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Inmtvoduction. Stielijes integrals, introduced into analysis in
1894-51, play an increasingly important role not only in pure math-
ematics, but also in theoretical physics and in the theory of probability.
In mathematical statistics, however, their use, it seems, still remains
very limited. And yet, one of the most remarkable features of
Stieltjes integrals is that they represent, as the case may be, an integral
proper or a sum of an finite or an infinite number of discrete aggre-
gates. Thus the statistician is enabled to treat in a single formula a
continuous, as well as a discontinuous distribution. This means far
fmore than a mere simplification of writing. In fact, since Stieltjes
integrals have many properties in common with Riemann and Lebesgue
definite integrals, we can use all known resources of the theory of
definite integrals (mean-value theorem, various inequalities), and
therefore readily obtain general results which, otherwise, require
special (often complicated) proofs. The advantage of such a treat-
ment is particularly evident in the theory of interpolation, approxima-
tion, and mechanical quadratures.

Hence, the object of this paper is to present a general =xposition

of the properties and applications of Stieltjes integrals. Many of the

results stated below are well known2, and the proofs may be omitted.
Some results are believed to be new (for example, extension of Tche-
bycheff and Holder inequalities) and may prove useful in mathematical
statistics. We close, as an illustration, with the theory of interpola-
tion, for here, even in recently published books, the continuous and
discontinuous cases are treated separatelv while the underlying ideas
are tdentical.

1. Stieltjes: (a) Rt_:cherches’ sur les fractions continues, Oeuvres, v. II, p. 402-
§59; (b) Correspondence d’'Hermite et de Stieltjes, v. 11, p. 272, where these
integrals are first mentioned in a letter (No. 351) to Hermite under date of
October 25, 1892,

2. (a) Hobson, The Theory of Functions of a Real Variable, 2d. ed. (1921),

v. I, p. 506-16, 605-09; (b) O. Perron, Die I.ehre von den Kettenbriichen
(1913), p. 362-69.
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74 STIELTJES INTEGRALS

1. Definition and general properiies. Let f(x\ be continuous

and ¢ (z) be bounded monotonic non-decreasing on the finite interval
(a,d) (& < &) Then, as is well known, the following limits exist:

Ylrro)=Lim [ ¢ (xve) - Ylx)]

a=x=20b)

p(x-0)-Lim [ y(x-¢)-y(x)]

If x is a point of discontinuity of w(x), #xto)- y(z-0) (=o0)
is called “saltus” of ¥ (x) at this point. The number of such points
is at most denumerably infinite; the points of continuity of #(x) are,
therefore, everywhere dense in (¢,5) y(x) is Z- integrable, and
sois y(x)x* (k=0,/-+-" ).,,The Riemann-Stieltjes integral
(of f(z) with respect to  ¥(x)/ Ax)d ¢ (x) ) is defined as
follows: e

(S). .
/Pf(x)d Y(x)=1im Zlf(é',) [# (x; )-u(z)]

a n ~=co mox(:r“,-a:‘. )=~ o

A=X,< T, <X, <+ "+ <X,, < T,=b

Xp= ‘ﬁf- Lini (ic0, 1, oo n=1)

The existence of the right-hand limit can be easily established. The
continuity of f(x) is here sufficient, but not necessary!.

In many phases of mathematical statistics the case of a continu-
ous Ax) is cvidently the more important, although many problems
arising in the theory of probability require applications of the discon-

tinuous case.

From the very definition (S) one may obtain many properties of
Stieltjes integrals in common with the ordinary definite integrals.
Thus:

) fapn = nb-pe)

1. (a) Hobson, 1-c; (b) T. Hildehrandt, On Integrals Related to and Extension
of the Lebesque Tntegrals, Bulletin of the .American Mathematical Society (2),
V. 24 (1918), p. 177-202; (c) Lehesque, Legon sur l'intégration, 2d ed. (1928),
p. 252-313.
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[3 »
@) [fdw+/fd¢ = [fdy (a=c=b)
» »
@ figefrv = ffovsffoy
“4) /Afd¢=4ﬁdW (4 = Const.)
b b
) |[ravl= Jlsov
a a
(6) f fIy =f& )f :"V (a=¢&= b :mean-value theorém)
2 H
»
7) ff,df’ﬁ'/f;.d¢ o if flx)sf(x) for acsx<d
2 H
b
® [Erav-F [rav
ifz. S{x) converges uniformly in (a , b)
I3 b
9) f foy=f V' —_/ yaf (iniegration by parts)
H ) a a
{10) /fdy:fj(x)p(x)dx , if ¢(x)=/¢(z)dx+c
L a
with p(x)= o in (a, b).
& b
(10-bis) [ dw = [f(x)y &) dx if ¥lz) enists
H 4
and is R - integrable in (a, b).

Let y(x) have only a finite number of points of fncrease in (a, b).

(d =x,,<):c,<x,< """ <J.‘,,(< I,,,,=b)

with the saitus o, at x=x, (/27,2--.-.. n), sy that lz)
remains constant = ; o, for x;sx<ax,,. and y(8) S o . Such
functions, called stepreise functions (“fonction en esca ier”), prove
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very useful. Here

b
an ffoy=F o fix)  {o=flzrorflz,0)}
1f the’number of points of increase is infinite

(a<)x,<x,< -+ -i<xp< -+, limax,=b

(12) fbfdy/ =‘=ZT o flx) .

Conversely, any sum 2" u, v; can be represented as a Stieltjes in-
tegral in infinitely maﬁﬁ' ways. Let us introduce 7z positive numbers
o,, 0,, -0, acertain interval (&, b), npoints(@< ) x, <-- <xf<b)
(the choice of a; g; depends upon the nature of the problem involved),
and a stepwise function #{x )having at x=x; a saltus o; (i=/,2,
3:--n). Then, writing w=0; w; we may consider v; ,w; as
values taken respectively by some functions f(x),d(x) at == x;
(£=/1,2, -+ -+ -n) . Hence,

139 Luivi= [Hxd2)09(2)

Formulae (11-13) show clearly the use of Stieltjes integrals for the
representation of sums of discrete aggregates.

(14) [fdy=zo, if f(x)zo in(a.d)

Here *=" takes place if and only if @(x)has a finite or denumer-
ably infinite number of points of increase in(&, b) (not evervwhere
dense) and f{x )vanishes at all these points, for we exclude, of course,
functions f(x) which vanish at all points of continuity of y(x)and

therefore vanish identically in (a, b). If ¥(x)has infinitely many
points of increase, while f( x)vanishes iy (@, b) only a finite number

of times, without changing sign, then [~ fx)dy(x)# ©  and has
the sign of f(x) @ ‘

b
(15) [fE@) x*d y(x)=0 (k=0,/. - -n-/) implies: Ax)
a

has at least n distinct roots inside (& , b) assuming that p(x)has at
least n points of increasel.

1. This is a form of a theorem due to Perron (l-c, p. 3068-09). 1f the
number of such points is m <n. (15) shows only that f () vanishes at all
such points.
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b
(16) [x*dy(x)=0 (k=0,/, - - - - - -.) implies:
a

¢(x) constant for(g <x=<b)*.
Since in the dehition (S) only the differences ¢ (x;,,)- ¥ (x;) enter,

it follows that a Stieltjes integral does not change its value if we re-
place y(x)dy w(x)+c . More precisely:

(17) fja’ ¥, =/Pfd¢,
a L]

if the two monotonic non-decreasing functions ¥, ,(€)differ by an
additive constant onl , at all points of continuity. Applying the mean-
value theorem to f Ty y(x) , we conclude:

(18) F(x) / F(t)dy (t) is continuous at all points of continuity of

y(x) and therefore, almost everywhere in (a, b).

(19) lim F(.r+h)—P(x) —f(I)

M )y () (a=sx =b)

(20) F'(x)zf(x) ¥ '(x) at any pointx. in (2, ). where ¥ (x) exists.

One recognizes in (18-20) a generalization of the properties of
the ordinary definite integral which is a special case, for ¥ (x)=x.

3
21, g ¢ _—.f S, 8dy@is continuous in ¢(¢, = t < ¢t,)
2

i f(x,t) . continnous inz. is uniformly continuous with respect
to t(t, =t =<t,) forall values of xin (@ b ). Moreover.

(22) d¢(t) f af(x t) dy¢ (2

x,t . . . . . .
if ( exists and is continuous in 2 and uniformly continuous

in t(a =sx=b; t,=<t=t,)

LI o (@) has o finite number, 2. of points of increase. then 7 such relations
imply the same conclusion.
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Notes. (i) The above results hold, with proper limitations and
modifications, if Y{(x) be of bounded variation in (2,0 ), for such a
function can be represented as a difference of two monotonic non-
decreasing functions v, .(x) and we define in accordance with (S),

ffd¢ =ffdw, ;/?dm

(ii) In applications to probability and mathematical statistics
¥(x)stands for the “cumulative law of distribution,” so that

(23) ¢ (z) is monotonic non-decreasing from Y(@)=0 to y(b)=/.

(24) For (a.<c <d=D)the integral fd ()
= probablllty P:lc £ x< d] / d ¢(x) /.

(25) (.‘l:)d (x) =E(f) , i. e., the expected value or math-
¥

ematical expectation of f(x),

Let w(x) Ax) be continuous in (2, b), and o(z) be of bounded varia-
tion. Then,

(26) w(x):frw(x.)d &(x) s of bounded variation.'
a
5 5
[ 5@ v (x) = [fxw(x)w (x)
a a

Given an infinite sequence of functions ¥,(x) (n=/, 2, -+ - )
of bounded variation in (&,5). If the total variation in (&, b) of
all ¢, (x) does not exceed a fixed (uantity M independent of n, and
if, in addition, Jim y,(x)=y(x) exists for a <x < b, then?

b b
(27). Iz'r)i /f(:c)d:l,,(.r):jf(a:)dv/(:r) , for any continuous
f‘(x),”- a a

Notes. (i) (27) holds true if we know that Lim ¢(x)=y(x)
exists at all points of continuity of the sequence ;1/,,(1: and at x=a, b,

1. T. Carleman Legons sur les équations intégrales singuliéres noyau réel et
symétrique (Uppsala) (1923), p. 11-12.
2. Page 9 of preceding reference.
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(ii) In applications to probability and statistics (27) is of great
importance. In fact, consider g, (x )as a sequence of variable laws
of distribution approaching, as a limit, a certain fixred law of distribu-
tion y(x). Then( by (23), the total variation of any y,(x)in@, )
is 1; (27) thus becomes applicable and shows that under the said con-
ditions the expected value of any continuous function in the variable
law of distribution approached, as n+=oco its expected valuc in the
limiting law of distribution.

I1.  Sticltjes Integrals Over an Infinite Interval. We define

[rdv=tim [fav: ffdw Lim ffdt/'

b
(similarly ), provided the right- hand limits exist as finite num-

bers. It isassumed that f foy, / Fdy  exist respectively for any
finite x> &, and for any finite inté&eal (a, b). For the existence of
(28) it is necessary and sufficient that

(29, <e for x= a certain number x(€),

€ >0 — .lrbltmnl) small.
One sees readily that

(30) /Qja'z// exists, if fd;{/ does, and if f(x) is bounded for

all real values of . The first of these conditions is satisfied
f y(x) isalaw of distribution. We notice that any f FIyY can
I)c written as fofa’;é if we agree to take @ (x)= uf{af, ¥(b)

respectively for x<a, =2 b.

The formulae given above hold, in general, for infinite limits as
well awith the cxception of those twhich require a double limiting
process, like &, 21, 27, etc., where ordinarily additional precautions
must be taken in the form of certain assumptions specifying the, be-
haviour of @ (x) and of other functions involved at infinity. Thus,
(8) is not valid in general for (&, b)=(-, c0) . and requires i
more detailed discussion.  Furmulae 21, 22 hold true if we assume,
for example, the uniform boundedness and continuity with respect
to £ of the functions involved for all xin (-o0, ), and also the
existence of/ dy(x). i. e. definite values for y(teo),

-

Formula 17 deserves special attention: in general, it is not true
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for an infinite inverval, as was shown by Stieltjes!.

IIL.  Approximate Evaluation of Sticltjes Integrals.  In prac-
tice, as in statistical computations, we evaluate A f dy approximately,
replacing it by the right-hand member of (S), for a certain chosen n.
The question arises regarding the error 7, of such an approximation.
Let @ (&) represent the modulus of continuity of f (xz),ie

(31) lf(:c)—f(y)ls wl) for |x-y|<dla=x, y=<b)

Then,if x;,,-x;<h in(S)for i=0, /,------n-/, wehave
/fd¢ LAY (xi-v )]
= 2 [T &) v

130 x;

B |r,| = w(h)[fa'w w(R) [y (B)-y(a)]

{lz max. (xi,, o) s i=0,/, e n-/}

(32) answers the above question for any continuous f(.l')
Special Case: Lipschitz condition?:
(33) | f(@)-fy)= Alx-y] (a=x, y=b;
| Pal= AR [y (6)-¥v@)] A= const.)

In (32, 33) we replace h by h/z, if (€} in (S) is, as usnal, the
mid-point of the interval (x;, x;,,)(1=0, I, ++ «n-1)

It must be noticed, however, that the above considerations are

1. (L c. p. 73, p. 505-06. (17) is closely related to the so-called **Moments-
problem”: find a monotonic non-decreasing function ¥(x)in (@, b) with
infinitely many points of increase, if all its moments »/.=/, x*d ¥ (x)
0,/-+- ] are given. This problem, for (&, b) infinite, may be “indeter-
mined,” i. e. it may admit infinitely many solutions, while it is always “deter-
mined,” for finite (&, b). Stieltjes glves the followmg e'(ample

x*[/+Asin (xQ]e 4 dx =/ x*e T4 dx
A “constant, K = O, /, «+--- ] and g (x)=0 =
[/+Asm .r%]e x% jg monotomc non-decreasing in O ,® , if lAl=1.

If f (x) exists for @< x<d ,then A~ can be taken equal to max.
|f () l in (a, b) . If f(x) is given grarhically, A can be found roughly
as the maximum of the ahsolute va'-- .ae slope in(a, b) .

)
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not workable in general on an infnite interval, for here, in place of
(31), we ordinarily have the more complicated relation

| f(x)-fy)l= o(x,y.8) (Jx-yl=2)

where w(:c,_y, 8)+ with x,y (ex.: f(:r) =x? ). Thus here, in
order to obtain an inequality for the ¢rror, we must add to the right
member of (32), where a, b are hmtc numbers properly Lhmcn. two
more terms—the upper limits of I_/ fdz// .mdlfl Fd w| . which
we obtain by means of a suitable h\pnth(‘\l\ concerning the behavior

of f(x), ;é(x) at infinity.

IV. Tehebycheff and Hilder Incqualitics for Stieltjes Integrals),
Hereafter g(x) stands for a monotonic non-decreasing function
defined on a certain interval (&, b ), finite or infinite. Let £ (x),
¢,(.r)[1 1,2, +n] be continuous on (&, b)% Then we have the
following fmuiunwutal transformation:

b b
(34) /f ¢>.d¢:/ﬁ ¢, 9y - [f P, IY

‘/‘bf;¢ld¢/ e e f}n¢ndw
]

//Ifl) Sz, .z) ¢1x,,)f_[ (
i d .
(n t;m!s) (I)f'r”) ¢n( ) ¢(I,) 1=/ 7/1'

The proof is very simple for n=2., for we can write

/u(x)o’;ll(ar)‘ /V(ridw(r)
) s | Julzva) dp(z)dy (x)

a a

and it may readily be extended to any n. Formuda (34) vields many

1. Cf. my Note: Jacques Chokhate, Sur les intégrales de Stieltjes. Comptes
Rendus, v. 189 (1029), p. 618-20.

2. In case ¢(x) has a finite number of ponts of increase in (&, ), we require
only definite values of all f,(.‘t), @, (x) at these points.
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interesting results by a proper choice of 7, f; , ¢ .
Examples: (i) n=2 ; fi=¢, , f,=9.

(35) /‘f"d"/ fidy '(/ﬁ f.dp)=
/

b

/ f:(xl)j;(z),J{#(x,)dW(I) =0,

K AN

Schwarts inequalitv—( “=" only if f, and f, are linearly de-

pendent.
(ii) n=2; fo=#,=/. Write f, ¢ in placeof f, ¢,

(36) ﬁw’w /w /fW /¢d¢

=% // F@)Sf ) @)-#@)]dy() d¥(y)
/éw Jtsawe [fau- [pov

Tchebycheff inequality (derived by him for the speclal case
Jy=dx ), where f, ¢ are any two functions both varymg mono-
tonically in (& ,b ), cither in the same' sense (sign > in (36) or in
the opposite sense (sign < ). In (34-37) we may replace *d y(x) by

P(I)dx[P(zP O in(a, b)]’
(iii) f(x) x%, g )Rz [i=1,2, - - n:
b
/Fdwffxd‘[ ..... / F;r""dlll

//".ra'w C e ..ffx»d¢

N S

ﬁ“x" ‘dy - / ‘". ';ﬁ

,,:/‘.“‘/ﬂi‘(x)d;#(x) ]7 (x,-.r,)

1. Cf. E. Fischer, Ueber den Hadamardschen Determmontensltz Archiv fiir
Mathematik and Physik (3), v. 13 (1908), p. 32-49, where. (34) is derived
for the particular case dy (x)xdx
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The determinant A,, plays an importanc role in the theory of orthog-
onal Tchebycheff polynomials (see helow). Formula (37) gives an
upper limit for A, :

(38) 1] < oy (b-aY" M [y (2]’
[M:max. | F(x)| in (a, b)] .

Applying (13) to the above formulae, we get:
n
(39) (Z u, V,-)'s_f uf zv,.’
32/ is1 i1/

—Cauchy incquality (from (34))

(40) nfal.b,zzn:dijb,.

iss 1i:/

n n

‘ZUV- ‘ZUJV 1
(41) Lty Hp—— (v, W, >0)

2 VY Lf

13/ ey

Formuiae 40, 41 follow from (36) by means of (13}, with o,/ (in

(40)), oi=w, (in(41)) [i=/2, ---n]. The sequences {(a,), (b)),
{(d, ()} are'assumed to be either increasing or decreasing. the

sign 2 being chosen as in (36). Thus all these (and many similar)

inequalities have the same origin-formula (34). Applying (13) to

Holder-Minkowski inequalities®,

@ Lo sl [F1ea™ ™ 60

i

(G g i) oo
we get:

(43) ﬁf¢|d¢s {/]fl’dw}”’-{fle*l"" dy} " (s> 1)

1. Cf.Loeopo 730 1-h, ppe 1420 143, 146, 194,

2. F. Rictz. Ueber Systeme integrierbarer Funktionen. Mathenatische . vanalen,

v. 69 (1911). pp. 449-497 ; p. 456.
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@ | fipsorran}es( fisrav)e RORTLY

Formula (43), with ¢=/, 5= >/ andf repliced by|f|%
yields: ’

(45) {ﬁbfls.dg,} Y6, < {ﬁﬂ °'JV}I/"' {/bdll' }gh_f_

(st>s: >o) .

The applications of the above inequalities to the theory of probability
and mathematical statistics are many. A few illustrations follow:

(i) Consider even moments, «@,,=./ '.r”f(.r)dx-z_[;: **fc)dx
of a continuous unimodal symmet- distribution over a finite interval

(-a,a). Here (36) gives (with s, <, dg(flxMx, 2 [ Ax)dx=/).

[s=0s 2.5 )=o)

@) If €& denotes an arbitrary constant, take in (42) f(.r)fx-—(,
¥ (x)= law of distribution of x over (a,d), so that [dvh:):/.

We get:

Vs, < ¢
an v T b » for 5 <s,

(s*o] fi-2179v] %)

Hence, in any distribution over any interval the quantity

[ . .
v,y lx-E|° d ¢ (aﬂ] ‘% .increases with & for any constant &
and, in particular,
D D )
U= /.r 2 dw] 728 also if az o,

“Z”[‘/fdf’] 2

1. Paul Levy, Calcul des probabilités (Paris 1925), p. 157-58.
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(iii) Apply (36) to the functions f(x), #(Z) both monotonic
m(a.d) , y(x)the same as in (ii):

(48) E(f¢)Z E(f)E(¢) (for the choice of Z see (36))'.

The same formula (36) gives for any function f(x)
(499) Z(f" >{£(f)]" (n=2, 3,----

Formula (45) gives with the same Y(x) :

50) {E(FI1)" = {BUF1%) } "5 (s, < 50 .

V. Application of Stieltjes Integrals to Some Minimum-Prob-
lems. Given a number m2/ , M finite points T, STy§ " Xu, M
positive quantities 0, , Ty ,**+ T,, and a function F(x)with well de-
termined values f(xXi=/, 2, ---M). Find a polynomial P, (x),
of degree not exceeding n(s M-2)minimizing the expression
é 0| f(=x,)-P, )| . Discuss the behavior of B(z) for
7 +~00. We introduce a finite interval (a, b ), containing in its in-
terior all points «; and a monotonic non-decreasing step-wise function
¥ (x) with the above properties (saltus o, at x=x;, etc.; see p. 75).
Then our problem can be formulated as follows: Find a polynomial
B, (x) of ¢£egrce not exceeding n , minimising the integral

L1f(x)-B, (x)" dy(x) [m =z /],

Here ‘the advantage of Stieltjes integrals is clearly evident, for
the latter problem has been discussed by G. Polya®, D. Jackson® and
the writer’. We know that a solution always exists and is unique
for m >/. The behavior of B (x), when either or both m and # in

1. G. Bohlman, Formulierung und Begriindung Zweier Hulfssitze der Mathe-
matischen Statistik, Mathematische Annalen, v. 74 (1913), pp. 341-442;
p. 374-75.

2. In fact. (36) holds. with sign > , if Rx) - fly) and ¢ (x)~ $(y) have

the same sign for any x, y in &, b , which. of course, is true for
¢ (@)nf(x).
3. (a) G. Polya. Sur un algorithme toujours convergent . . ., Comptes Rendus,

v. 157 (1913) p. 840-43. (b) D. Jackson, On the Convergence of certain
polynomial and trigonometric approximations. Transactions of the American
Mathematical Society, v. 22 (1921), p. 158-66. .(c) Idem, Note on the Con-
vergence of Weighted Trigonometric Series, Bulletin of the American Math-
ematical Society, v. 29 (1923), p. 259-63. (d) J. Shohat, On the Polynomial
and Trigonometric Approximation, Mathematische Annalen, v. 103 (1929),
p. 157-75.
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crease indefinitely, has also been discussed by the above writers. It
was found that, if fix) be continuous in(a, d), then for n fixed and
m=w , B (x) approaches uniformly in(a , ») the polynomial 1,(x),
of degree = n, of the best approximation (in Tchebycheff sensel) to
F(x) provided, ¥ (x) has infinitely many points of increase every-
where dense in (a, b). Furthermore, [ LAz B ()™ a¥( xi[ ‘:—’.'-'1;
the best approximation E [ f )=max .lj(x)-‘ﬂ;, (x)lfor asx<b.

This result has been supplemented by the writer (in a paper which
will appear elsewhere), who showed that the above result holds if
¥ (x) has a finite numberM(z n+2 ) points of increase. -T,(x ) repre-
senting here the polynomial (of degree = n) giving the best approx-
imation to f(zx) on the agyregate of the said points of increase of
Y (x). The following cases are of special interest.

(a) n~=0 i c find aconstant X, minimizing the sum

Z‘ ol fx)-Xnml™ .

31

Very simple considerations show that the best approximation to
{f(.t,) Y(i=/y R, --v o )by means of a constant is E,(f)-',ﬁ’f(:g)
-flxe)l s £x), flz) being respectively the largest and the small-
estof the f(x;).sothat | f (x,) - f (@,)|  is the largest possible,
and the “constant of the best approximation” is N, = b [ f () f(r,?[.
Thus. here

lim x,, - L&17E)

m--

(1) lim {hj‘ o [f @)-X,]"}

:{f(L");:ﬂiL)': max . I &r’—);f—('rl_)lp »Jj=1,2,--n)

f(x,)< f(xz) <o <f(1',.,) implies .

52
( ) Iim Xm = f(rng*f(x')

zim (£ | fla)-X,| "} - frg S

L Thatis: £,(f)=max.|f(x)-TT,(x)|=< max.|f(x)-6,(x)| (a=xsd)
where G, (x) is an arbitrary polynomial of degree = n , equality implying
necessarily: G,=7r, .
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and the limiting results do not depend on x,, x,,Z,, As an illustra-
tion f(x)=x***' may serve, or, more generally, f (x)=X; A, x ¥’
(all 4;>0 ;all k; and X are positive integers or zero)!.

(b) M=n+2 ,n arbitrary. Here the writer showed (the paper
will appear elsewhere) :

(53)2im B, (x )T, (x)

= j;".ﬁ;zm-zlz"zc.’)id}rj f:'-z.lz (‘rjle - ZIj)
4 Iz,

7 a4l n+3
(54) dim [ 5 o] fi-Be)| "] ™ = A1)

- / - _l_ C () \+j “Jie ]

B :?-l/x f"'K Ey %‘_%; (=~ xl{u)

e k=l 2, - M
fi=fx) (i=), 2,----M)

where XK, A j stand respectively for the following determinant and
its minors:

2 2 s 2 n n
| ZeoXe Z2X, XX
x,"x’ I,—x, I,—I,
: 2_ 2 n_ .
| Ta2%s ... Zam T
Lo~ Xy L= Ty
(55) K=
2 2 Id ”n
Xp~Zpez L)~ ez

We proceed now to show the application of Stieltjes integrals to
interpolation. This must be preceded by a discussion of

VI. Orthogonal Tchebycheff Polynomials. Theorem. Any

1. Cf. D. Jackson, Note on the Median of a Set of Numbers, Bulletin of the
American Mathematical . Society, v. 22 (1920), p. 160-64, where the above
results have been obtained for the particular case f (x)=x.
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function y{x), monotonic non-decreasing on (2, b) —finite or infinite,
and having all moments gj‘:ft:"dq//(x) (k=0,/,---) with y,=0
generates a sequence of polﬁzomialx {¢,,(:c)}of degree n=0, 1,
uniquely determined by the relations!: _/ "'9! gdy=0.
(megn s m,n=0,/, --- b 4 mn

equivalent to [ x*¢(x)d =0 =0,/, --n-l
ner. 2, . Tt 10 [Tt G@aP(Ep0  (ks0, 1. )

Proof. Take §,(x)=x%f,., x"¥ - fx+f, . The above relations
lead to the following set of equations:

fo)/o +fl)/l + - - T T -fn—l 7‘;-,"' 7/n=0
(56) fo f/ +fl ); + oo h fn-/ x-p +7lnu=0
oo L7t o fal YanatYen RO

The determinant A, of the coefficients 7: is (see (37)):

b

» n
N Az [/ ITaw(x) [Tei-z,7 >0

times)?® 1= 13,7205 1 #]

which proves our statement. Add to (56) the identical relation

Ltfixroot fy, x™Hx2$,)=0 , and for §,(x) we obtain the
following expression:
70 Y’ o 7’7 76 )/I' o )/ﬂ—l

(58) 7% % AR A
glx)=l DL C

d - -

X - "rn 7’)-1 ){".jzn~z
Note. If y(x) has in (a,b ) only a finite number M of
points of increase, thenA,s0 for n > M, and §,(x) exists only
for n=0, /,-~M (See below (65), which in this case is a rational
fraction).

The following table gives the most known and important Tcheby-
cheff polynomials.

1. We disregard constant factors.
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— (L) polynomral of
(e,8) | dy (x)= ¢fc’onsc‘ézm‘ fac/o,r»s disregarded]

finite dx Legend,r(x-a)" (&-x)1

o) (b-xua| Jacobi o

finite (.8 >0)) (x-a)lb-of = I [(.r-a b-x) ”]
x%%e ™ gr | LaBuerre:

(o’w) (“,K>o) xl-qek, [1,00'-/?-1'1]

ret Laplace- Henmzte
(-0, ) |e™Fx(K>0) e""d” (e =

The polynomials g, () can be normalized, by multiplying by
constant factors &,=/: _[ @2(x)dy, so as to obtain an orthogonal
and normal system of Tchebycheff polynomials { S(x)a, % - }
=0, /7, ----- 3 @, >0)

(9 [ @), @)y = 0(men), =I(m=n)
é
(m, n=0,1, 2 )
The following are some of the most important properties of ¢, ().

(a) The roots of @,(z) are real, distinct and lie between a, b.

b
(b) If all integrals /x"f(x)dy(x) exist(n=0, /,* ") then,
by (59,7 we have the formal development:

60): f(2)oo FA,0,(2), [Ai= [T081(x)39()]"

which, regardless of its convergence or divergence, has the following
remarkable property: any “section” (“Abschnitt”) of (60), i. e. the
folynomud P .‘r)-f A; ¢; (x),obtained by taking its first n+ ! terms
(n o, gwves the best approximation to f(x) in (o,b),

in, the sense of least squares, i. e. it minimizes the integral

f(x)E, (.q dy (x) . Moreover

Cf. W. Romanowsky, Sur quelques classes nouvelles des polynomes ortho-
gonaux, Comptes Rendus, v. 188 (1929), p. 1023-25, where new polynomials
are discussed arising from Pearson's frequency curves of type IV, V, VI.

In the development ftx) %Z A ¢, (x) , where the @, () are not
normalized, ~-f}‘ ¢,dy: [¢ dy.

o
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(61). /[f— ] “d% = min. /[f(x)G (4] * d¢(z)
/f - Z A

G,(x) ‘[ 5. x! denotmg hereafter an arbitrary polynomlal of
degree < » . The proof is very simple. Write G,,(.r) ae ) i)
with constant coefficient Z , substitute this expressmn into i-j AE-G dy,
and write down the conditions of minima: % 277 = 0, which i)y (59),
lead to

Ht:ff¢1 dy=A; i=0,/,2,---"n).
4

These coefficients 4; can be written down as linear combinations of
the moments

@ m=[f@)xIY(e) (k20w 1. o).

Introduce the symbol

(63) w(G,) =i.,2; m; 8;

(G,.(x)j{ 8;x" n=0,1,--- ;g arbitrary)
Then evidently,
A,=[f#, Iy = w(#,)
a

(64) -
f(x)ee "2; w @) p.(x) s

in other words,. we have the following simple rule: In the expression
of ¢, (x) replace each power x *by the corresponding moment m,
given in (62)(]( 0,1/, ++ n), and we obtain the coefficient A,, in (60)

(n=0,1, -
(¢) @, (@) are denominators of the successive convergents to
the continued fraction
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— e .

[2v_ Al
65) 4 *-¥ lx-c, |x-c,

(A;(=0), c¢; - const.).

Historically, it was the aforesaid minimum property which has
lead Tchebycheff to the discovery and investigation of the general class
or orthnyonal polynommials corresponding to any monotonic non-
decreasing function, while before, only isolated special cases of such
polynomials have been known (polynomials of Legendre, Jacobi,
Laguerre, Laplace, Hermite). Tchebycheff found these polynomials
in connection with

VII. Least-squares Interpolation. The problem can be formu-
lated with Tchebycheff! as follows: Given the values of a certain
function y=F(x) at n+/ real, distinct points x,,2,,-2,, , with
the corresponding weights o; . Find its value at x=X , assuming
for y the representation @ + bx +cx+---+ hx™, (m=n) so
that the errors of F(x ;)[i=1, 2, -+ n+/] shall have the least
possible influence on the required value  F(x ).

Using Stieltjes integrals (which greatly simplifies Tchebycheff’s
analysis), we are lead to the following solution:

FUO-BX)S 4,4, (D

(66) :
[Ac/F@ o oS o Fer o, @]

where y(x )is the stepwise function having at z=x; a saltus g(i=/,
2,:+ n+)) (8, Ycontains in its interior all points x; , {¢,, ()} are
orthogonal and normal polynomials determined by (59), or, which is

the same, denominators of the successive convergents to the continued
fraction (65) (we disregard constant factors), which here reduces to

v oo AL Agl
< X-T; |lx-¢c, |x-C,

L

(67)

1. Tchebycheff, (a) Sur les fractions continues, Journal des Mathematiques, (2),
v. IIT (1858), p. 289-323; (b) On the least-squares interpolation, Collected
Papers, v. I, p. 473-98; (c) On interpolation with equidistant ordinates, ibid.,
v. II, p. 219-42 (b, ¢, in Russian).

2. oy is inversely proportional to the mean-square error of F(x;).
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We see that (66) is nothing but the first m+/ terms of the development
(60). Hence,Tchebecheﬁ s solution (606) wields the minimum of
f [I-'(.z-)—P (.rj d ¢(.z’)-2 O'[I" (x,)-B, (.:r)]’. Moreover, for the mean-

square error of (66), we get, by (59):
b m
P‘=/F’d¢ -2 Al
kxc

=Y e Ftm B Joy Fepou) )

i+

The name “least-squares interpolation” is thus fully justified, and we
see the complete identity between the two problems: least-squares in-
terpolation and approximate representation of functions by series of
TFchebycheff polynomials. W hether the data are discrete and in a finite
number, or the form a continuous set, the underlying principles and
the resulting formulac are identical, provided we use Stieltjes integrals.
There is no need to treat the two cases separately (as one finds even
in recent books on this subject) and to introduce special symbals in
the first case. Another very important feature of the above solution
has been indicated by Tchebycheff: If we add one more term to the
expression @+bx+-- - +hx™ assumed for y=F(z), we need only
add one more term to B, () above, without changing the preceding
ones (compare with Lagrange interpolation formula!) Formula (68)
enables one to find the number of terms necessary to attain a prescribed
accuracy.

(68)

Consider two special cases.

(a) The ordinates are equidistant :x;,,~-x;=h (1=/,2,-- - 1)
and all weights o; are equal (= /) . Here Tchebycheff (1-c. 1-b.
p. 91) gives very simple expressions for the polynomials @, (x), as
well as for the coefficients A, of (66):

(= A [(z#"—;i)( z+ 223

(x4 n—Zm/Xz_ Mxi_ ma)

) - (2- &%’f_'_’)] k=0,1,2, - -xz(;r;:z ».

A~k difference.
(70)  u(eEA)= ;u S NC T A, 2 LRI ¢,(5)

i(*/) (n-iXn-i-]) a2 o
n(n /’Xn Z’)Z /2 ]z A U,‘f, (&)+

[(w;=Py]
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(Wehavereplaced n+/ inour above formulacby 2 ). All g, (z)
can be easily computed by means of the relations:

g, (£)=D°1=1 ; $(a)=2z,
1) Bp(2 Aek-)$, () k-N* |- (k-1)7] 9, _, (%)
(k= 2)
(b) m=1/, x; arbitrary (i=/, 2,---n). We take in (67)
72) 4,1/’d¥'(1)£°}.

We get now (by successive division, for ex.)

.
(73) c, = Y =— Y
dy
(% /x*dwz)frrx )
g, ()= 1/—.
(74) 4, (@)= - _ %x-7
W(x— c) dv ri 57"
(75) F(x)=4, ¢, (x)*A, ¢, (x)
[y,-s F(;r,f)]

B2 (mean-square error) = 2"' o; [F (x;)-P, (.r,)] *

iy

O Yi o; Y (Y. x:~7.)
oo - (S )+ () ez
(See 68)
Let 3/ x)represent alaw of distribution. Then, ¥ =/, Y¥ -7

standard deviation & and the above formulae become:
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7 g.(x)=/, @ (r)%-
xf Fxdy
(78) P()= /
3d¢

n
J‘;"}l‘;!/z
.:-—-——"————-——
1);0,

(79) R* /F dw-(/}w ay )t

Zay(é ‘ry')

i3/

[(%)=F (=) ]

One recognizes in (78, 79) formulae quite similar to those for the
line of regression of ¥ onac and for the standard: error of estimate
of y. Introduce

o_ J 2 . 2_ 2
ol_-/xb dy 3 o, /y dy,
(80) xydy
. xdy - [ ydy

and our formulae become the classical ones:

(81) P(x)=r -:T" x; R=o0,(/-r 2)ls

We thus obtained, using Stieltjes integrals, elegant, simple and easily
memorizable formulae for a, oy and for the coefficient of correlation 2.
Moreover, we see by inspection { Schwartz inequality) that-/<» < / |
equality attainable if and only if o and ‘y are linearly dependent. We
see also that the theory of linear regression is but a very special case
of the general theory — duc to Tchebecheff — of least-squares
thterpolation.

1. Cf: D. Jackson. The Elementary Geometry of Function Space, American
Mathematical Monthly, v. 31 (1924), p. 461-71.

Paris (France).



