done. On
the other hand, if e ∈ E\E, then its endpoints are in the same � -component of
X1. This � -component of X1 must then contain some edge e′ in ∂%N�x because
otherwise that � -component would be separated by a sphere (for instance, the
sphere given by the boundary of the set �−�N+ 1

2��N+ 1
2 �3+x�, contradicting

property (E3) of entanglement systems. But e′ is clearly in the same connected
component of X̃2 as y, so the proof is complete. ✷

What remains in order to prove uniqueness of the infinite connected com-
ponent in X̃2 (Lemma 5.5) is to invoke a reasonably straightforward Burton–
Keane-type argument. For a finite set Z whose cardinality 
Z
 is at least 3, we
define a 3-partition of Z to be a set H = �H1�H2�H3	 of disjoint nonempty
subsets of Z with H1 ∪ H2 ∪ H3 = Z. Burton and Keane [5] provide the
following combinatorial lemma.

Lemma 5.4 (Burton and Keane [5]). Let H be a nonempty set of 3-parti-
tions of a set Z� such that for any H�H′ ∈ H with H �= H′ we have

Hi ∪Hj ⊆ H′
k for some i� j� k ∈ �1�2�3	 with i �= j�

Then 
Z
 ≥ 
H
 + 2.

Lemma 5.5. X̃2 has Qp1� p2
-a.s. a unique infinite connected component.

Proof. Assume for contradiction that X̃2 has infinitely many infinite con-
nected components Qp1� p2

-a.s.; by Lemma 5.2, this is the only case that needs
to be ruled out. We can then find an n < ∞ such that, with positive probability,
%n�x is intersected by at least three infinite connected components in X̃2 (this
probability clearly does not depend on the choice of x ∈ Z3). This implies, by
the same arguments as in the proof of Lemma 5.2, that

Qp1� p2
�Ln�x� > 0�(10)
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where Ln�x is the event that X̃2 satisfies:

(i) all edges in %n�x are open;
(ii) some infinite connected component intersects %n�x; and
(iii) the (unique) connected component intersecting %n�x would split into at

least three infinite connected components (plus possibly some finite connected
components) if all edges in %n�x were removed.

Call x ∈ Z3 an encounter point if the event Ln�x happens (note that we are
using a definition of encounter point which differs from the standard one intro-
duced in [5]); Equation (10) then asserts that there exist encounter points with
positive probability. Furthermore, call x ∈ Z3 a special encounter point if it is
an encounter point that has no other encounter points within distance n+ 1.
We claim that special encounter points exist with positive probability. To see
this, note that if x and y are encounter points, then we may remove an edge
from %n�y\%n�x so that y is no longer an encounter point while x still is. This
“killing” of encounter points in the vicinity of x may be repeated until x is a
special encounter point.

Let ε > 0 be the probability that a given vertex x ∈ Z3 is a special encounter
point. Let 0 denote the origin in Z3. Pick an integer N large enough so that

ε
(
2�N− n� + 1

)3
> 6�2N+ 1�2(11)

[the significance of this choice is that the left-hand side of (11) is the expected
number of special encounter points in �−�N−n��N−n�3, and the right-hand
side is the number of edges in ∂%N�0].

Suppose for a given edge configuration that x1� � � � � xl with l ≥ 1 are spe-
cial encounter points in �−�N − n��N − n�3 that are all in the same infinite
connected component. Let Z be the set of edges in ∂%N that are in the same
connected component as x1� � � � � xl. For each m ∈ �1� � � � � l	, we can partition
Z into r ≥ 3 nonempty setsHm

1 � � � � �H
m
r in such a way that two edges inZ fall

in the same set Hm
i if and only if they would fall in the same connected com-

ponent if all edges in %n�xm
were removed (that r ≥ 3 follows from Lemma 5.3

and the definition of encounter points). Next set �Hm
1 = Hm

1 , �Hm
2 = Hm

2 and
�Hm

3 = Z\�Hm
1 ∪Hm

2 �, so that � �Hm
1 � �Hm

2 � �Hm
3 � is a 3-partition of Z. A moment’s

thought reveals that the set of 3-partitions �� �Hm
1 � �Hm

2 � �Hm
3 �	m=1�����l satisfies

the combinatorics of Lemma 5.4 (this is where it is essential to consider special
encounter points rather than simply all encounter points). Hence 
Z
 ≥ l+ 2.
By summing over all connected components that contain special encounter
points in �−�N− n��N− n�3, we get that the number of open edges in ∂%N�0

must be at least the number of special encounter points in �−�N−n��N−n�3.
By taking expectations (denoted E), we get that

E�number of open edges in ∂%N�0�
≥ E�number of special encounter points in �−�N− n��N− n�3�
= ε

(
2�N− n� + 1

)3



136 O. HÄGGSTRÖM

> 6�2N+ 1�2

= 
∂%N�0

(the last inequality is by the choice ofN), andwe have the desired contradiction.

✷

Proof of Theorem 3�1. Immediate by applying Lemmas 5.5 and 5.1,
with p2 = p and p1 = �pε

e + p�/2. ✷
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