REMARKS ON REGRESSION
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1. In.a paper published twelve vears ago! 1 derived a set of
formulac for hivariate regression which were found to give good
rexults on unimodal materials of a fairly general nature ard which,
in the caxe of moderately skew distributions, were reduced to very
simple and casily applicable forms. Two years later I extended
the theory alzo to the caze of multiple correlations of simi'ar
types?. These formulac were deduced on the assumption that the
correlatiom surface could be expressed by a so-called series of type A3,
i. e. that the deviations from the best fitting normal surface could be
expressed as a series, developed according to the derivatives of differ-
ent orders of the Bravais function, expressing that normal surface.

When, after the lapse of so many years, I-find that this the-
ory has not received the attention which it seems to me it merits
in view of the very simple, and on a fairly large class of curved
regressions readily applicable results, I attribute this in part at
least to the apparent (not actual) speciality of the assumptions
made with regard to the mathematical expression for the corre-
lation surface, and in part also to the rather repellent show of;
mathematics involved in the deductions. In the hope to give the
theory a better chance of coming to the attention of statisticians,
1 propese here to deduce some of my main results in an entirely
different way, bringing the theory back on more simple principles.
I believe that by this method of deduction it will be more easy
for the reader to see exactly where assumptions come in, and
also the nature of the restrictions caused by these assumptions.

2. let 2 and y be a pair of correlated variates, our material
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consisting of A such pairs.  Computing the means and central
moments, we have

-1 A=Yy gL MV -MY
Mz=752x ; /}I,,-NZy,/zg-NZ(.r M) (g -M)

The standard deviations of ax and y aund the cocfticient of
correlation are then defined by

— — — /‘//
Ox=VHe Ty H Moz r = o o,

Following Yule! and Pearson? we now treat the problem of

regression as a simiple problem of graduation, defining the re-
gression of y on x as a parabola of a given degree, which, with x

as argument, is fitted to the g% by the method of least squares.
The regression may then be written in the form

Yom M, = acta, (x-M)+ 2 (x-M) % -+ a,(x -M),

and the least squares normal equations for determining the par-
ameters &,, &,, &;.-'-da, assume the form (Pearson Op. Cit.
p- 25).

(0 =a, +td, Mz tdsMie t+ ° tdpHp.o
My = Qe +@zMz +8sMge + 7 t@pMpit,o .

M= Qofzo + @y MH3s +3rMe  +AsMso + * ° *dp[Mpraso

D)) Mor= @0 Moo + Q1 Jlao + @2 fhso *@sfeo * ° * *8pfprs,o

o, /= @ofdp, ot @y Mpsr, ot @2 Mprz,0t AsMpssot = = 8o Mep,o

1. On the Theory of Correlation. Jour. Roy. Stat. Soc., Vol. 60, 1897, and On
the Theory of Correlation for any number of Variables treated by a new
System of Notation. Proc. Roy. Soc., Ser. A, Vol. 79, 1907.

2. Mathematical Contributions to the Theory of Evolution XIV. On the Gen-
eral Theory of Skew Correlation and non-Linear Regression. Drapers Co.
Research Memoirs Biometric Series [I. Cambridge Univ. Press, 1905.
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Writing the solution in the form of determinanis, we have

/
al /= K . Ai s
where
I o, Hzo s Haov = 77 e
O. Moo s Hsos Ao « 7 Meoss
Haos Mo s HMeo s Mo s T Mpseo
A=
(3) HMaov Mo s HMso « Moo v =~ HMpuso
Mpos Mpros HMpraos Mows,os” ° Mapo

and 4, is obtained when the i’th row in A is exchanged for the Icl;
membra of equations (1), i. e. for the series of elements:

Ov Muos Moo fhas " " My,

3. Some important general conclusions may at once be de-
rived from this system. Decfining as non-regression of the p ’th order
the case that all the coefficients a&,, a,, @a;, - -+ &, turn out to
be practically equal to zcro, i. e. that a horizontal straight line
is the best parabola of the p’th degree that can be fitted to the series
of y’s, it is first seen, from the first of equations (1), that then also
a,=0 . Secondly we can draw the conclusion that this can take
vlace only if all the elements 44, , s o M3z s ° * * * Mp,,are
equal to zero. Hence the condition for non-regression of the p ’th
order of y on a is that we have \

(4) Hoo=0 fori=(,2,3,"p

This clearly involves also that the coefficient of correlation, r
equals zero.

Defining further as lincar regression of the p 'th order the case
that the coefficients @,,&4, + « + &, are equal to .cro, i. e. that
a non-horizontal straight line is the best parabola of the pith
degree that can be fitted to the series of ¥'s, we immediately
see, from the two first of equations (1), that then we must have

(5) Apo=0 3 af%ljo
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Referring here to the well-known theorem that any determinant
will disappear, when the elements of two rows are proportional
(the elements of any one row being obtained by multiplying the
corresponding elements of another row by a constant factor) it
is easily seen that all the determinants A; except A ;, and hence
by (2) all the coefficients &,,-:-ap, except &,, will disappear
if the quantities 0, iy, Mz s Mass * - “Mp.yin the left membra of
(1) are proportional to the elements 0, Lizoy, Mg * * * "Mpuo
in the second row of the determinant A . Hence the condition for linear
regression of the p’th order of y on x is that we have

®) M "/U'z'{l,a=/uzo /ui,/ for I= /’ 2: 39 Y

A few considerations will show that this condition is not only
-sufficient but also necessary. For p=3 these criteria were .demon-
strated by Pearson.

4. Thus far there are no other assumptions involved than
the principle of least squares, and that the regression of ¥ on x
may be described by a whole rational function. The chief diffi-
culty in the application of this theory of regression is that, as
seen from equation (1), in order to determine a regression of the
p’th degree we must compute and use moments (of the series of
X’s up to the order 2p ). Now, as justly remarked by Pearson, mo-
ments of high orders are, on account of their large standard
errors, very little to be relied upon, at least in the case of ordin-
ary materials ( NV not very large) . Besides this, the numerical
labor involved in computing higher moments is comparatively
very great. Hence, Pearson’s theory of regression will be prac-
tically applicable only in cases when the regression is at the most
parabolic of the second degree. Indeed, this is a very serious
restriction, because curved regressions often have at least one inflec-
tion. Thus in order t, meet fairly frequent cases of regression we
must needs have recourse at least to cubic parabolas. But this should
require the computation of all the moments of = up to the sixth order.

In order to remove, as far as possible, this difficulty, I take
refuge in a golden rule expressed by Thielel. Thiele introduces,
instead of the moments, a system of coefficients called the semi-
invariants. These semi-invariants (here denoted by A;,) are
defined in terms of the moments by the identity:

1. Theory of Observations. London 1903, p. 49.
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Developing, we find
Aro=Hzos Aso=HMsos Ao=teo™ I3

(7)
A 0= oo = JO a0 My s Aec™ oo™ (Sfdo fizo + 30/“; - /0/*‘:0

Now, the rule indicated by Thiele is the following:

To obtain the first semi-invariants rely entirely on computa-
tions. To obtain the intermediate semi-invariants rely partly on
computations, partly on theoretical considerations. But to
obtain the higher semi-invariants rely entirely on theoretical
considerations.

Of course, this rule is just as well applicable to the deter-
mination of moinents, as any moment may be expressed in terms
of the semi-invariants of the same and lower order. In particular
we have

Meo=Azo s Moo= Asos fgo = /1“+.3/1:° .
HMs0=Aso= 1030 Aza's feo=Aaot 15 Agy Ay + 1513, +10 2,

(8)

5. A most natural way of applying the rule is afforded by
Pearson’s celebrated theory of frequency-functions. The moments
Mi,, are the moments of one of the marginal distributions (here
the distribution of the x%). Computing iz, t5 and g, in the
ordinary way from the observations, criteria can be formed!
showing to which of the Pearson Types the frequency curve of
x belongs. This being decided, the parameters of the curve may
be determined by the aid of the same moments. As the moments
of higher order are easily expressed in terms of the parameters
we get, in this way. t4,,and ue, expressed in terms of w0, 45, and
Moo

To state the matter in a more general way, we may use the
formulae given by Pearson in his memoir on regression, loc. cit.
PP 5 and 6.

1. See W. Palin Elderton: Frequency Curves and Correlation. London 1927.
Table V1.
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Pearson starts from a differential equation of the form
(9) FlaWb,+ b,x + b, x2+ b x%+ )= (x+a) Ax)

where Ax) s the frequency function of x .

Multiplying on both sides by x and integrating by parts, he
finds the following formulae! (placing the origin in the mean)

U0 né,pi,.,, Aot Nb,p,  + (n+2) b, gy, oot - -
=-ﬂn#'{,o ~3fln,o

Now, Pearson remarks that experience shows that for the great bulk
of frequency distributions the higher terms, multiplied by &,, 4,, etc.,

may be neglected. In fact, Pearson’s system of frequency curves is
obtained as a result of putting b;=0 for 7>3.

Following Pearson’s example, we get the recursion formula,

(N nbdopy,, +[(n-r/) b,ra ] Hn.o =—[(n—2) b, - /],u,,,,.o

Putting here n=0, 1, 2, 3, we get four equations to determine & ,
b, , b,, and b, in terms of the moments i, , tzpand f4,,. This
being done, we get res,and g4g,0n putting n=4 and 5.

The procedure indicated above leads, in fact, to the theory
of skew regression which is the natural consequence of Pearson’s
theory of skew frequency curves.

6. As the theory just indicated above is at present at my
request being worked out in detail by one of my pupils, Mr.
Walter Anderson, I refrain from proceeding further into the
matter.

It remains, however, to show how the special formulae for
cubic regression, given by me twelve years ago, arise out of a
somewhat similar procedure.

Instead of starting from Pearson’s theory of frequency func-
tions, I now start from Thiele’s theory of frequency functions.
Just as in the preceding section the coefficients &3, 2, etc. were
nieglected in the equation (10), given by Pearson, I now neglect
the semi-invariants As,and Ag,in the equations (8), given by
Thiele. There is no doubt that the former approximation is of

1. See also Palin Elderton, Op. cit. p. 39.
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far more general validity than the latter; still the latter may be
justified by the following considerations.

Assuming the variate x to be generated as the sum of & large
number of independent, elementary increments, each of which
has its own frequency distribytion and its own set of semi- invar-
iants, it follows from the theory of Thiele that any semi-invariant
Ap,o Of x is the sum of the elementary semi-invariants of the same
order. Supposing: the elementary increments to be s in number and
denoting by A the mean value of the r elementary semi-invariants
of order » we consequently have

Aro=5A,

Hence we get

_Ape  As
To= A% " A% 3®

Except under rather special conditions, which it is not necessary
to dwell on heére, the ratios A/A’"z are not extensively great.
Thus if s is a large number we see that the “standardizéd” semi-
invariants 4, , of x are small of the order of magnitude of(yyl-)ﬁ ‘

In particular we have.

{
7 of ‘the order
74?: ‘6 [ [ ’?/ Fa.-
7 [ g g —L
£ NS

7“ T “« ?
We now have, denoting by
—_HMro
My
the “standardized” moment of £ , by a simple transformation of
equation (8).

L3

(8') &= /; %3 Y50 ®go=Zsot+ 3,
Xgo= Uyt 10%,0 Oes=Yeo+ 570+ 1070y + /5
Stopping with quantities of the order?/ we get

(U3) 06,= /03,3 =15+ 1097+ 15



10 REMARKS ON REGRESSION

In practice we can, of course, not very well know if the hy-
pothesis of elementary increments is valid, but if we have, on
computing the moments up to the fourth order, found that 9,, and
%, are rather small, and that 2, is of the order of magnitude
of 7,2, there is a certain plausibility in assuming that 5,, and 7,
are still smaller and that they may be neglected as compared to

7« and 72
The curve of cubic regression of y on x we may write in the
form

- 2 K
Ly=CotCletc, ty tc i,

where we have put

t = I’Mx ; t - QJ'_NI(
Y Y Nz

and it is evident that equation (1) now takes the form
0 =c +C 4¢G04,
r = +c, +Co g0+ C3 4y,
¥z = Co +C Hzq +C2 04, +C35 050
03, = Colgq+C; 0y + CoOsot C3 O,
We get

V4)A = o, (¥eo -“;o_,/)"“n (g0 =& 040 Khao = Zd,o)
- Oy (M2~ gy T3 02) + 0¥l

O =1 (05 = sy %, e, (G~ @) +0t 5, (Ogo— g5 G 50)
T 5 ( Ogy sy 06 gy )40he, Gy sy Dby Uyp) = By, Ohgy (G g

- 2 . \
A =rl,, o, ~0 s~ 0+ o4 0,0~ sF &)
3
=0y, ( Obgo X~ Ogo Usot (oo Khgo— &, .vo) + d&(“.n “.n—d4: + %t a:o)

- 2 2
D=2 (0 By~ Fgo Byt Fag Brgo—Bi) + 0y, (oo o~ Gy
=0y (@0 ~ gy Baom O45,)
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Dy = P(FsOso— 0y +0go=03) —Czs (B0~ Coy go—F 30)
+obg, (Bp—af—1)

And the coefficients are
G =2 o= cem R 643%'

We now introduce the semi-invariants by (8'), taking for
o4,and o, the approximate formulae (138). For a and o, we put

(15) Gu=%y 3 Gy=,t3r

The coefficients 7, and 7, are then the standardized corre-

lation semi-invariants, according to a generalized theory of semi-
invariants for bi-variate distributions.

It is now a consequence of our principle of approximation

that all powers and products 2,9 ,+%»- + - - » of which the
sum Ji+j+k+]+m+n+. ... of the indices exceeds 6, shall be
neglected as compared to powers and products of lower order.
Observing this, the determinants reduce to the following:

A=12(/-272+27,),
or AT HEErE - 2%,
A=6(zy,—2,),
A,=12r+6(ry,—g,) +24ry, ~ 24Py,
/2%40 (2705~ 72,)»
D;=-6(r2%-7:)

A= '2("9’40._ 73/)4' 67, (p%"— 7”) ‘

Using the same rule of approximation on multiplying by z’:,
we finally get
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G= }L(PZo_ 7;/) ’

/
w T + 2% %) %727 72),

&= '2/‘(1"7_;0- Yer)s

&=L i £ 5 %)

In my cited memioir of twelve years ago I'put!
=1 . -1

f’ao-z‘(l")’,,‘ 7’:/): 1‘4‘,—‘6—(1'92,-7;,),

Using this notation, we get

C‘,:I}o,

un ¢=r-3n,-2y9, n,

G=-C=-ryz,
€& Tyt Yo Ta0 -

These coefficients are exactly the same as in equation (34*, II)
of my former memoir. As shown in that memoir on several nu-
merical examples, the regression formula in question applies very
well in cases of moderately skew correlations.

It is seen that the coefficients z;, and r,, determine the
curvature of the regression. If n,=r,,= 0 the regression is linear
(of the third order). I have called these coefficients the correla-
tion coefficients of higher order. If the correlation surface is
approximately normal we have the following formulae for the
standard errors of the coefficients involved:

1. In Pearson’s notation we have G.ﬁz-/ €and 7, - 34 ‘.
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o .=lC . o 2t4r* 6+iar‘
%) VN' %.)VN' (’;,)\/ + %)

- /r'

8) qr)= W f’ ao) qcoT

o -2r°) (/-r?), o = /=t . {-r?
W zv VN P d Ven

Lund (Sweden).



