ON THE LOGARITHMIC FREQUENCY DISTRIBU.
TION AND THE SEMI-LOGARITHMIC
CORRELATION SURFACE*

By
Par-Tsr Yuax

INTRODUCTION* *

The method of treating frequency curves as developed chiefly
by Kdgeworth, Kapteyn. Van Uven and Wicksell occupies an
importaut place in both theoretical and applied statistics. The
essence of this method may be briefly sumnarized as follows:

Suppose a function of the variable g is distributed according
to the normal law of error. Then. & certainly cannot be also
normally distributed, unlgss the function is a linear function of & .
Without losing generality, we shall write the normally distributed
function in standard units as 2 = A(&). Thus the origin of x is
its mean and the unit of x is its standard deviation. The relative
frequency of values of x hetween x and x + @x is, therefore

2

7 -z
4
= e ax
2rr
and the relative frequency of values of % Dbetween gz and
Fedxis
F 4 2
1 2 [fre)]
Wi Fliz)e dz,
Thus if we have an observed frequency distribution of 2
and we know a normally distributed function of & . then we can
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graduate the distribution of £ hy using this formula. Fdgeworth
calls this method of graduating a frequency distribution the
method of translation. In two papers on “Skew Frequency Curves
in Biology and Statistics™ published in 1903 and 1916, J. C.
Kapteyn eclegantly set forth a theoretical foundation of this
method. Tater Wicksell gave a similar justification. Both of
them based their “genetic theory of frequency”, to use Wicksell's
terminology, upon a generalized hypothesis of elementary errors.

In the present paper, we are interested only in the important
special case where Z’Z{
Z, then, becomes:

log ‘%—- The frequency function of

y 'j':.‘z //ag %‘-’)2

V2 cre-a)

which is called the logarithmic frequency function.*

Numerous papers have been written on this frequency curve,
Among the early writers were Francis Galton and McAllister,
But a systematic treatment on the properties of this curve from
the standpoint of mathematical statistics is still lacking. Hence,
in the first part of this paper, such a treatment will be given, thus
leading to some interesting relationships among the characteristics
of this curve.

Various methods of determining the parameters of this fre-
quency function have been proposed by writers on this subject.
Pearson is the first writer to make use of the method of mowments.
Later this method was also applied by Jgrgensen and Wicksell.
In this paper, the method of moments will be considered and a
table will be provided to facilitate the computation of the constants

by this method.
Edgeworth, Wicksell and Van Uven all have contributed in

*For a justification of this frequency function based on Weber-
Fechner's Psychophysical Law see the “Calculus of Observations”™ by E. T.
Whittaker and G. Rohinson, pp. 217-218. (Blackie & Son ltd., lLoudon
and Glasgow, 1929)
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extending the method of translation to correlation surfaces. Wick-
sell’s logarithmic correlation surface is particularly noteworthy.
In the last part of this paper, a semi-logarithmic correlation sur-
face of two variables will he developed and its properties studied.

The writer wishes to express his appreciation for the assist-
ance [’rofessor Cecil C. Craig has given him in making this study.

PART I
THE LOGARITHMIC FREQUENCY‘DIS'I‘RIl‘»U' 'ION
For the sake of clarity. it is desirable to state at the outset
that the logarithmic frequency distribution represented by

7 . 2
I 52 (109 £2)
Fre) Faoaa € s 5 (1)

is unimodal and has three parameters. I'he parameter & is the
finite lower or upper limit of & according to whether & is posi-
tive or négative. In the following discussions, unless the sign
of & plays an important role, we shall take & to he positive
and @ to be the finite lower limit of £ . However, the results
of our discussions can be easily modified to cover the case where
b is negative and & is the finite upper limit of & .

In the first eight sections of Part I the properties of the
logarithmic frequency distribution will be treated from the stand-
point of mathematical statistics,* and in section 9 the numerical
application of this distribution will be discussed.

1. AVERAGES
We shall first give the analytic expressions of four different
averages of & and then observe their relative magnitudes.

* Some topics under consideration here in regard to the properties of
the logarithmic frequency distribution have also been discussed by many
writers, among whom we may particularly mention McAllister, Kapteyn,
Pearson and Pretorius. See the references under these writers’ names in
the Bibliography of this paper.
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By definition, the arithmetic mean of £ is

o0 C‘z
m-/zF/z)a’z sheisa.
%

The logarithm of the geometric mean of x about the point
Xe«a is given by

[}

/ log(x-a)F(z)dz =log b.

a
Hence, the geometric mean of & about %« & measured from
x= O is

Mg = bra.
; ;e . 4 2-a
Since the median of % mrrespo.nds to xeZflog S50,

it is equal to

’ﬂdgb*d.

arz)  top B0,
ax cirz-2)

Setting the derivative

equal to zero, we obtain the mode of & as

_‘.2
m,=be ra,

Thus, the geometric mean and the median are equal. More-
over,
My < Mg = My <7
2, POINTS OF INFLECTION
The second derivative of Frz)is

ZF1R) _ Clog B2) s 5024 20g
ax? cq(x-a)?

za_
2% rrw).
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The roots of the equation

- 2 -
(logr 52)% 302 10 HE-c-0

are the points of inflection of the logarithmic frequency curve.
We shall denote them by £, and Z,,

Zvl = be -}czp*fffg—c}]*a\
of #1057 ]
+&

-3
iezbe <

Note that the quantity under the radical sign is always posi-
tive and greater than one. Its square root is, therefore, greater
than one in absolute value. Hence, z;(bfd(iz . That 1s. the
geometric mean and the median of g lie between the points of

inflection.
Furthermore, if we observe that the points of inflection may

be written in relation to the mode as

.~§"/j+j/j*9-;—2 )
2 /, 4
-502-5 1*;551/

Z,-a=(m,-a)e

Z,-a=(m,-a)e

we see that B em,<&E,.
But the mean does not always lie between the two inflection

points, since .
- ~2C: (4+3/7 9c2 /

£ -as(m-aje .
-y 3 2
i-a-(m-a)e §(4-9/7+3%:) .
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Obviously, ij is always less than the mean. DBut when c> 4/ 7,
the mean is situated above both points of inflection.

Now, the relation of the averages and the points of inflection,
when ¢« 4/7, may be expressed by the inequality

~

z

1()770(277a/=777f<)77(22

which holds for almost all practical cases, since c?rarely exceeds
4/7 in practice. .

3. HIGH CONTACT

A frequency function is said to have high contact, if the
function and all its derivatives vanish at the upper and the lower
limits of the variable £ . We know that the logarithmic frequency
function vanishes at hoth the finite and the infinite limits of 2 .
It can be easily seen that all its derivatives also vanish at these

points, if we make the substitution - &'« Zog %‘2, which will

throw every derivative of the logarithmic frequency function into

a product of two factors, one heing a polynomial in &’ and an-

L e%ke
other being e <¢# where 4 is a positive integer. Thus,

it is obvious that all the derivatives become zero, as =’ approaches
Z @ | which correspond to the finite and the infinite limits of Z.
For instance, this substitution will put the first derivative of the
logarithmic frequency function A7z,

aFre)  lop L sc?

- Fra
74 4 c?rx-a) /
into the form
le?  hyher
Ve ¢362

which clearly goes to zero as z’ approaches # oo , that is, as 3
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approaches “@” and infinity.
The logarithmic frequency function, therefore, has high

contact.
4, MOMENTS

We shall study the practical application of the method of
moments to determine the parameters of the logarithmic frequency
distribution in section 9. But at present we must know the rela-
tionships between the parameters and the moments in order to
discuss the properties of dispersion, skewness and kurtosis.

First, we shall express the moments in terms of the param-

cters:
The ¢-#h moment of x about the point =g is given by

2

oo 2,
M = /}z-aj Fle)de<be T .
d

s 1)<’
And we also have the recurring relation ,43.’: be My g °

The &-¢4 moment of % about the mean is

o0 \252“‘ . . 2
Ay ’,d//*?‘m)"ﬁ’d')a’i ~b'e < f:’a/'j/&/rﬁj?!@!& .

Ay .
Consequently, the s5-#/ standard moment of 2, « s = I’a—% is

ool ey e Ml

Setting § equal to 3 and 4, we have
Z
o, = e S1)f (e u2)
2
= Irfe <21 )e et 30%¢%, 6646
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which will be discussed in connection with skewness and kurtosis.
Note that the sign of « 2 follows that of 4 , because the sign of
the third moment of & about the mean is determined by &Y.

Now, we want to express the parameters in terms of the
moments. It is clear that there is an inhnite number of ways to
accomplish this, since there is an infinitude of moments. But we
are particularly interested in the expressions of the parameters
in terms of the mean and the second and third moments about
the mean. Letting @ = e’ we_have .

me éwff @
M= bPw(w-1)
by = 65w (-1 ) (wel).

(2)

Seolving these equations for the parameters, we find @ is the only

real root of the cubic:
wH I (Frai)=0O (3)

Hence, the parameters ¢, 6 and & may he expressed as

C‘-‘/fof Q)/;'z
G e (SN

b4
eom o)t < m (%)

where the sign of 4 follows that of %, and o= ;,/a: The prac-
tical application of (3) and (4) will be discussed in section 9.
We shall now turn our attention to some other properties of the

logarithmic frequency distribution.

5. DISPERSION
The dispersion of x about the mean may be measured by

2 2
the standard deviation, o= vz, = be e?/e ‘.z /} Denote the
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deviation of ® from the mean in terms of the standard deviation
by #=(®-m)/o . Then, with the aid of tormulae (1), (2)
and (4). we obtain the distribution of # as

2 2
ecis)¥ > fef[ﬂ/e‘-ff/’f*]*? e

s []*ﬁ! Cfl/‘.’{t]

2 2
where (@€ -1}2{ -, /7@ +.2) takes the same sign as «,.

We know that for the normal distribution 50% of the total fre-
quency lies between the limits ¢ =< 6745 and ¢= » 6745 .
Now, we want to know the similar limits of Z for the logarithmic
distribution. For that reason. we write # directly in terms of

the normally distributed function z=c-‘_! Jo~ 52'—‘—2
%

P4
2-77 4
= = (

7 (ec®- 1/1

c?
C- =
2—
1) 6)

Placing 2 equal to -. 6 #Jand « 6745 we have at once the limits

2
G ~6m5c-5_7)

P 4
(e<?-1)7
2
(e .6745«:‘-}‘:_1}

(ec®. 1) £

between which 50% oi the total frequency is included. These
limits are two quartiles and obviously depend on ¢ . It is clear
that one can also locate other deciles and percentiles of # by using
(6).

An abstract measure of the dispersion is the coefficient of
variability which cxpresses the standard deviation in terms of the

tzt
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mean. For the logarithmic distribution, it is
2 4
=| L |=|ec-7)<2
D=| — l |/e 7) l (7)

which shows that in a logarithmic distribution the larger c?is,

the greater is the variability.
It is interesting to note that if we also express the deviation

of & from the mean in terms of (7-2/and denote it by
b4
L EmM_ectg)F
t's SZ (e 7)2¢

- . . - N /. . . -
we have by (5) the distribution of Z%in this simple torm:

. 29<
L i [fay/f*r7*§ J , (8)
ZRrretrl) ar.

0. SKEII'NESS
[t has been proposed to use «, /2 ore, as a measure of
skewness of a frequency distribution. For the logarithmic curve,
we have shown that
2,4 2
% <(e -1)2(evz)
9)

or "‘3-‘-'((4)-1/}/6)*2/.

Hence, the absolute value of «, increases with ¢. Since ¢ can
take on any finite value whatever, the skewness of the logarithmic
curve as measured by o, can also have any finite value. More-
over, as we have seen, g, of the logarithmic distribution can be
positive as well as negative.

In Figure 1 are shown four logarithmic curves with =0 ,
o=/ and with varying «,’s. Various parameters calculated
from formulae (4) and important characteristics of these curves

are exhibited in Table 1.
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When c¢=0 »% also vanishes. In fact, the logarithmic curve
approaches the normal curve of error, as ¢ goes to zero. 'This

can be demonstrated as follows: With the aid of formulae 4)

we can write the normally distributed function Z=3 L /000 fq as

1, Ea
a:-c-; 106.7

=C—,l{—flo°a[/f—(e -1)}] }

2, ,4 2
< xm (e5-2)F (m-m)? (e°-1),
"R o c 2072 c

Now, it can be casily seen that

1im x = 27
c»0 g
which is a linear function of & . Hence, the logarithmic distribu-

tion of & approaches the normal distribution as ¢ approaches
zero.

TABLE I
Parameters and Important Characteristics of the l.ogarithmic Curves

with /7«9 o= and Specified S

% 2 1 4 -4
@ 1.0044 1.1038 2.0000 2.0000
o 0665 3143 8326 8326
a -15.0222 ~3.1038 ~1.0000 1.0000
b 14.9890 2.9543 7071 - 7071

)3, =my| - .0332 ~.1495 - .2929 2929
m, - 0991 - 4274 - 6465 6465
g‘; -1.09 -1.30 - 9341 9341
: 90 .50 -~ 0532 0532
D 0666 3221 1.0000 1.0000

wy- 3 0712 1.8295 35.0000 35.0000
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FIGURE I

LOGARITHMIC CURVES WITH ms0 gs] AND SPECIFIED «,'S
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Another measure of skewness is defined by Pearson as

For the logarithmic curve, it becomes

1w -F

P
(w-21)

which has a maximum value equal to . 636/, when w= 2.7202
and «;=J27577% This, however, does not indicate that the skew-
ness of the logarithmic curve is limited. Rather it shows that X

X

is not a satisfactory measure of skewness, so far as the logarith-
mic curve is concerned. For any measure of skewness should
characterize the skewness of a curve without ambiguity. and X
fails to do so in case of the logarithmic curve. For instance.
when we say that a certain logarithmic curve has X =.32. we

may mean either a logarithmic curve with &, = 68 or one with
«y;=J6.00.

When the. logarithmic curve is only moderately skew, X ap-
proximately equals <, /2. This can he shown as follows: Letting
A Z%-aw-1, we have

-
x= L2257 <.

202 3h L

g 16

and «, = 3hst"

Hence, tor small |4 | and hence small |«z] X approximately
equals o, /2. For instance, when Ay =.Z . X = O/ which
is approximately «, /&=, 7/

We may mention here that for the Pearsonian type 111 curve.
the relation X = % /2 always holds. In fact, it appears from
Table II that the type III curve and the logarithmic curve are
very similar for small |-¢3 | But the differences between them are
already pronounced for ¢J=1 , as we can see from Table III.
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TARLE 11
Ordinates and Arcas of the Logarithmic Curve and the
Pearconian Type TIT Curve
il o=l «33.2
Ordinateat & Avea from the Lower
Limitto %

z Log. Curve Type I Log. Curve Type 111
3.3 0003 0002 .0000 0000
3.0 0020 0020 .0003 0004
2.5 0124 0123 0034 0034
2.0 401 0492 0172 0171
1.3 1337 1341 0607 0607
10 2587 2591 1579 1582
s 362 3687 3178 3172
{0 3991 3980 5132 5133
) 3360 3304 7000 7002
1.0 2207 2267 8418 8417
1.5 1242 1245 .9285 9284
2.0 0368 0567 9720 9721
23 0217 0217 0906 9906
3.0 10072 0071 9972 w73
3.3 0020 0020 9993 9993
149 (04D 0003 0998 .9998
45 0002 0001
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TABLE IIL
Ordinates and Areas of the Logarithmic Curve and the
Pearsonian Type III Curve
m=0 o=l « 2=
Ordinateat Area from the Lower
Limitto £
-4 Log. Curve Type 111 L.og. Curve Type I1I
-20 0084 0 .0009 0
- 15 1196 1226 0259 0190
-1.0 3364 3609 1398 .1429
- .5 4408 4481 3442 3528
0 4040 3907 .5624 .5665
5 2883 2807 7363 7345
10 1791 1785 8520 .8488
L5 1017 1043 9210 9182
20 0548 0573 29590 9576
2.5 0295 0300 9783 .9788
3.0 0144 0151 98935 .9897
3.5 0073 0074 .9948 9951
4.0 0036 0035 9977 9977
45 0017 0017 9987 29990
5.0 0009 .0008 9993 9995
5.5 .0004 .0003 9997 .9998
6.0 .0002 0002 .9998 9999
6.5 .0001 .0001 .9990
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7. KURTOSIS

Another important characteristic of a frequency curve is
kurtosis measured by é (44-3) or simply by 1 =« -J, which
equals zero for the normal law of error. If the mean and the
standard deviation are taken to be the origin and the unit, respec-
tively, then usually the frequency of a curve in the vicinity of
the mean is in excess or in defect to that of a normal curve ac-
cording to whether » is positive or negative. A curve is said
to be platykurtic, if p» 0. It is leptokurtic, if <0 Thus,
the logarithmic curve is always platykurtic, for its p is

o-(w-[//w"f JwZr6w+6)
(10)

or pewts 2w Fw?-6

and w >/  Since the logarithmic curve has only three parameters,
there exists a functional relationship between its skewness and
kurtosis. This relationship is given through the parameter @ by
(9) and (10). We may further deduce the following relations
from these two equdtions:

p is always greater than g « : . This follows from the fact

that 2 ) - Jq_f:/a)—!)/ia/‘?f Fw?)>0

For|¥ |« 6.44. we have 2> p , since
3x°-p =(w-I)-wi+6w+6) > holds, provided
w¢£.8 . which corresponds to | ;| < 6. 44.

For |, | <2215 . we have ij»a. since
- Delfw-2)(-w w?+ 2w+2/)>0
holds provided cw < Z 4, which corresponds to |#;|< & /5.

Since practically the value of |o¢,| can hardly reach ©, 44or
even S/, the relations just stated hold for all practical instances.

The relationship existing between 7 and «; is sometimes
used as a criterion for applying the logarithmic curve to observed
data. We shall discuss this point in section 9.
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8 PONERS, ROOTS AND PRODUCTS OF THE LOGA-
RITHMICAILLY DISTRIBUTED VARIABLES

If = is logarithmically distributed and has ‘a* as its lower
limit, We /z-a)/'is also so distributed. A being any constant.

This iollows from the fact that if z« £ /og <is normally dis-

. . 4 -a .
tributed, so is A¥= & /aoa % From the frequency function of

. Fre). given by (1), we find at once the analytic expression
of the frequency distribution of W to be

w 2
_Z [Ia ——]

We have learned from the preceding sections that a logarithmic
distribution represented by (1) with larger ¢ has greater varia-
bility, skewness, and kurtosis. Thus, if 4 €> 7, the variability,
skewness, and kurtosis are greater for VW than for £ . On the
other hand. if A%< 7, the distribution of =°* has greater varia-
hility, skewness, and kurtosis.

If the logarithmically distributed variables x%,, 2, .-, z,
are independent and have for their lower limits, &, a,, ~,dnp

then the product
Y'/I,'d,)/Zz-ézj“ '/Z”' an)

15 also so distributed. This follows from the fact that if

&y - d,,

4 ol R/ P4 2, d’z P4
%yez Jog T/, X, Jaéy s ,(”sc” /ooa
arce each normally distributed and are independent, their sum also

obeys the normal law of error.
Since the variables are independent, the frequency distribu-
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tion of these 77 variables is represented by

Fz)E(z,) - F (z,)dz dz,...az,  (12)

e zwa-]z
e ch[/aoa_‘b_-—‘

2z
where 7 (=)=
T meslEg-a;) ‘

Substituting £,-a, = Y/ﬁz",-q,)w (z,-a, J in (12) and integrating

the resulting expression with respect to Z,, «-., x successively
over the respective ranges, we have the distribution of Y as

ot r 1
p . UCFscis- 4¢3 ) [/%'ﬂb/é“"g] (13)
7 gte aaiY o

. 2 . 2
Since the sum. <y +cz‘e+ e o c,f , is greater than any </

the distribution of Y has greater variability. skewness. and kur-
tosis than that of each individual variable.

9. NUMERICAL APPLICATIONS

Many methods of fitting a logarithmic frequency curve to
observed data have been preposed. But only the method of mo-
ments will be considered below.*

The method of moments is very simple to apply. It consists
of placing the computed moments in equations (2) and then
determining the parameters by solving these equations by formulae
(3) and (4).f The only step of computation which requires
some time and care to obtain accurate results is the solution of

* Among other methods of graduatimg the logarithmic frequency dis-
tribution, the graphical method proposed by Kapteyn and Van Uven is
especially useful. For a description of this method, refer to their paper on
“Skew Frequency Curves in Biology and Statistics, 2nd Paper”.

+1In his paper, “On the Genetic Theory of Frequency”, Wicksell also
showed the application of the method of moments to the logarithmic fre-

quency distribution. However, he found the parameter “a” first and then.
proceeded to obtain “log b” and “c”.
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the cubic,
Yiw)=w "*2@2-/«(3‘3 4)-0.

Hence, it is desirable to have a table which will provide an approx-
imation of the required root of this cubic for a given «, 'I'hen,
the root can be approximated to as great a degree of accuracy
as we wish by applying, for instance. Newton's method. '[‘hat is
why Table IV is constructed. Practically, after we obtain an ap-
proximate value of @ from Table IV, one single application of
Newton’s method will almost invariably suffice to give us a value
of w accurate to four decimal places. In Table 1V. values oi ¢
corresponding to given values of @ are also provided to serve
as a check to our computation of ¢ by formulae (4).
TABLLE IV

Table Facilitating the Solution of the Cubic
wir Fwe- (i 4)e O

@ L 73 c w %) c

1. 0 0

1.01 3010 1000 1.20 10623 4807
1.02 4271 1407 1.27 1.0991 .4889
1.03 5248 1720 1.28 1.7356 4969
1.04 .6080 .1980 1.29 1.7717 5046
1.05 .6820 2209 1.30 1.8075- 5122
1.06 7495+ 2415 - 1.31 1.8429 5196
1.07 8122 .2602 1.32 1.8781 .5269
1.08 8712 2775~ 1.33 1.9129 S3H0
1.09 9270 .2936 1.34 1.94754 5410
110 9803 3087 1.35 1.9819 5478
111 1.0315- 3231 1.36 2.0160 5545+
1.12 1.0808 3366 1.37 2.0499 .5611
1.13 1.12854 .3496 1.38 2.0836 5675+
1.14 1.1749 3619 1.39 2.1171 .5738
1.15 1.2200 3739 1.40 2.1503 .5801
1.16 1.2640 .3852 1.41 2.1835- .5862
1.17 1.3070 .3962 1.42 2.2164 .5922
1.18 1.3492 .4068 1.43 2.2492 .5981
1.19 1.3905- 4171 1.44 2.2818 6038
1.20 14311 4270 145 2.3143 6096
1.21 1.4710 4366 1.46 2.3467 6151
1.22 1.5103 4460 147 2.3789 6207
1.23 1.5491 4550 1.48 24110 6261
1.24 1.587 4638 149 2.4430 6315+
1.25 1.6250 4723 1.50 24749 6368
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To illustrate the use of Table IV and to help in studying the
application of the logarithmic frequency curve, we take the dis-
tribution of the weights of 1,000 female students from the
“Synopsis of Elementary Mathematical Statistics”* by Miss B. L.
Shook. (See Table V.) ,

The mean, standard deviation, and skewness for this distri-
bution} are

m= 118. 74 1bs.
g= 16 91752 /bs.
%= . 7644

To compute w , we find from Table 1V that for «, =.976 424
w is approximately ), = /0. For a better approximation, we
apply Newton’s method :

%(“’g) . woa* 3“)02“ /"4: +4)

W=, * ——— ) -
¢ ”?’GJ,} ¢ 3(41,,2#6w0

D076

=1.10- 7073

1.10-. 00743
=1.099 357

By formulae (4), the parameters C , 6 and & are found to be

Co=. X7 627
b= J1. 2160 /bs.
a= 635 O423 1b35.

* Annals of Mathematical Statistics, Vol. I, No. 1 (1930), p. 39,
t Sheppard’s corrections have been duly applied.



50 LOGARITHMIC FREQUENCY DISTRIBUTION

TABLE V

Observed and Theoretical Distributions of the Weights of
1,000 Female Students
(Original Measurements Made to Nearest 1/10 1b.)

Theoretical
Class Theoretical Type 111
Limits Observed Logarithmic Distribution Distribution
( Pounds) Frequency By Areas By Ordinates By Areas
70- 799 2 0 0 0
80- 89.9 16 10 6 4
90- 99.9 82 97 o4 102
100-109.9 231 228 234 238
110-119.9 248 255 259" 250
120-129.9 196 190 190 184
130-139.9 122 114 111 m
140-149.9 63 57 57 59
150-159.9 23 27 27 29
160-169.9 5 12 12 13
170-179.9 7 6 6 6
180-189.9 1 2 2 3
190-199.9 2 1 1 1
200-209.9 1 1 1 0
210-219-9 1 0 0 0
Total 1,000 1,000 1,000 1.000

Knowing ¢ . 4 and @ . we obtain the geometric mean and the

mode:

Mg = Mg = 116. 2583 1bs.
m, = 111. 6386 1bs.

Using these parameters, the theoretical distribution of the
weights of 1,000 female students has been computed and is shown
in Table V and Figure II. The fit of the logarithmic distribution
to the observed data is, indeed, excellent.* The lowest possible
weight of female students, according to the theoretical distribu-
tion, is 65.04 pounds, which is just about what one would expect
after examining the observed data.

Miss Shookt used the type III distribution to fit the same
set of observed data and gave the result as shown in the last col-

* Grouping the first three classes into one class and the last six classes

into one class, we apply the XZtest for goodness of fit and find that the

probability to get a worse fit is .70.
t Annals of Mathematical Statistics, Vol. I, No. 3 (1930), p. 242,
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FIGURE II

DISTRIBUTION OF THE WEIGHTS OF 1000 FEMALE STUDENTS
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umn of Table V. The fit is not as good as that given by the log-
arithmic distribution, especially in view of the fact that the type
ITI curve fixes the least possible weight at 84.09 pounds, while
as a matter of fact there are two students whose weights are
helow that limit.%

From the standpoint of the method of moments, a criterion
for the logarithmic distribution to fit a set of observed data is
that ) =<, - 3 computed directly from the observed data must
be approximately the same as the theoretical ») computed from
formula (10). This criterion, however, does not seem to work
in practice. For instance, for the distribution of the weights of
1,000 female students, the theoretical » is 1.7419, while the ob-
served 7) is 2.4536. But in spite of this fact, the observed distri-
bution, as we have seen, is very satisfactorily fitted by a loga-
rithmic distribution.

Another criterion is to require the observed moments about
the lower limit " " to satisfy approximately the recurring relation

, 4.’;-1{:,2
’
Hs = be M-t

for o= 4 . This criterion is approximately fulfilled by the distri-
bution of the weights of 1,000 female students, for which we have

) < 147279+10°

be¥) - 146696+ 107
and ,u;/be‘zcja; « 1.0040.

The fact that a set of observed data may be satisfactorily
graduated by the logarithmic distribution but fulfills only the
second criterion may be explained on the ground that the com-

$In fact, since the finite limit of the variable for type III curve is
777 - f o  and for the logarithmic curves 77 - ; 2, the finite limit
is always greater in absolute value for the logarithmic curve than for the

type I curve.
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paratively wide discrepancy between the observed and theoretical
frequency in the classes near the lower limit maks a great differ-
ence in the fourth moment about the mean but does not make
much difference in the fourth moment about the point @” .

PART 11

THE SEMI-LOGARITHMIC CORRELATION SURFACE

Suppose that the correlation surface of the functions, x = 7%/, v/
and ye(g/u,v), is a normal correlation surface and cach has its
mean as the origin and its standard deviation as the unit. Then,
the probability that values of x will lie between x and x +d'%
and values of y hetween y and y +aly is

- __-1_..._ 2 2 2
7 Z1-r%) [x -Zreyty ] g
Plyletady- ;2= ¢ axdy, (1)

It follows that the probability that values of « will lie between
« and «w+du and values of v hetween v and v+dv is Fly, v)

aQudy given by

2
;T [t 2rtpeg ot or 2)
—— du ov| dudv.
2n/l-r? dg O
% &

F'/a, V) is, therefore, a generalized correlation surface of two
variables, deduced by extending the method of translation for
treating frequency distributions of oue variable.

It is clear that in this general form the correlation surface
represented by Z74, v,) is of little practical use, on account of its
complexity. Now a natural simplification suggests itself. That
is to take x as a function of <« only and y as a function of v
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only. By virtue of this simplification, #7Z, v/ becomes

;D [’{Z’“’?*f:}
Fryv)e L o (47 ar g (3)
///, V/ 2 /7-r? € au E/‘g

which is a great deal easier to handle than before.
Professor Wicksell has made use of (3) for the special case
where, in our notations. x and y are

z=~/%oad’ .

which leads to the so-called ‘‘logarithmic correlation surface”.*
The surface possesses the property that its marginal distributions
as well as the distributions of « for given values of v and dis-
tributions of « for given values of « are all logarithmic fre-
quency distributions.

Presently we shall study another case for which

u-4
x= =3
y:—fqg

The correlation surface 7<) given by (3) then becomes:

2(1~r«’j[( = /-2/* 7—197 ( 7 y o ;d)?]

(4
F = 4
e/ o Accv-a)irE )

*In Wicksell's paper, “On the Genetic Theory of Frequency”, the
theory of the logarithmic correlation function is developed. In his two
successive papers quoted in the Bibliography of this paper, the original
theory is extended and the application of the extended results illustrated.
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which may be appropriately called a semi-logarithmic correlation
surface. We shall investigate its marginal distributions, moments
and regression curves of the characteristics.

1. MARGINAL DISTRIBUTIONS

Now, we shall first find the distribution of the marginal totals
of « . This can be, of course, accomplished very easily by inte-
grating 77z, v) with respect to v over the range from a to
infinity. The result is:

dpou-1)?

> 7
ﬁ'/a, vIdv = (5)
2

2

Thus, the marginal distribution of « obeys the normal laws of
error.

Similarly, if we integrate F/U,V/ with respect to « over the
range from - o to oo , we find at once the marginal distribution
of v as follows:
alieg 52)°

/F/ V/du- (6)

2/76'/1/-:?)

which is, clearly a logarithmic distribution and. therefore, has all
the properties and characteristics discussed in Part I. Hence, the
semi-logarithmic correlation surface is characterized by the fact
that one marginal distribution is normal, while the other is loga-
rithmic. It is needless to mention that this does not constitute a
sufficient condition for a correlation surface to be a semi-logarith-
mic correlation surface defined by (4).

2. MOMENTS
The moment, /ul-'- , of the semi-logarithmic correlation sur-
face about the point « =4"and v=a is given by

A =4‘Z'2-// G ) B ) A v
e @)

.. Lo . . ) » oo
=Xbe 9“50/,;)//”/ 4&{% the 2t
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@ 2
I,k ~Z k! . .
where /7=¢"¢ “df = —"y if 4 is even
_wz/r Zk/‘/zi()/

=0, if & is odd.

Using relation (7), we can easily calculate the following six
moments about the mean of « , 7, , and the mean of v, m,

Mg = 7y = 8= 0
-AZ

2

yy = 72, —Kée fd) o
- b2t )
- 6% ¥ et 1))

2

(8

<
M= rAdcbe

Now, we want to solve these equations for the six param-
. ) _c? . B
eters. As hefore, we let w=e¢ and write %5 T AL, /,4/202.
Again, we have w as the only real root of the cubic:

wH 3% (< +4)-0 . (9)

The six parameters of the semi-logarithmic correlation surface

can be written as:
§=m,
A=/, =,
c=(log w )21

(3522, )
2
as mv—é%)zdy= m, -/‘:’:f)dy

£
/“// (CJ"-I)I
F4

=
% 9, /fog)"‘-’/'z.
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which furnish -us a simple practical method for determining the
parameters of the semi-logarithmic correlation surface for ob-
served data.

3. REGRESSION OF THE MEAN

First, let us observe that the function Fru v/ may be put
into the following forms:

2
22[% [,ar 4 ]
77 /’ 2 i 2{1/-?} P L

27/1-r* C/V-a)/l
/ ve u-r ol
T 242(“ 2z Z(Jffj[ log & J
2n/1-r% c/V-a)a

Hence, the distribution of ¢ for a particular array of v is normal:

|5 Err 5
- ]
Garse L oD v

1
./2?3 frrz (11)

and the distribution of v for a particular array of « is loga-
rithmic:

£ d 7%
e R my[ tog 551 45* ]
G Prnll-ricfv-a) €

(12)
Z £ [Jog g ]2
= T2c2(1-r3) crd-o|
R fr? ctvea) ¢ bem A

To find the mean of «« for a particular value of v , we mul-
tiply &, (z,v) by « and integrate the resulting expression with
respect to « over-the range from -0 to a0 .

G-) g cuv)du=¥log G2 r  (13)

~a
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which is the regression equation of the mean of « on v and

may be called the logarithmic regression equation.
Similarly. the regression equation of the mean of v on « is.

found to he:

-7 w- 2l 2
\7=/V6}/¢4V/dt/=bee" Giegari,, (14)

a
which may be named exponential regression equation.
Observe the following points: :
(a) The regression curves (13) and (14) intersect at the

point

U = ,+ﬁ‘§"c

2
vzbe 5*d'ﬂ7y.

(b) When =0 . the curves become two straight lines:

which show that & is independent of v and ¥ is independent
of «. We can also see this from the expression #7%, v/, which

becomes
1/4-4)% . v-g)?
Floyv)ui é'z/ 54) I . #(# 700 52)
KA Ve ccv-a)
when r=0 ‘I'his is the condition for independence of « and

v in a probability sense.
(c) When r=7 , these two regression curves coincide, This

signifies that there exists a complete functional relationship be-
tween ¢ and v, namely:

w-_ 1 V-@
R A
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(d) As we have learned from the studies on the normal
correlation surface, ~is the coefficient of correlation measuring
TSR u-r ! '
the linear relationship hetween x= =3 and y=5lop(v-a),
Thus, it is also a measure of relationships (13) and (14) existing

between « and v . If we note that »~» may be written as

2 ¥
Ay /ec'/)
g, 9, c

r=

/‘(// (15)

Sy 9,

2 < ]
/j*C C C

z
PAS AR AR

we see that #~ is always greater than «, /&, o, , which would
be the coefficient of correlation measuring the linear relationship
between ¢« and v . if we treated the correlation surface of ¢ and
v as heing normal,

‘The smaller the value of ¢ andw,, . the smaller the differ-
ence hetween »~ and ko, /dadv' In fact. we can show, as we
did for one variable case, that.as ¢ goes to zero the semi-loga-
vithmic correlation surface approaches the normal correlation
surface.

Incidentally, .we may remark that the expression (15) is

convenient for computing » .

4. REGRESSION OF THE MOMENTS

Using the well-known formulae for the moments of the nor-
mal curve of error about the mean, we can find at once the s/
moment of & (%, v/about its mean:

oo
Myu=) (w-3)°8 (u,v)au (16)
- 00
= ;/ S Nt1-r2) 7% if & is even
Sy Ve
= O if & is odd.

This is the regression equation of the s-74 moment of ¢4 about
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the mean on v. It follows that the &-#/4 standard moment of w
for a given value of v is:

M,

of =
Setd 572
.4
74 . .
‘2.;:,/}5// ’ if § is even (17)
=0, if & is odd.

Again, by the formulae given in Part I for the moments of
the logarithmic distribution, we calculate the s *moment of @@V)

about the point @”:

) %, K
M, - [ (ea)' Gl v)av
@ u-r, sic?r-rY
AT 2

=% (18)

And the regression equation of the 5%/ moment of v about the

mean on ¢ is:
a0
5
M., =Z/y- v)° G, cuv)av

(19)

. 20 0%) S “ wh-2)c2t-r3?)
-é‘e"""gx‘,*“ /r%‘/)&//?’)e il lioal Culal o

The % standard moment of y for a particular value of ¢« is,

therefore,
L
SV 372

%:v G2 C.ZK,_,.:}
g 1) %)e & hodde (2 (20)

/e C?(j-/"/-j} s/2

Having obtained the expressions for the regressions of the
moments of one variable on the other, we shall now proceed to
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discuss the scedasticity, clisy and synagic* of the semi-logarithmic
correlation surface.

5. SCEDASTICITY
From formula (16), we have the regression of the second
moment of « about the mean on v :

Mo = A(2-%) (21)

which is the same as in the case of the normal correlation surface,
except that »~ now does not measure the linedr relationship be-
tween « and v . Since (21) is free of v, the semi-logarithmic
correlation surface is homoscedastic, so far as the variable « is
concerned.

From the standpoint of estimation, we may also interpret
expression (21) to mean that when we estimate the mean value
of « for a particular value of v . the error of estimation will be
reduced if we use formula (13) instead of the mean of the mar-
ginal distribution of « . The standard deviation of the marginal
distribution of « is A. while that of (13) is onl_v//‘z “-/)W
as shown by (21).

The second moment of v for a particular value of « is given

by (19):

3 2
1, = e ?er GLectrY R /.1] (22)

which is not independent of ¢ . So, the semi-logarithmic correla-
tion surface is not homoscedastic for v . Actually /M, , the stan-
dard deviation of the distribution of v for a given « , increases

with « .
However, the relative dispersion or relative error for the

*The term “synagic” was used by S. D. Wicksell to mean the re-
gression of the kurtosis. (“The Correlation Function of Type A, and the
Regression of its Characteristics”, Kungl. Svenska Vetenskapsakademiens
Handlingar, Band 58, Nr. 3; Meddelanden fran Lunds Observatorium, Ser.

11, Nr. 17, 1917)
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distributions of v for different values of « is a constant, namely:

(23)

T'hus, by using formula (14) to estimate the mean value of v
for a given value of « instead of employing the mean of the
marginal distribution of v . we reduce the relative error of esti-
mation, for the relative error of the marginal distribution is
/e"z- 1))! The reduction of relative error is much pronounced
when /' is large. In fact, the greater ~ is, the greater the reduc-
tion of relative error and the better the estimation. Hence, »~
measures the degree of relationships (13) and (14) between «
and v.
6. CLISY AND SYNAGIC

Now, we shall study the clisy and synagic of the semi-loga-
rithmic correlation surface or the regression of the skewness and

kurtosis of one variable on the other.
The skewness and kurtosis of any distribution represented

by & (i v/as measured by, , and 7, =<, -3 are of course,
equal to zero, since it is a normal distribution. But the skewness

and kurtosis of any distribution of v for particular values of « ,
according to formula (20). are given by:

46._‘,=/e""/!-/"'/,/)f/ec’/1~/“’ +2) (24)

D, c (e HL0Y. 1) fo I LT g2 WT-1%) g L1 g) 25)

which are two counstants. Since the skewnesszand kurtosis of the
marginal distribution of v are given by /@€ 27)#/ec?.2) and

2 2 4 20? 2
(e-L)e s Jo “wse i) respectively, we may say that
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the distribution of + for each array of « has smaller skewness
and kurtosis, and is, therefore, closer to the normal distribution
than the marginal distribution of . And it is more so, when

is near unity.

7. REGRESSION OF OTHER CHARACTERISTICS

In this section, we shall give the regression of other charac-
teristics, such as the median, the geometric mean, the mode, the
points of inflection and the finite limit.

The regression equation of the median and the mode of «
on v are, of course, the same as that of the mean of ¢« on v,
because G,/a,V/is normal. The points of inflection of & /% Vare
points one standard deviation, i.e., //‘Z/ , to the left and the right
of the mean, as this is again a well-known property of the normal
distribution.

The regression equation of the median and the geometri¢

mean of v on « is given by
«-7

cr &4
md:v-moa:l,:be A +a

or é—[./ooa/m""b“’ 2 “)".’ (26)

which differs from the regression equation of the mean or the
median of « on v/, only in that the constant factor »~ is on the
left member of equation (13) but is on the right member of (26).
The mode of v for special values of « is
u-4) 2 2 .
/’770..‘,-‘56’67‘ T/-C‘ (Z-r /+d . (27)
The regression equations of the points of inflection of v on

« are given by

/_—';_~
fr-v <po <" gj—[—;’c*’/j—r’/' [I' /1*9«:2/1-/'?) ]

-4

/P —
¥ =pe” ‘-!j—r—gc‘?/l-/“’/ [‘/ +9c"/1-f'")] o

2V

which are not free of « .
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Finally, we may add that the finite limit of any distribution
of v for a particular array of « is the same as that of the mar-
ginal distribution of v .

8 AN ILLUSTRATION

For illustrating the application of the semi-logarithmic cor-
relation surface, we take the correlation table of heights and
weights of 11,382 school boys between 5 and 14 years of age in
Glasgow from I.. Isserlis’s paper, “On the Partial Correlation
Ratio”.* We shall treat the height as the variable « and the
weight as the variable v . Thus, the marginal distribution of
heights is supposed to be normal, while that of weights is sup-
posed to be logarithmic.

Letting the class marks, 49 inches and 56 pounds, be the
origins of « and v, respectively, and the class intervals be the
respective units, we calculate the moments of this correlation

surface :** '
m =-.511861 class intervals

1. 7631 class intervals
A = 0177
=2 5093

m, =-.205412 class intervals
g, =29781 class intervals
w3 = .J915

o(o, =J. ]221
w,, =4205875

irom which we deduce the following parameters by formulae
(10):
= ~511861  classintervals

A= 1.7637 class intervals
w= 1 0379
c= .1929
a=-13.45 class intervals
b= 1300 ¢lass intervals
r =9340

* Biometrika. Vol. XI, 1915, p. 65.
* # Note that these numerical resuits differ somewhat from those given
by L. Isserlis, because we have applied Sheppard's corrections to the raw
moments.



PAE-TSI YUAN 65

TABLE VI
Correlation Table of Heights and Weights of 11,382 School Boys
between 5 and 14 Years of Age in Glasgow
(Original Measurements of Heights Made to Nearest Inch:
Original Measurements of Weights Made to Nearest Pound)
Height (Inches)

FEIS9 % 3 3 ¥ 8 3 8 8 8 8 3
O3 |83 8 8 ¥ ¥ 2 5 3 5 8 3 &2
24-28 1 4 9 2 1 16
20-33 1 3 492 6 25 3 1 136
34- 38 16 220 414 72 6 728
39-43 | 1 3 51 617 697 95 11 1 ° 1476
H- 48 1 7 122 875 603 38 8 1 1655
49- 53 4 12 249 988 411 33 5 4 1706
. 54- 58 1 3 1 17 4% 95 171 11 4 3 1552
-: 59- 63 1 1 39 630 568 51 6 1 1297
Z 64- 08 1 8 161 621 206 3 2 2 1004
& 69- 73 1 35 374 340 24 2 776
e 74-78 3 106 335 76 5 525
T 79- 83 2 22120 93 4 1 242
§ 84- 88 1 8§ 32 8 8 2 138
89- 93 1 10 3 18 1 66
94- 98 3 25 9 2 37
99-103 511 3 19
104-108 1 501 7
109-113 1 1
114-118 0
119-123 1 1
Total 8 72 350 1193 1914 2178 2196 1913 1115 361 69 13 11,382

With these parameters, the correlation surface of heights and
weights is determined. Now, we shall examine the regression
curves of this correlation surface,

[nserting the computed parameters in formulae (13) and
(14), we obtain the regression equations of the mean height on
weight and the mean weight on height. In Tables VII and VIII,
we have the mean heights for specified weights and the mean
weights for specified heights, We see, from these tables and from
figures IIl and IV, the agreement the theoretical and observed
results is very excellent. In some extreme classes the deviations
of the observed values from the theoretical values are more pro-
nounced. But these classes comprise only a small fraction of the

total number of cases.
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Now, we go further to investigate the scedasticity of the
correlation surface of heights and weights. According to the
theory, for any particular weight the standard deviation of heights

should be a constant and equal to 1(7/- f“?)f= 7. 8893 inches.

This is much less than the standard deviation of the marginal dis-
tribution of the heights, which is 5.2893 inches. That 1.8893 inches
is quite close to the observed standard deviations is shown by
Table IX and l'igure V.

‘I'he theory asserts that the dispersion of weights is not the
same for different heights. But for all arrays of heights the
relative dispersion or relative error of weights is independent of

heights.
TABLE VII
The Mean Heights for Specified Weights
Mean Height (Inches)
Weight ( Pounds) Observed Theoretical
24- 28 34.4 33.2
29- 33 36.5 36.4
34- 38 39.3 39.3
39- 43 41.8 419
44- 48 44.0 4.2
49- 53 46.4 46.4
54- 58 48.5 48.3
59- 63 50.5 50.2
64- 68 521 51.9
69- 73 53.2 53.5
74- 78 54.9 55.0
79- 83 56.0 56.4
84- 88 57.1 57.8
89- 93 58.4 59.1
94- 98 58.8 60.3
99-103 60.7 61.5
104-108 60.6 62.6
109-113 61.0 63.6
114-118 e 64.7
119-123 63.0 65.7
e ————
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TABLE VIII
The Mean \Vei%hts for Specified Heights

Mean Weight (Pounds)
Height (Inches) Observed Theoretical

30-32 29.8 26.0
33-35 32.5 . 30.0
36-38 36.4 344
39-41 39.7 39.3
42-44 44.6 44.7
45-47 50.4 50.8
48-50 57.3 57.5
51-53 65.1 . 64.8
54-56 72.6 73.1
57-59 81.7 82.1
60-62 89.1 92.2
63-65 92.2 103.3

According to formula (23), for any specified height. the relative
error of weights is 7.6%, which is much smaller than the relative
error of the marginal distribution of weights, which is

eip)¥. 1957

Both the theoretical and observed absolute errors or standard
deviations of weights for specitied heights have been calculated
and are shown in Table X and Figure V1. The agreement between
the theoretical and observed dispersions is not as good as for the
regression of the mean weight on height. It should be noted here
that theoretically the standard deviations of weights for heights
over 76 inches are greater than the standard deviation of the
marginal distribution of weights, which is 12.8905 pounds.

In interpreting the standard deviations of weights for par-
ticular heights, we must bear in mind that the distribution of
weights for any given height is not normal, but logarithmic.
Hence, a proper interpretation of the dispersion of weights for a
given height can be made only with reference to the skewness,
masured by the third standard moment of weights, which, accord-
ing to the theory, is a constant for all different heights. The
theoretical third standard moment of the distribution of weights
for any given height, as we shall see later, is approximately .2.
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TABLE IX

The Standard Deviations of Heights for Specified Weights

69

Standard Deviation of Heights
(Inches)
Weight (Pounds) Observed Theoretical
24- 28 3.52 1.89
29- 33 240 1.89
34- 38 191 1.89
39- 43 2.12 1.89
44- 48 1.91 1.89
49- 53 2.07 1.89
54- 58 2.04 . 1.89
59- 63 1.81 1.89
64- 68 1.87 1.89
69- 73 1.79 1.89
74- 78 1.92 1.89
79- 83 1.95 1.89
84- 88 2.18 1.89
89- 93 . 2.01 1.89
94- 98 1.86 1.89
99-103 1.62 1.89
104-108 2.34 1.89
109-113 0 1.89
114-118 e 1.89
119-123 0 1.89

TABLE X

The Standard Dewviations ot Weights 1or Specified Heights

Standard Deviation of Weights
(Pounds)

Height (Inches) Observed Theoretical
30-32 4.6 28
33-35 4.5 3.1
36-38 4.0 3.5
39-41 3.5 38
42-44 3.6 4.3
45-47 4.2 4.7
48-50 4.8 52
51-53 5.9 5.8
54-56 6.3 6.4
57-59 84 7.1
60-62 12.5 79
63-65 14.8 8.7
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Thus, from Table II in Part I, we find that the probability that
any weight will be at most one standard deviation above or below
the ‘mean weight for a given height is .6839 instead of .6826, as
in the case of the normal distribution. The difference between
6839 and .6826 is slight but should not be overlooked. Morc-
over, the difference would not be so small, if the skewness were
larger.

Another thing we must observe is that since the standard
deviation of weights for a given height increases with height. the
probability that for a given height the weight will differ from the
mean weight for that height by, say. at most one pound is not
the same for all different heights. although the probability that
for a given height the weight will differ from the mean weight
for that height by at most one standard deviation is the same for
all different heights. The former prohability is greater for smaller
heights.

The agreement between the theoretical and observed clisy and
synagic is, of course, not expected to be close. Theoretically. the
distributions of weights for specified heights should all havcgg:;.&?

and n, = "4::/"7“ 09 liive observed values of "&y and p, arc

shown below :

Height Observed Skewness | Observed Kurtosis
(Inches) of Weights of Weights
%3y v
36-38 22 8.72
42-44 19 18
48-50 .29 79
54-56 12 1.54
60-62 =93 .50
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The rather large deviations of the observed 7, in the first
class from the theoretical 7, and the observed %, in the last
class from the theoretical«, A may be accounted for by the fact
that only 350 and 69 observations are included in the first and
the last classes, respectively.

The observed marginal distribution of heights is very sym-
metric but is markedly leptokurtic, since its «, is about 2.5093.
Hence, the fit given by a normal curve is not quite satisfactory,
as we can see from Table XI.

The observed marginal distribution of weights is quite skew
and platykurtic. As shown by Table XII, the agreement hetween
the observed distribution and the theoretical logarithmic distribu-
tion is not very close.

|

TABLE XI

Relative Frequency Distribution of Heights of 11,382 School Boys
between 4 and 15 Years of Age in Glasgow

Class Observed Theoretical
Limits Relative Relative Frequency
(Inches) Frequency (Normal Curve)

27-29 .0003

30-32 0007 0020

33-35 0063 0095

36-38 .0308 0332

39-41 .1048 0846

42-44 .1682 1577

45-47 1913 2154

48-50 .1929 2143

51-53 .1681 .1561

54-56 0980 .0831

57-59 0317 0324

60-62 .0061 .0092

63-65 .0011 0019

66-69 .0003

Total 1.0000 1.0000
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TABLE XII

Relative Frequency Distribution of Weights of 11,382 School Boys between
4 and 15 Years of Age in Glasgow

Class Observed Theoretical
Limits Relative Relative Frequency
( Pounds) Frequency (Logarithmic Curve)
19- 23 .0006
24- 28 .0014 0048
29- 33 0119 0211
34- 38 .0640 0564
39- 43 1297 T.1041
44- 48 1454 1441
49- 53 .1499 .1609
54- 58 1363 1504
59- 63 1139 1234
64- 68 0882 , 0897
69- 73 0682 0602
74- 78 0461 0373
79- 83 0213 0212
84- 88 0121 0127
89- 93 .0058 0065
94- 98 .0033 0033
99-103 0017 .0018
104-108 .0006 .0008
109-113 0001 .0004
114-118 .0002
119-123 .0001 0001
Total 1.0000 1.0000

In closing, we may say that the semi-logarithmic correlation
surface is not at all uncommon in practice, and the method de-
veloped here for treating it should prove rather useful. In fact,
our investigation opens up a new way for determining exponential
and logarithmic regression curves.

<l
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