SYNOPSIS OF ELEMENTARY MATHEMATICAL
STATISTICS'

Ry

B. L. Snook

Sectiox V. THE GRAPHICAL REPRESENTATION OF
FREQUENCY DISTRIRUTIONS

25. The investigation of a frequency distribution is greatly facil-
itated by presenting the data graphically by means of either aFre-
guency Polvgon or a Histogram, depending upon the nature of the
distribution.

For a distribution of discrete variates the frequencies are repre-
sented by ordinates whose lengths are proportional to the various fre-
quencies and whose abscissae correspond to the variates of the distribu-
tion. The shape of the distribution is rendered more apparent by either
connecting the tops of the ordinates by straight lines, thus forming a
Frequency Polygon, or drawing a Frequency Curve that approximately
passes through the vertices of the polygon. Figure I presents the
Frequency Polygon derived from the data of Table XI. In addition
a curve has been drawn to illustrate the general trend of the distribu-
tion.

If the frequency distribution under examination be one of grouped
discrete or continuous variates it will be found that the Histogram is
best suited for graphical representation. A Histogram is a series of
rectangles erected on bases that are proportional to the class intervals
and with altitudes proportional to the respective class frequencies. Thus,
in this case, the frequencies are represented by areas. The shape of
the distribution may be emphasized by constructing a continuous fre-

1 A continuationn of an article bearing the same caption appearing in Vol. 1,
No. 1, of the AxNaLs,
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B. L. SHOOK 225

quency curve such that the areas under the curve between the ordin-
ates at the lower and upper boundaries of the various rectangles should
equal approximately the areas of the corresponding rectangles. Two
examples are presented, both the distributions are composed of con-
tinuous variates, one exhibiting positive skewness and the second neg-
ative. The numerical data and corresponding Histograms are pre-
sented in Tables XII and XIIT and Figures IT and III respectively.

TABLE XI

Distribution of Frequency of glands in the right
fore-leg of 2,000 female swine'

v Sv t ft
o, 13 -2.083 013
1 209 -1.488 176
2 | 365 - 893 307
N 405
4 a4 297 348
s 2w | ae2 233
6 13 | 1487 113
772 1 2082 061
8 | 2 | 267 018
9 8 | 327 007
10 2 3867 002

1
M, =3.501 N = 2000
o, = 168077 7 = 594965
o, ~ 308462 £ — 000840385

26. It has previously been stated that the thiee fundamental sta-
tistical functions are the Mean, Standard Deviation, and Skewness.
The Mean has been defined as a convenient average, and the Standard

1 Davenport, “Statistical Methods,” page 35.
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Deviation measures the concentration of the variates about this aver-
age. Skewness has not, however, been so clearly explained. If the
variates of a distribution be symmetrically arranged about their mean,
then ., , or the third moment about the mean will be zero. Under
these conditions «,., , or the coefficient of skewness, must also be
zero. Thus o, , measures the degree to which a frequency dis-
tribution is symmetrical. If o,., is zero, then from the standpoint

TABLE XII

Weights of White Boys - 30 to 33 months
(Correct to nearest pound)

Class Mark f ¢ St
21 3 -2.90 .009
22 3 -2.50 .009
23 1 -2.09 032
24 27 -1.69 079
25 65 -1.28 191
26 101 - .88 297
27 135 - 47 397
28 136 - .07 400
29 128 34 376
30 105 75 .309
31 59 115 173
32 30 1.56 .088
33 15 1.96 044
34 7 237 021
35 5 277 015
36 8 3.18 024
37 1 3.58 .003
38 1 399 .003

M, —28.16190 N =840
6, = 2.46837 £ = .405126
Oy = 427969 4 — 00293854




228 ELEMENTARY MATHEMATICAL STATISTICS

of the present synopsis the distribution may be considered normal, for
if such a distribution be graphed in standard units it will follow the
locus of the well known Normal Curve of Error.  Accordingly it would
seem logical to expect that for cach value of o, there is one standard
curve which is the locus toward which all distributions with that degree

TABLE XIII

Barometric Heights for Daily Observations During Thirteen Years
at Llandudno, England'

(Original measurements to nearest millimeter)

Class Mark ¢ f Ft
2835 -4.38 1 001
2833 382 2 001
2875 -3.26 8 005
2895 271 30 018
29.15 215 74 045
29.35 -1.59 166 102
29.55 ~1.04 368 226
29.75 - 48 509 313
29.95 08 656 403
30.15 63 580 356
30.35 119 353 217
30.55 1.75 140 086
30.75 231 30 018
3095 2.86 s | 003 B
M= 299221 N = 2922
s, - -359014 2 = 278541
o, ~ -32919 ¢ — 000614329°

1 Karl Pearson and A. Lee, “Philosophic Transac. ons,” p. 428 (1897).

2 This formula assumes that the class interval is unity, the proper value of /%
is therefore 5 times the value as ordinarily computed.
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B. I.. SHOOK 231

of skewness approach. The one essential is that the unit of measure-
ment must be removed from the data, that is each distribution should
be-expressed in terms of the standard variates # and the correspond-
ing frequencies f,  As before, the standard variate. #; corres-
ponding to v; is obtained from the following formula:

oM %

o, S,

Similarly, the frequencies for each of the standard variates is de-

fined as follows:

(26) £=% 1.

These two formulae will enable one to analyze all distributions
entirely independent of the unit involved. In Figure IV the three
distributions graphically presented in Figures I, IT and III are shown
contrasted with the Normal Curve. The numerical values of ¢ and
Ffe for each distribution are given in the corresponding table. The
values may be obtained in each case by employing the continuous pro-
cess described in Section I. It will be noticed that the two distribu-
tions with positive skewness of .5 and .4 respectively reach their max-
imum in advance of the Normal Curve and approach the zero limit
more gradually for positive values of the standard variates. Accord-
ingly, for the distribution exhibiting negative skewness, the positions
are reversed and the more gradual approach to the zero limit occurs
for the negative values of the standard variates. In general, a dis-
tribution having skewness within the limits + .3 will exhibit very little
deviation from the normal curve when presented graphically in this
manner.

Summary of Section IV —

It is usually found very advantageous in the investigation of fre-
quency distributions to present the data graphically. A distribution of
discrete variates should be represented by a Frequency Polygon and
one of continuous variates by a Histogram. In either case a free hand
curve may be drawn indicating the general trend of the distribution and
is called the Frequency Curve. The Standardized Curve is obtained
by plotting the variates and their corresponding frequencies in standard
form by means of the following formulae:

t:u[:!l.
4 dV 6V

a
ft'—"Wg'fv M
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SEcTION V. THE INVERSE PROBLEM

27. From the standpoint of Elementary Mathematical Statistics
we may say that the Mean, Standard Deviation, and Skewness together
with its total frequency completely characterize a distribution. If this
statement were accurate it would be possible to reproduce any distribu-
tion if its three elementary functions and total frequency were known.
A tabulation of Pearson’s Type IIl Curves for various degrees of
skewness affords, for the purposes of Elementary Statistics, the most
satisfactory representation of frequency distributions from the point
of view of both effectiveness and facility in using’. In order to illus-
trate the method several numerical examples are included. In Table
X1V the illustration is one of discrete variates.

1 L. R. Salvosa, “Tables of Pearson’s T pe IIl Fuaction,”” The Annals of
Mathematical Statistics, May, 1930.
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TABLE XIV

Frequency Distribution of Numiber of Glands in the Right Foreleg
of 2,000 Female Swine

y ‘ f Predicted | Observed
‘ Frequency | Frequency
(1) (2) (3) (4) (5)
0 -2.08 026952 32 15
1 -1.49 .141661 169 209
2 - .89 .320068 381 365
3 - .30 409193 487 482
4 .30 3530689 421 414
5 29 .229770 274 277
0 149 118287 141 134
7 2.08 051638 62! 72
8 2.08 019220 23 22
9 3.27 006459 8 3
10 3.87 .001925 2 2
Total 2000 2000
M =3.501 N = 2000
6 - 168077 % = 594965
®, = .508462 2 - 1189.93

Explanation. Tn every case the value of o, is taken to the nearest
tenth and the value of # to the nearest hundredth. In the examples
included no interpolation has been made for any value.

Columns (1) and (2) of Table XIV contain the variates and the
corresponding values of # obtained by means of the continuous pro-
cess. Column (3) is obtained directly from the Table of Ordinates
of the Pearson Type III Function. All values may be found in the

1 In order to obtain A/=2000 it was necessary to increase these frequencies by
1, although the fractional value was slightly less than than the necessary .5.
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column with skewness = .5 and opposite the respective value of # .
Since these are the Standard Frequencies £, , the predicted fre-
quencies for each variate may be obtained from the following formula.

':ff:% 'fv

g N
- Y S

The predicted frequencies in column (4), therefore, are obtained
by multiplying column (3) by the value 1189.93. These values are
the graduated frequencies. The actual nbserved frequencies are given
in column (5).
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TABLE XV
Distribution of Weights of White Buys - 30 to 33 Months
(Measurements correct to nearest pound)
t Accumulative
Lower Limit | at Lower Perccnt Percent Predicted | Observed
of Class Limit Frequency req y req y |Freq y
(1) (2) (3) (4) (5) (6)
20.5 -3.10 .000021 .000357 0 3
21.5 -2.70 .000378 .002990 3 3
22.5 -2.29 .003368 .013174 11 11
23.5 -1.89 .016542 .039440 33 27
24.5 -1.48 .055982 .079399 67 65
25.5 -1.08 135381 127331 107 101
26.5 - .67 262712 .154908 130 135
27.5 - .27 417620 .163707 138 136
28.5 .14 581327 .140357 118 128
29.5 .54 .721684 .110157 93 105
30.5 .95 331841 .073061 61 59
31.5 1.35 .904902 .045897 39 30
32.5 1.76 950799 .025019 21 15
33.5 2.16 .975818 .013225 11 7
34.5 2.57 .989043 006176 5 5
35.5 297 995219 .002845 2 8
36.5 3.38 998064 001172 1 1
37.5 3.78 999236 .000483 0 1
38.5 4.19 999719 .000218 0 0
Total 340 840
M =28.16190 N = 840
6 = 246837 £ = 404126
o, = 427969

3
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Explanation

28. Since Table XV is a distribution of continuous variates, it
is necessary to use the Table of Areas of the Pearson Type III Curve.
The values in this table are the accumulated percent of the standard
curve helow a specified value of ¢. The method of prediction is there-
fore to estimate the per cent of the distribution lying between the
consecutive lower limits of each class. In column (1) of Table XV
are given the lower limit of each class and inColumn (2) the value of
¢ at this lower limit. Column (3) is taken directly {from the Table
of Areas of the Pearson Type TIl Functinn, of,=.4, and represent
the percent of the distribution lying below the particular value of #.
In order to find the percentage of the distribution in each class, it is
merely necessary, therefore, to difference column (3). For example,
the first value, .000357, is found by subtracting .000021 from .000378.
In order to find the predicted frequencies in column (5), AV, or the
total frequency, should be multiplied by each value in column (4).
The observed frequencies are given in column (6).
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TABLE XVI

Barometric Heights for Daily Observations During Thirteen Years
at Llandudno, England

(Correct to the nearest millemeter )

Accumulative
Lower Limit Percent Percent Predicted | Observed
of Class t Frequency Frequency | Frequency | Frequency
(1) (2) (3) (4) (5) (6)
28.25 —4.66 .999956 .000171 1 1
28.45 —4.10 999785 000739 2 2
28.65 -3.54 999046 .002716 8 8
28.85 -2.99 .996330 .009081 27 30
29.05 -2.43 987249 .025770 75 74
29.25 -1.87 961479 061380 179 166
29.45 -1.31 .900099 .117068 342 368
29.65 - .76 783031 .185122 541 509
29.85 -.20 .597909 222074 649 656
30.05 .36 .375835 .192952 564 580
30.25 91 .182883 .121528 355 353
30.45 1.47 .061355 .048526 142 140
30.65 2.03 012829 .011285 33 30
30.85 2.58 001544 001468 4 5
31.05 3.14 000076 000076 0 0
Total 2922 2022
M =29.92207 N = 2922
6 - 350014 £ - 278541
o, = -32919
Explanation :

29. Although the data of Table XVIjs also a distribution of con-
tinuous variates, it will be noticed that in this case the coefficient of
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skewness is negative. Since the Tables include only positive values
of «, , it seems desirable to explain the procedure for such a distribu-
tion. If a frequency curve having pronounced positive skewness be
graphed on rather fine paper and then held to the light or in front of
a mirror, it will be seen that the distribution will seem to show nega-
tive skewness to the same degree in which it formerly displayed posi-
tive. This being true, it is possible to use the Tables for all cases of
negative skewness by merely changing the sign of ¢, and if an area
is desired it is necessary to reverse the order of differencing. Three
examples are given in order to cover as many different cases.

Illustration 1, o,= -.5, required the percentage of the area of
the standardized curve lying between ¢=-2.43 and #=-1.98. From
the tables under the column for skewness =.5. :

¢ =+ 2.43, percent of area=.983883
¢ = 1.98, percent of area=.964416

The percentage lying between these two values of ¢ is therefore
983883 - .964416 =.019467.

Illustration 2, if o4, =-.8, required the percentage of the area
lying between ¢=-02 and #=.25. Using the Table of Areas in
the column for skewness of .&,

If #=+.02, percent of area= .561064
¢=-.25, percent of area =.450687

To find the percent of the area merely subtract as before,
.561064 - .450687 =.110377.

Illustration 3, if of,=-.2, required the percentage of the area
lying between ¢#=.52 and #=1.63. Again referring to the Tables
of Areas, we find for &= .2

If ¢=- .52, percent of area=.310015
If ¢= -1.63, percent of area=.045108

Accordingly, the required percentage is .310015-.045108 =
.264907.
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TABLE XVII

Expansion of (5/6+1/6)"

v t Sfe Pred. Freq. | Obs. Freq.
(D (2) (3) (4) (5)
14 -3.21 001468 0 0
15 -3.01 .003013 1 1
16 -2.81 .005919 1 1
17 -2.61 .010954 2 2
18 -2.41 .019227 4 4
19 -2.21 .032053 7 6
20 -2.01 050807 10 10
21 -1.81 076658 15 16
22 -1.60 112095 23 23
23 -1.40 153377 31 31
24 -1.20 .200401 40 41
25 -1.00 .250281 50 51
26 ~ .80 299057 60 61
27 - 342196 69 69
28 - .40 375301 76 75
29 - .20 394857 80 79
30 01 398640 80 80
31 21 386166 78 77
32 41 359746 72 72
33 61 322535 65 64
34 81 278510 56 56
35 1.01 231792 47 46
36 1.21 186059 38 37
37 1.41 144144 29 29
38 1.62 .106201 21 22
39 1.82 076661 15 16
40 2.02 053513 11 11
41 222 036145 7 8
42 242 024163 S 5
43 2.62 014975 3 3
44 2.82 009196 2 2
45 3.02 005476 1 1
46 3.23 003077 1 1
47 3.43 001723 0 0
M, =29.973 N = 1000
o, = 4.96853 ¢; = 201267 v; —6.032569

Ohpy= 108097 2 - 201.267
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TABLE XVIII

Expansion of (5/6+1/6)'®

Class Lower ¢ Accumulaved Percent Pred. Obs.
: Limit Percent Freq. Freq. Freq. Freq.

(1) (2) 3) (4 (5) (6) (7)
11— 10.5 -3.92 .000014 .000213 0 0
14~ 13.5 -3.32 000227 002128 2 2
17~ 16.5 -2.71 .002355 .012561 13 12
20- 19.5 | -2.11 .014916 .049031 49 49
$3- 225 | -1.50 063947 .120876 121 123
26— 25.5 - .90 .184823 .203066 203 205
29— 28.5 -.30 387889 .239543 239 236
32- 31.5 31 627432 .191988 192 192
35~ 34.5 91 .819420 112488 112 112
38- 37.5 1.51 931908 .048675 49 49
41- 40.5 2.12 980583 .015048 15 16
44- 43.5 272 995631 .003627 4 4
47— | 46.5 3.33 999258 .000742 |- 1 0

M, =29.973 N =1000

5, = 4.96848 4 = 201269

o, .105899

30. As further numerical examples the three illustrated problems
used in Section III have been graduated. The complete numerical solu-
tion will be found in Tables XVII, XVIII and XIX.

Summary of Section V—

Knowing the three fundamental functions and the total frequency
of a distribution, it is possible to obtain predicted or graduated fre-
quencies for that distribution with a surprising degree of accuracy.
This is accomplished through the use of tables of the standard ordin-
ates and accumulated percentage areas of the Pearson Type III Curves.
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TABLE XIX
Weights of 1000 Female Students
—____(Original measurements to nearest .1 1b.)
Lower Accumulated Percent Pred. Obs.
Clase Limit t Percent Freq. Freq. Freq. Freq.
(1) (2) (3) (4) (5) (6) (7)
70~ | 69.95 -2.88 .00C000 .000000 0 2
80- | 79.95 -2.29 .000000 .003358 4 16
90- | 89.95 -1.70 .003358 102159 102 82
100~ | 99.95 -1.11 105517 .238290 238 231
110~ | 109.95 - .52 .343807 .249585 250 248
120- | 119.95 .07 .593392 .183665 184 196
130~ | 129.95 .66 777057 .111093 111 122
140- | 13995 1.25 .888150 059338 59 63
150- | 149.95 1.84 947488 029412 29 23
160~ | 159.95 2.44 .9769G0 .013209 13 5
170- | i69.95 3.03 990109 .005791 6 7
180~ |179.95 3.62 995900 .002445 3 1
190- | 189.95 4.21 998345 .001002 1 2
200~ | 19995 4.80 999347 000400 0 1
210~ | 209.95 5.39 .999747 .000157 0 1
220- | 219.95 5.98 .999904 .000096 0 0
M,=118.74 N = 1000
5, = 169175 £ = 0591104
o, 976424

It should be remembered that in advanced statistics moments higher
than the third are necessary to characterize a distribution, but from
the elementary viewpoint, the Mean, Standard Deviation and Skew-
ness are considered to completely characterize a distribution.
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SectioN VI. BErRNoOULLI’'S THEOREM

31. Factorials. For convenience, the product of the first » con-.
secutive integers is called “factorial 7 ” and is designated by the sym-
bol 2. Thus

3=1-2-3=6, [5=1-2-3-4-5=120, [8=8-7-6=336.

5]

Combinations. The number of combinqtions', each of r things,
that can be formed from 7 things, is represented by the symbol , ¢, .
Texts on elementary algebra show that

- _n(-f) (n-2) - - (n-r=D
(28) ﬂcr—u 72_/'- /- 2-3..-r

For example, suppose we desive to find the number of different
committees, each of three persons, that can be selected from five indi-
viduals. If we designate the five individuals by the letters A, B, C, D
and E, we observe that committees of three may be systematically
enumerated as follows:

ABC, ABD,’ABE, ACD, ACE, ADE, BCD, BCE, BDE, CDE

The number of committees, which we just enumerated as 10,
agrees with the value found by formula (28), for since here. n=5,
r=23,

5-4
WC=4C -5 -

=32 =/0

4
Er

Another illustration: The number of different committees, each
composed of seven individuals, that can be selected from ten candi-
dates is
/ ‘98 _

‘2 -3 /120

.
3

and the number of combinations, each of three, that can be formed
from ten items is
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vo _
/ocs_ E-E =/20

It should be noted that,C, = C, , and in general that

i 4

(29) n=r n=n-r

This follows from the fact that the number of ways of selecting
r items from 7z is equal to the number of ways of rejecting (7- 7 )
from ». Thus, every time three are selected from ten, seven are
rejected. Therefore the number of ways of selecting three from ten,
0 €y isalsoequal to ,, C,.

We shall have occasion to refer to the following tabulation of
valuesof _ C,.

TABLE XX

Values of , C_

r

N

oj1 (2|3 |4 |5]|6|7|8|9]w0|nf
111
2/1]2
30133 1
4|1]4] 6| 4| 1
s5{1]5(100 10| 5| 1
6/1|6[15] 20| 15| 6| 1
7{1 | 7]21] 35| 35| 21| 7] 1
8|1|8(28| 56| 70| 56| 28| 8| 1
91| 9|36| 8 |126|126| 84| 36| 9| 1
10 |1 10 [45| 120 | 210|252 | 210 [120| 45| 10| 1
11 |1 (11|55 165|330 | 462 | 462 | 330 | 165 | 55|11 1
12 {1 [12 |66 ] 220 | 495 | 792 | 924 | 792 | 495 [220 |66 |12 | 1
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32 Binomial Theorem. By repeated multiplication we find that

@' a+ b

@+b = atzabrs”®

(a+8" - al 3ab+3ab% b’
@)= at 4a’b+6a 'b'+14ab’+ b*
etc.

By mathematical induction it can be shown that for positive in-
teger values of n

(30) @+6)"= a™+ na""b+’/'f—’:—/)a""b‘+’—7-%‘£%i) a” %% . .

This equation is known as the binomial theorem and may be writ-
ten more compactly, if »~ is an integer, in the following form:

n-3,9

(1) @BTa™,c,a" b+, Cc,a” b +,Ca" T+

Using Table XX, we may write down at once that

2

(ar8) "= a"% joa b+ 663" 6"+ 2202°b°+ - - . . .+ 665t 1236+ b

Bernoulli’s Series. 1f p denote the probability that an event will
happen in a single trial, and ¢ the probability that it will not happen
in that trial, p+¢ =1, then the ptobability that the event will happen
exactly 0, 1,2, . . . x times during , trials is given by the respec-
tive terms cf the binomial expansion

(32) Qep)= 95, C, @ orrCag e Gy @ PR e



246 ELEMENTARY MATHLEMATICAL STATISTICS

To illustrate. If a coin be tossed, we may assume a priori that the
probability that heads will turn up is p=//2 and the probability that
heads will not turn up is @=%, . If an individual tosses the coin
twelve times in succession, it is possible that heads may turn up on no
occasion, or heads may turn up exactly 1, 2, 3, 4, 5, 6, 7, 8,9, 10, 11
or 12 times, respectively. By formula (32), these chancesl%re equal
respectively to the successive terms of the expansion of (é*%) , namely

R " w0, 3 J ]
/ /\ (/ / / 1Y/ (]
('2) +IGCI(_9 (fg)';z ¢ 2 (}) oo +,2C., EX‘25+/3C1)(—2)
Denoting the probabilify that heads will turn up on exactly x

occasions by £, , and referring to Table XX for values of ,, C, .
we have that

=1 _ =12 . _66 __220
82“'4096’ L 4096’ £ 4096 ’ “ <4096

TABLE XXI

/2
Values of the Terms in the expansion of (—é + E’)

Number of r=12, =.5, p=.5 Observed
Successes Prot;%bility Exggceteg‘Freq. Frequepcies
(1) (2) (3) (4)
0 1/4096 1 0
1 12/4096 12 7
2 66,/4096 66 60
3 220/4096 220 198
4 495/4096 495 430
5 792/4096 792 731
6 924,/4096 924 948
7 792/4096 792 847
8 495/4096 | 495 536
9 220/4096 220 257
10 66/4096 66 71
11 12/4096 12 11
12 1/4096 1 0
Total 1 4096 4096
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33. Expectation. 1f p denote the probability of success for each
of n trials, then pn is defined as the expected number of successes
in n trials. For example, we have just shown that the e priori prob-
ability of throwing heads twelve successive times with a coin is equal
to F:.’=4—09L6- . Therefore if twelve coins be tossed simultaneously
on 4096 occasions, we expect that all twelve coins will turn up heads
on only one occasion. Likewise, the expected number of times that
cexactly ten heads and two tails would turn up is equal to 4096 - £, = 66,
and that exactly half of the ccins would turn heads only 4096 -~, = 924
times.

It will be seen that the sum of all the probabilities in column (2)

is unity. This follows from the fact that these values are the several
terms of the expansion of (g+p )", and since g+ p=1, therefore

g+p ) =1

TABLE XXII

5 7/ 2
Values of the Terms in the Expansion of (—6— + —g)

Number of r=12, ¢=5/6 p=1/6 | Observed
Successes Probability & |F.xpected Freq.| Frequencies
(1) (2) (3) (4)
0 11216 459 447
1 .26918 1103 1145
2 .29609 1213 1181
3 .19739 808 796
4 .08883 364 380
5 .02843 116 115
6 .00663 27 24
7 00114 5 7
8 .00014 ' 1 1
9 .00001 0 0
10 .00000 0 0
11 .00000 0 0
12 .00000 0 0
Total 1.00000 -4096 4096
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A second illustration: Suppose twelve dice are thrown and that
only a throw of 6 is to be considered a success. By formula (32),
therefore, the expansion of

(e 6) 5) 2 (b) (6>,,C (5'°é) ......

are equal respectively to the probabilities thar exactly 0, 1, 2
successes will be obtained in a single throw of the twelve dice, or wnat
is_the same thing, in twelve successive throws with a single die.

In this case the probabilities p, are expressed as decimals, since
the expansion contains values of (6)" in the denominators. There-
fore 6" is the st:allest value of M that will produce integer expected
frequencies.

34, We shall now attack a more important problem. Let us con-
sider a hypothetical group of 100,000 individuals, all of the same age
and all exposed to the same hazards of life. Moreover, let us assume
that the probability that each individual will die within one vear is
p = .008, or that the probability that any specified individual will sur-
vive a year is @ = .992.

By formula (32). the terms of the expansion of (g@+p )~
(9924 .008)"°>°°° ", namely, (:992)°%%%  0aeCl) (992)”'”-"
(008)'+ . ,C,(992)">™ (008)* :

( 997)'“’”“‘ % 008) . . . . represent the probablhtles that
exactly 0, 1,2, . .,=x,. . . individuals will die within the year.

The value of (.992)"°°*" is very small. Thus (.992)"°”°**=

992 \/oo,ooo
(/ 000 7
log 992 =2.9965117 log 992 ’j¢° = 299651.17
log 1000 =3 log 1000 /‘ oy =_300000.00
log (.992)°" 339.17
Therefore .992 ro0pe .000,000,000 . . . 15, where 15 is pre-

ceded by 348 zeros. The probability that all would die (.008)"°* °®°
is far less than this value.

The values of 2, in Table XXIII are given to the nearest fourth
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decimal place. Thus to six declmal places Pgq,,=.000005and P, +
BRtP+ . . APy, = L‘ P = .000035. These values appear in
Tab]e XXIII, therefore, “as 0000 An inspection of Table XXIII
shows that for our hypothetical population

(a) The chance that exactly 800 will die within a year is .0142
(b) The chance that 800 or less will die within a year is .5094.
(c) The chance that 850 or less will die within a year is .9625.
(d) The chance that at least 750 will die within a year is
9
Prsot Prg,t Prsgtets, -/—{Px-/—.0355-.3645

78/ 752 /00,000

Obviously the sum of all terms from A to P," 0oo 1S ‘equal
to unity. It is interesting to note that although ¢ is relatwely much
greater than p , nevertheless the values of AP, are very symetrically
arranged about their mean. For example, the first significant term
of B is A,,, = .0001, anc the last significant term is AP,y = .0001.
Thus there are 93 significant terms above and 96 terms below ~,,,
However, there are 707 insignificant terms before A,,, and 99,104
insignificant terms after P,,. . We have arbitrarily rejected as in-
significant any value less than .0001. Had we taken .0000001 as the
limit of significance, we would have found that the limiting significant
values of P, are A,, = RB,, = .0000001. Here again the sig-
nificant ranges above and below the expected Pp,, are almost the

same.

In general it may be said that unequal values of ¢ and p when
associated with large values of # are reflected in an unequal number
of insignificant terms in the upper and lower ranges. The significant
terms form a distribution which, to the eye, is rather symmetrical.

35. Let us now retrace a few steps. Theoretically, formula (32)
enables one to compute the probability that exactly x individuals out
of any population of ~ will die within a year, provided, of course, q
and p are known. Actually, however, such computation is very labor-
ious. Thus, it is not easy to show that

aso

A, )****°(,008)**°= 0029354

= [
850 100,000 Y850

(.992
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TABLE XXIII

Values of A, and ’})::o R R=.Cy, @7 * p*and ,= 100,000,
9= .999, p =008
' X

| A 44 x| A 4% = | A 7
690 | .0000 .0000 730 {.0006 .0062 770 | .0081 .1474
691 | .0000 .0000 731 |.0007 .0059 771 | .U0R4 1358
692 | .0000 .CO00 732 | .0007 .0077 772 | .0087 .1645
693 | .0000 .0001 733 {.0008 .0085 773 | .0091 .1736
694 | .0000 .0001 734 .0009 .0093 774 |.0094 1830
695 | .0000 .0001 735 1.0010 .0103 775 | .0097 .1926
696 | .0000 .0001 736 1.0010 .0113 776 | .0100 .2026
697 | .0000 .0001 737 {.0011 .0125 777 | 0103 .2128
698 | .0000 - .0001 738 |1.0012 .0137 778 | 0106 .2234
699 | .0000 .0001 739 [.0013 .0150 779 | .0108 .2342
700 | .0000 .0002 740 | .0014 .0165 780 | .0111 2454
701 | .0000 .0002 741 |.0016 .0180 781 | .0114 .2568
702 | .0000 .0002 742 | .0017 .0197 782 | 0117 .2684
703 | .0000 .0002 743 .0018 .0215 783 | .0119 .2803
704 | .0000 .0003 744 1 .0019 .0234 784 | .0122 2925
705 | .0000 .0003 745 |.0021 .0255 785 1.0124 .3049
706 | .0000 .0004 746 |.0022 .0278 786 |.0126 .3175
707 1 .0001 .0004 747 |.0024 .0302 787 | 0128 .3303
708 | .0001 .0005 748 |.0026 .0327 788 1 .0130 .3433
709 | .0001 .0005 749 | .0027 .0355 789 | 0132 3565
7101 .0001 .0006 750 | .0029 .0384 790 | 0134 .3699
711| .0001 .0007 751 | .0031 .0415 791 | 0135 .3835
7121 .0001 .0008 752 | .0033 .0448 792 1..0137 .3971
713| .0001 .0009 753 | .0035 .0484 793 | 0138 .4109
7141 .0001 .0010 754 | .0037 .0521 794 | .0139 4248
7151 .0001 .0012 755 | .0040 .0561 795 | .0140 4388
716| .0001 .0013 756 | .0042 .0603 796 | .0141 4528
7171 .0002 .0015 757 | .0044 .0647 797 | .0141 4669
718 .0002 .0017 758 | .0047 .0694 798 | .0141 4811
719| .0002 .0019 759 | .0049 .0744 799 | .0142 4952
720| .0002 .0021 760 | .0052 .0796 800 | .0142 .5094
7211 .0003 .0023 761 | .0055 .0850 801 | .0141 .5235
722 | .0003 .0026 762 | .0058 ..0908 802 | .0141 .5377
723 | .0003 .0029 763 | .0060 .0968 803 | .0141 .5517
724 | .0003 .0033 764 | .0063 .1032 804 | .0140 .5657
725| .0004 .0037 765 | .0066 .1098 805 | .0139 .5796
726 | .0004 .0041 766 | .0069 .1167 806 | .0138 .5934
727 | 0005 .0046 767 | .0072 .1239 807 | .0137 .6070
7281 .0005 .0051 768 | .0075 .1314 808 | .0135 .6206
729| .0006 .0056 769 | .0078 .1392 809 | .0134 .6340
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TABLE XXIIT (Continued)
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% x x

x| A $A x| A £AR x | AR A
R10 | .0132 .6472 830 | .0029 .9625 890 |.0001 .9992
811 | .0130 .6602 831 1.0028 9652 891 |.0001 .9993
R121.0128 .6731 852 |.0026 .9678 892 |.0001 .9994
813 [ .0126 .6R57 853 | .0024 .9702 893 |.0001 .9994
814 1.0124 .0981 8341 .0023 .9725 894 |.0001 .9995
8151.0122 .7103 855 (.0021 .9746 895 10001 .9996
816 | .0119 .7222 856 | .0020 .9766 896 |.0001 .9996
8171 .0117 .7339 8571 .0019 .9785 897 |.0000 .9997
818 1.0114 .7454 858 ( .0017 .9802 898 |.0000 .9997
819 | .0112 .7565 859 .0016 .9818 899 [.0000 .9997
820 | .0109 .7674 860 | .0015 .9833 900 |.0000 .9998
821 | .0106 .7781 g6l | .0014 .9847 901 |.0000 .9998
822 1.0103 .7884 862 | .0013 .9860 902 |.0000 .9998
&231.0100 .7984 863 | .0012 .9872 903 1.0000 .9998
K24 1.0097 .8082 864 [ .0011 .9883 904 |.0000 .9999
825 | .0094 .8176 865 | .0010 .9893 905 [.0000 .9999
826 | .0091 .8267 866 | .0009 .9902 906 {.0000 .9999
8271 .0088 .8356 867 | .0009 .9911 907 | .0000 .9999
828 | 0085 .8441 868 | .0008 .9919 908 |.0000 .9999
829 | .0082 .8524 869 | .0007 .9926 909 |.0000 .9999
830 | .0079 .8603 870 .0007 .9933 910 | .0000 .9999
831 | .0076 .8680 871 | .0006 .9939 911 | .0000 .9999
332 1.0073 .8753 872 | .0006 .9945 912
833 | .0071 .8824 873 | .0005 .9950 913
834 | .0068 .8891 874 | .0005 .9955 914
8351 .0065 .8956 8751 .0004 .9959 915
8361 .0062 .9018 876| .0004 .9963 916
837 | .0059 .9077 &77| .0004 .9967 917
838 1 .0056 9134 878 | .0003 .9970 918
839 | .0054 9188 8791 .0003 .9973 919
840 | .0051 .9239 880 .0003 .9976 920
841 [ .0049 .9288 8811 .0002 .9978 921
842 (.0046 9334 8821 .0002° .9981 922
843 [ .0044 .9378 883 .0002 .9983 923
8441 .0042 .9419 884 | .0002 .9984 924
845 ( .0039 .9459 8851 .0002 .9986 925
846 | .0037 .9496 886 | .0001 .9988 926
847 .0035 .9531 8871 .0001 .9989 927
848 | .0033 .9564 8881 .0001 .9990 928
849 | .0031 9595 889] .0001 9991 929
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It can be done, provided an extensive table of logarithms are avail-
able, by using the so-called Stirling’s formula

mm nna-l', e-n‘%n-;‘“na‘....

where  7r=3.14159 26535 89793 . . ..
e=2.71828 18284 59045

We shall now proceed to develop a method which will enable us
to find approximately the value of any term of the expansion of
(@+p )" and the sum of any number of consecutive terms of this
series.

In Section V we made use of the fact that the mean, standard
deviation, and skewness may be regarded as satisfactorily describing
any distribution. We shall now show that for any distribution whose
frequencies are proportional to the terms of the expansion of (g+p ) "

M =rp

(33) o /BUA

/-2
w’ .TE

_ Thus, for the expected distribution of Table XXI, column (3),
since =12, p=Y%, q=Y,

M = fp:!izzé

6 ~j1zf . 1-/3=-1752

@y= O

Similarly, for the expected distribution of Table XXII, column
(3), since =12, @=5/6, p=1/6,

M- 122

" 6
o= /izg Z=/3 =129/
Py - 5.—2%/' =516
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- Values for these expected distributions may be calculated from
the frequencies ,,,4 2, in the usual manner. The results will then
be found to agree with those obtained as above by means of formulae
(33). Since the A, column in Table XXI is composed of integers
they will agree -exactly, but since in Table XXII both the probabilities
and expected frequencies are approximations, the values of these func-
tions obtained by the two methods may differ slightly. Theoretically
those obtained by employing formulae (33) are the more correct.

If, as before, @ denote the probability that each individual will
die within a vear, and A, the probability that exactly = out of ~
individuals will die within one year, then the valuesof B , £ , A&, ..
are equal to the terms of the expansion of (@+2 )~ which are
shown in frequency distribution form in Table XXIV.

The total of column (2) is obviously equal to &/ since the values
of f, are merely the expansion of N (q+p )" Since g+p=1,
therefore ( g+, )"= 1,and hence L f, =

If one takes the common factor Ar7p out of every term in col-

umn (3) of the previous table, it is noted that the sum of this column
may be written

NE xfo=Nrp E?""rlr~/)q”'p+(f'-,/?(+"2)9 TP ]

But the expression within the bracket is merely the expansion of
the binomial (@+p )7/ . Hence Z xf =Nrp 1= Nrp
Likewise the sum of the terms in colurhns (4) and (5) may be factored
as follows:

Z.z: (x‘/)f;"N’(”/)P‘[Q (/' 2)9 p+:_____f-2)(’ ) "p 4«]

Nr(r-)) p* (g+p) 2=Nrir-Np?

La(z-1Xxc-2) fy=Nr (- 1Nr-2) p*[g "4 lr-21g "'+ N ”"‘",";,: -]

<Nre-Nr-21p°(q+p) " = Nr (r-Ir-2)p°
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But we may write

X (/) frm X S TSy

S L2 (- NfemE xS - L xS

X (2-7)(XT-2) fr= x 'ff,,— Jx ff,+ 2Xf ey

S Ex (- N)x-2 g Exf-3E xS A28 xf,,
So we have

Zf=N

Lxf=Nrp

Zx(x-NfoZxo-Z2f = Nrim-Np"
Zx(z-1)x-2) fo= Ex fo- 3L 2+ 28 xf,

=Nrr-Ne-2)p°

Therefore
ZxFmExf s Nr(r-Np®s Nrps Nrir-hp ©
=Nrp+Nr fo .—Nr,_o‘
Laxf 3T -2 xf sNr(r-N)r-2)p°
=3N(rpsr R rp)-2Nrps Nr(r-1)r-2) p°

= Nrp+3Nro~3NrpiNr ‘p'— JNr;fo 2/Vrp"
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X7 -
i i

P r >
#.=2£:,—f‘-rp+r pirpt
x

[)
M z# :rp+3r.p‘— drp‘-v r’p’- 3r‘p'-0 er‘
x

My M=M= rp-rp* rp(/-p)
M g 3Mp 2 M= rp-3rp s 2rp?

=rp(1-3p+2p Y= rp (1-p) 1-2p)

The reductions follow since ( g+ )= 1.

We have finally, that
M=rp
6 =/ /7P 7-P)

My_rpI-P)-2p) _ /-2p

&g =—3

o’ (JfrpU-p)° o

Formulae (33) are therefore established.

The equation A= rp shows that for a Bernoulli series the “mean”
value is also the “expected” value, since, from our definition of expec-

tation, the expected number of deaths from a group of » .individuals
isrp.

36. For the distribuuon of the values of £, shown in Table
XXIII, since »=100,000, ¢=.992, p=.008

M, = rp=800

o =er *-p) -ﬂ93.6 =28./709

/ =
£ - 0354976
o, =~ ‘dz” .23 26‘ 008 - 984(.0354976)~03493
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If as before we let ¢ =3§—'3’— , and designate the ordinates of
the standard frequency curves by /. , we can compute any value of
P, with a reasonable degree of accuracy by the formula

(34 Pt

For example: Required the probability that exactly 762 individ-

uals will die within one year in a population of 100,000 for which
p = .008.

As before, we must first express the number of deaths under con-
sideration in standard units, that is since My =rp = R00,

¢ =07 62:"” =-38(.0354976) = ~1.3489

That is, 762 deaths is 38 less than the mean, or === 8- 1.3489
standard units less than the mean.

With & ;= 0 and using the Table of Ordinates of the Pearson
Type 111 Curve, the value of £, corresponding to #= -1.35 is found
to be .160383.

Fe=.160383
o By s fi= 0354976(.160383)= 005693

We shall now consider the following problem: Required the prob-
ability that not more than 780 individuals will die within one year,
where as before r= 100,000, p =.008. This means that we must
obtain the sum of the 781 terms. F,+ B, + A+ . . . . +Py,,
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\
—l
G| B R
a-4 a a+l a+2 b b1}

Suppose we represent the sum of the probabilities 2+ A,,,+ ~,,

. . .+P, by a series of ordinates erected at unit intervals along
the x axis, and then construct a series of rectangles having these
ordinates as altitudes which bisect the bases of the respective unit
bases. Then the area of the first rectangle is B=1=4 , etc. Thus
the sum of the series A+ A,,,+ . ...+ A is equal to the total
area of all the rectangles and is therefore a})proximately equal to the
area under the frequency curve from e-3 to b+§ . Therefore
the sum of all the probabilities, 2 +2 + ... .+P,,  can be com-
puted readily by calculating by means of the Tables of Areas of the
Standard Curves, the per cent of the area of the standard curve lying
below z = 780.5, that is below F=-19.5, or ¢= -'i%ig-= -.6922. For
%, =0, the per cent of the area of the frequency curve lying below
¢= -69 is 24.5097. Since the sum of all probabilities from 2 to
Preo,000 inclusive is 1, and A+ L+ .. .. + /%4, TeDresents ap-
proximately 24.5097 per cent of the total area under the frequency
curve, therefore we estimate that P, + P, + P, +. . . +A, = 245097.

By Table XXIII the correct value is .2454, or the error of our
approximation is .0003. Using the values &,= 0, the per cent of the
area lying below ¢ = -.70 is found to be 24.1964, using straight line
interpolation the per cent below # = -.6922 is found to be 24.4408.
In the same manner, only using « 3=.1, the per cent of the curve
lying below ¢=-.6922 is found to be 24.7105. By using straight
line interpolation again for the value of &, , it is found that the per
cent of the distribution lying below ¢= -.6922, skewness ='.035, is
24.5352. The error of our approximation is now zero. In general,
however, a sufficient degree of accuracy may be obtained without in-
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terpolating for either the value of ¢ or &, .

" Next let it be required to find the probability that less than 840
but more than 780 will die within the year, that is, required the value
of Py +P it - Prye-

We require therefore the per cent of the area of a standard fre-
quency curve lying between z=780.5 and 2=~ 839.5, that is between
F- -19.5and £~ 39.50r ¢= -69 to ¢ = 1.40.

As has just been shown, 24.5097 per cent of the area of the
curve lies below #= -69. Likewise for &, = 0 the per cent lying
below # = 1.40 is 91.9243. Consequently 91.9243% - 24.5097%, or
67.4146%, of the area lies between ¢=-69 and ¢ = 1.40. There-
fore the probability that less than 840 but more than 780 will die
within the year is .674146.

By Table XXIII, the correct value is .9188 ~.2454 = .6734.

Summary of Section V1.

If p represent the probability that an event will happen in a
single trial, then the probability that the eveht will happen either 0,
1,2, . ... times during , trials are given by the respective terms
of the expansionn of (@+p )" . The distribution of these prob-
abilities or the corresponding expected frequencies is adequately de-
scribed by the three fundamental functions as follows:

M=rp
o SFEU=P

«,: 1222
The probabilities or expected frequencies may be regarded as a
_distribution that can be reproduced at will by utilizing the Tables of
Pearson’s Type ITI Curves, with the fundamental functions computed
from the above formulae. In this way the values of isolated prob-
abilities or the sum of any number of consecutive probabilities may be
obtained.



