THE PRECISION OF THE WEIGHTED AVERAGE

By
H. MiLicer GRuzEWSKA, PH. Dr.,
Warsaw, Poland.

Introduction. We shall consider an infinite universe of el
ments characterized by pairs of variable quantities x,,
((=1,23 ------. ,00). Regarding the values of y; as the weigt
to be assigned to the variates x; the weighted average of x m:
be denoted by x y? ie.
xy= xj%*zzye+xdy‘9..-...-...

‘Yl + )2 +

NS

All possible samples, each of /V pairs of variates .,y (7=423..,
that can be selected from the universe constitute the sample popt
lation,

Our problem is to obtain an expression for the probable pr
cision of the weighted average x,, according to certain hypothes
concerning the selection of the pairs of variates in various sample
Professor Bowley discussed this problem in his paper on “Precisic
of Measurement Attained in Sampling”* presented in Rome durit
the Congress of Statistics 1925. In this paper Professor Bowl
made no allowance for correlation between the variates x, and y
In the present paper I shall attempt to eliminate this restrictio

I am greatly indebted to Professor A. L. Bowley for suggestio
regarding the simplification of the proof of theorem II and for h
general assistance in improving the form of this paper.

Let us suppose:

(a) the pairs of elements selected from the universe are indepe
dent of each other,

1Cambridge 1925.
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(b) the number of pairs in each sample is so large that /—-é may
be neglected,

(c) the frequency surface #/%)/is normal, i.e. the probability 22
that the particular pair x, ), will be selected is,

- - z/-z/-—
et A 2 estie],

%3 Erriil-r

where X ), g, g and 7~ designate the parameters character-
izing the surface,

(d) the a priori chance that the parameters of (c) are equal to
given values may be defined by the function /7%, y; &, g, a,r)
where this function is integrable, can be expanded in Taylor’s
series and converges over the whole space.

Let the calculated characteristics of the sample be,

Xy the weighted average of x,with ). as weights (7= S J---- .V )

Y the arithmetic average of the vanates Yul€=2,2,3---\N)

X the arithmetic average of the variates x. 0 » )

S the standard deviation of the variates x./ v)

Sy the standard deviation of the variates ;. & ")

&2 the coefficient of correlation between the variates X, and

(¢=2,83---., N .

The expressions representing the most probable values of the
weighted average and its standard deviation are independent
whether the parameters of the universe are known or unknown.
In Parts I, II, and III we shall consider the respective cases,

(a) when all parameters are unknown,

(b) all but y are unknown,

(c) all but y and 0, are unknown.

In Part IV we shall consider the generalized case of Part I

when there are A sets of elements; i.e. x, ¥ f:‘,z """" A
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in the universe. In order to consider this case we shall, at the be-
ginning of Part IV, slightly change the hypotheses and modify the
above notation.

PART I

CAsE WHERE ALL PARAMETERS ARE UNKNOWN

Theorem (1.1). If hypotheses (a) and (c) are satisfied and

if Sy 5),(1- 22)# O then, the most prohable value of x,, is Xy.
Proof. 1f 4 denotes the probability of getting /V particular

pairs of variates, then it follows from hypotheses (a) and (c) that.

z EX M) 5Py YT, %@*M%ﬂ

(1) .
21-r? -
BGsmp)e L E T %%

Taking the partial derivatives of /4; with respect to ), &, g,
and ~, setting them equal to zero, and solving for x y o, g,
and ~ , yields

=X =S
@) et %I Lp
)”Y ay’ \‘Syl

hence x=X, y«¥, o,-5,, &,:5, and r-& wil

make 4 a maximum, and the maximum value of %4 is,

7 ‘ N
3) evax. =L’é}-§,2’7|’1—?{| .
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The weighted average x,, and X, can be expressed in terms of

%Y T G 1 and X, Y U, g{ , 42 respectively,
~
X, =Z (- 50 )y, (by definition)
é=z

27
= LVB;' XY ’Yy(smce 42,' % =X by definition)

r

hence,
P3yS,, N a4
Xy’ > » X (since ;;,f/a:‘.x- -XY:PJ/;J;,,)
@)
similarly.
g, O,
L Yy = - ; Y+ 2

This proves theorem (1.1).
Theorem (1.2). 1i all four hypotheses are satisfied and if
S, (2-7D# O then the ¥ posteriori probability 2 that the
sample came from the universe, the weighted average Xy of which
satisfies the mequahty‘ Xy - -X y’ < € , can be expressed by,

',——a / [dzz where

o Fo et/ ()

(5) 4

L



Proof. 1t follows from (4) that,

RS, S,
Y

x-X= )‘y-Xy- % %y +
Y

PRECISION OF WEIGHTED AVERAGE

Substituting the above value of (%-X)in (1) we shall have,

2. %_j____ -2/;-/»2) "' where
7o 0, 2WTrZ/ €
G o T g7
(6)4 W=V +/g;;—/+%— -2re dxay +(2-r%) —a),—j
and
.- Sx *fyX)’PJ - o
R G s S A v *7/
Let: x“"X" Tu Ee AL e
y-¥Y-= s OOy = A”J;,
then,
=4 . D< N ~N
% I i el
=4 ’ ” .
max. \(LeA N+ A NI-(Pro)? in which
z 1 2R Pro) @” )2
Dywe G o )
(74 w- '7/»‘/)’)2?1*4")2//”7%/”)”)%/’0@ 2427,
and
a‘ lwi
V= -
’ //»/7/ )/P’o’)/ /



P
Taking the logarithim of -
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we shall have,
max

Zz
N foy /Z"“’ =A4, where

As:const » fog (/*/),l/'

2T AL o\ 1-(1n0) ¥ b L
+ /oy[l A3 /cyE (Pra) ]pref,o)z]w

Expanding A4 in terms of the small quantities A,A7 a’,’a/,”,o
. I .
to second powers inclusive and letting A= %/h/\*ﬂ”we obtain

(8)¢7

ZA/ = const +

z"o; Fmax =A,+4, where
Z, 04 04 =)
*4,-2/d dz—lv* ----- /()d/o or
4(A%3)

r-e2)

JIRITAD T e oY e 2 Do

22N TRUL-HT |
1R AY L H7F-H)dT) 2
(- |7 ,p«’ 1-RLHKLP)
./f/f“"[]z("‘?///f"/][ //P(f”e/d Jz a;

"1t gi o) |1 2en?t R4 1en LR TN

’ 2

=4t -
CLra?(1-R¥1 K2

(We shall inake use of the above substitution in the next paragraph.)
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Therefore the probability of getting a particular set of & pairs of
variates can be expressed approximately by,
(9) A, = a const times & Bl

Then it follows from hypothesis (d) and (8') that the & pos-
teriori probability 2 that the sample came from the universe—
the weighted average %, of which satisfies the inequality [xyqlg;f,

whatever the parameters x, xq"q, and , may be—is expressed
by,

ny‘f oo -/Vﬂq,*Az)

/ v 0 &
(10) »-Zy-€ @ .
0 /
~N(A,+A, )
/ //c'/z ..... r)€ /e oy D
L 6o Ay : ¥y
We may write,
-N(A,+A,)
¢ o  + A
%y, Y. %%y )€

/_ Nf
~-NAJerA,) -\ 1+K - RAE-KZ,
Z

= f, e
(11) Py ¥ - Gy 77

-/szywl’! :)2
L /&)”xq&"i‘y")e
where

- 51” /1+KZE~PZKI-/!’Z/:’ , smce( _ '7 a’

and

-N@Il/z *Az }

= e
0%,y %3, ) e, G G, )
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'Let, f=//7/xy—Xy)

and

W2 A)S ) e Ja
oo -/
e~ =)< ° _c.{/
Lthen, P= ~€//7¢477€ /g /05/ afz%“/ ¢///-—v—/e 73

It follows from (8'), (11), and (12) and hypothesis (d) that

¢/ ',—-5—': ) can be developed in Taylor’s series for all values of 7V,
hence,

(H/fE)- pron Epled 37 ;;Oﬂﬁ//é/;%o/* -

4

(13)) =AM/ Pt | 52 %/o/*jd—ﬂ/o/

+4%7;;, ¢fo’/+---]= P ()P 0/ + %)

.

Neglecting terms of order of /Ai; / we shall have,
2

o
(14) 2 / /[¢//+,— W/oj]e dz// [per/5 /ﬁ//]e 2

- =
but, 6/- /"éf / ce / / XE=2 (odd function)
€/N “o0
/5
and / aF = 77, 77

‘o

v ./ E£)2
h 2 £ /C/a:/a/f'
ence, =/-7-7-_-da /

Let o= ,2—3-7: and £ =vNt
1 € 227
then P-= e / e at This proves theorem (1.2)
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PART II
CasE WHERE y/ IS CONSTANT'

Theorem (2.1). 1f hypotheses (a) and (c) are satisfied and
if Jx,g/z-p)%mhen,

(((1a) ¢- QJﬁPTj"

(1b) o

=Jy/1+/172
OF

(10) ,3=,P//]+/1:2}/ﬁ*,é/_62

| (1) x, =X, a1 [/w}%f//«,-/r)‘,

where ¢, g, 7; and x; are the most probable values of o7, g, ~

and x,, respectively, and,

Proof. The probability of getting /V particular pairs of vari-
ates is given by (6) of Part I. Taking the partial derivatives of

A, with respect to

%, %, and x, ,and setting them equal

to zero, we obtain,

4 dp P

(3.2) -d-}f =202-r9+ g, W"x =0
95 _ 2 ’
(3.b) E'Z/f—f’/-}- % VVa,yzO
(3) §

(3.) "f c 201-r2)-2r WolL-r? )W =0
) 0% _ .

L (3.4) _&; V=0

!Case where alt the parameters but y are unknown.
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where \/Va’ "Va/ and \/\;' mean the partial derivatives of W
£ Y

with respect to o, g%, and  respectively,
But, 5
J, S S,
W' - 2ve, V'—Z/__:‘f._/ L orR Sxy
q‘ at x d:\f a, 0’ a

4 4 Jr )2 i 4
o«y%y:zl/dyl/a-y Z/“‘/ fZ/'P5x5z 2[1/’/ /
-2vv, -2k X - 2r /)" /*’
% )’
since V= O, we obtain,

(3.2) /1-r2/~ﬂ—2’2/i oy J”;J/’ -0
@N@D) A-r) () r2 22 trf L) %0

(3'.¢) r/]-fzj-r[(j:"f_jﬁ/;jl/ ] +ﬁ¢r9P€‘f%/’i/—-20

Solving for o, g, and ~ from (3') and making use of the sub-
stitutions from (2) we get the most probable value of g, .9 and ~

(4.a) g, =g = ".[f?,—/l;;z
(4.v) G =% = Iy \’1,‘ m<

(4N (4.c) reg =R Jﬁ*"’ﬁ S(1+2h; %)

%
S
Iy

and from (3.d) we obtain,

(4d)  x,=x, =X, - m-ﬁf’df/ﬁ""/

~

Since 4, = -/%;i we get from (4.a), (4.b) and (4.c),

(4.a) Sy =0, /1 o
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(4.b) Sy = g, |/1-/r,3

(4.c) P=r, j/z- KE1-5F%)

hence,
' RSy S, = G5 7 (147

Substituting the above value of 2 J, Jy in (4.d) we obtain,

#d) x,-x,:=X,+9r7, [A’*?&//r,-k}]

This proves theorem (2.1)

If we denote the maximum probability by 4,,,then,

7 N
(5) 'zzjnaz = [Zﬂed,aé [j_,’-z]

Theorem (2.2). 1f all four hypotheses are satisfied and if

Sy (1~P2)#0 then the d posteriori probability P that the
sample came from the universe, the weighted average x,, of which
satisfies the inequality , X, - yl <€, can be expressed by,

6-_f

/ zdf where
|/2 Vo4 0'

(6)

A P S TI R T  idut Xo
LJY-/-/V-'/ /f""'j[, (14,/}2

Proof. let n,=1- r-k, 7, =I—lr >0 then by substituting the
values of Sy, J), and 2 from 4. a) (#.b) and (4’.c) we get,

2]n this case the function F/x‘y,y, %.Y,. rin (d) is F/Vy, 0,',.0),, ")
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> . Zz v z(z-ﬁ )
dx > 2 77/(1 =~ 2)/ where

(7) 4
Ven /2 .5/- 4%

W +n,%/ / ernz (1,-// /
L ve- 2% 29 ) J"Y*.ir and
“ % % ’ 9,

hence,
P I

®) 2. .@_02 el / 7 ),
max d“ % 1-/"

Taking the logarithm of p—and letting
max
Gy = G2+ A7), refry+p)
qy.%(h/)”), Xy=x,+gd’
we shall have,

Pmaas iy

1 fag where

)
A = Const.+ lgg(Ind e log (1111 § Log l:/-ﬁ;*/)) 3]* 21_—;,-:;] w.

Expanding A in terms of the small quantities A, 2”7 &’ and Y
we obtain,

(i B

”
4, ’757,7/“/*[2 Sh et Wile i nen )] 47

(10) J . [1,«,;,2
1t

Fnax

~ const. + A, +4, where

~

L 2prkekJa &l -2p(heh,) A
-2(hek, ) 2o~ 2724940
‘24;[1-4‘/4«*24*,{] Ao-2r /J-A;'}J ','o} and

A, rz 2,2, 00
/ o’ o,\" od’ de }

m)

.
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The expression representing the value of A4, is quadratic in
form in terms of the variables A] A,'@’and o where all the co-
efficients are positive,

22k ) ) (k) (kY K2k )] o Z
a 207-r,2%) e 2-r%rp ik (hr2k,)
4[]-/‘ %k (Fer 24, J] Z" [k/f~ %%)-t,(1-1 ﬂ asll-k //o
(11 Zf.l-/' )E?—r 2%k (her2k, )] 2[1-r%¢ p2k%(2-%7)]
A tokh ) (2o 047 (0 [ty i% (tokth ) 2’ }z
V4 El—rzfrzk/iﬁ?k }J -/" (£-r, z)flw(',('} //#gzjklfﬂkl"/
(1K)

) [(£-2)(2s 4k, )2 +(25 1,2 h%(1-#2))

For the rest of the proof of this theorem we proceed as in
Part I and can obtain,

(1+kt,)?
(12) d}’ l /(/1*/'2/*/1’ 2) (1_*}2

Notice that if y=Y then,

H=hk=0, g=3 ,F=5% ,4=-° ad z,-X,

(13) %, - -J—_é_f risk®Lr2%)

hence Gyt < if 2#0 where o is given by (5) Part I.

PART III
Case WHERE y AND 0y ARE CoONSTANTS®

Theorem (3.1). 1f hypotheses (a) and (c) are satisfied and
S, 3, (£-8)30 then,

8Case where all the parameters but y, g, are unknown.
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[(12) - /p 2.ir.2%) 5,2
(12 (1) ea, / / BT lerf-RY5) %
Ly RS, RS5Sy y-Y
| (1e) X, Y 5 o yj

where ¢, -5 and x, are the most probable values of &, ~ and
%, respectively and

_S.Z.z/{; .:Z.Z..a y.Y.p ﬂ-c
Y Iy gy Y
Theorem (3.2). 1f all four hypotheses* are satisfied and if
Sx Jy (1- ©2)#O then the a posteriori probability A that the
sample came from the universe, the weighted average x,, of which
satisfies the inequality | x,, -X, |<€ -, can be expressed by.
) 2

€ -
Py
e %9C & where

(2) 2may, J,

% ./%_’. //1-/;,3/ [£+05)]

Notice that if y-Y and o, = 3, then,
0;=J;,, /;-P; %’X)’ and
)
S, )
%y = G -/wg“ //J-P’//JH?‘/
hence 05,, if g0

wrhere 0’y is given by (12) Part 11,

As the proofs of theorems (3.1) and (3.2) do not differ from
the proofs of theorems (2.1) and (2.2.), we shall omit them.*

4In this case the function F/xy.y T g, r)in (d) is Fley, 001 ) -

*Part I and II were presented in Wilno during the II Assembly of
Polish Muathematicians.
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PART IV

In this Part we shall consider the generalized case of Part I
where there are A sets of elements characterized by pairs of vari-

. ¢ 21(l=223 ...... Lk
able quantities, %, Y; { fmd 23 e ] w}
il
x A
Yyt kK
Let, x=7 =Zx y/ 4
2 Ap 1 A
?. . . 7 . /4
where %, is the weighted average of the variates x;, with y/

as weights, and 4, the sum of these weights. Our problem is to
obtain an expression for the probable precision of the quantity x
according to certain hypotheses.

We shall replace hypothesis (b) of the introduction by hypo-
theses (b’ ) and (b“ ) where,

(b’ ) the number (V= /Ny + N, + N »eeeoe..#N.) of pairs in

each sample is so large that ,—1\7 may be neglected,

(b* ) each of the numbers Ng(f= 123 ....- k) of pairs
from separate sets is so large that '.,"V" has a significant value, i.e.,
N,

(4
p 2 W, > O

?
Let us replace in hypothesis (¢) 7z by A2~ (£=4Z3 k)
and x, y, g, g, r by x,"yf’q;{a&f ) and refer to the
corresponding general hypothesis by (¢’ ). Likewise if in hypo-

thesis (d) we replace £V~ X% %, G, " by £ zy‘fy,’ @,{ Jy“.’ f{)

we obtain the generalized hypothesis (d” ).



H. MILICER GRUZEWSKA' 2n

We shall <len;>te the calculc}ted ;hamcteristics of the sample by
7 .
Xlel Y; “Sx ijl P/ /‘ =]/‘<‘Z '.';N{)
corresponding to the values X, XY, J,, .5y, 2 as defined
in the introduction page 197.

Theorem (4.1). 1f hypotheses (a) and (¢’ ) are satisfied
and if (7-%) 5;’5),/#0 then the most probable value of x is X
where,

L
X-Zx/ 2
/ A
Proof*. Let A, be the probability of getting a given set of
/V pairs of variates xf, y‘.! , then it follows from hypotheses

(a) and (¢ ') that,

P =77
n where
! (zﬂqfayzl/j-,»{.e) Ny ’

P o/ %5 0,2
(1) , and
v ‘5,\:{’ (xy -xf,’* Pf%}i) y&Y/ ay!
- — + *
2 sz Sy 7 y? / ax! y?

*The proofs of the theorems (4.1) and (4.2) shall be given in very
abbreviated form as the method of proofs of these theorems does not differ
from the proofs of theorem (2.1) and (2.2) of Part I.
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Let,
' ? 2, .
x-X=D; Xy - X, =5, dy,;
7
y{-Y/:' Jyféf N O'x!=5xf(j+3{);
(2) Pl2 ek
"
03//25)1’0(1*/',{’/’. rp =P//]fp¢o)
£l Ap J,
S, A =% 7‘5’ = Ap j
then,
&
(3) D=§' %, dy

and we can also express the unknown quantity dy <(P=12,-,k)

in terms of 2 and the independent variable Df, (=423 - k-1)
as follows,

1 D N .. - .
P =—f(;- 77{) 21,2, k-1 ;

(4) o (£+g-1)7/)

Hence it follows from (I) that,
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MWy
2[1-R2(1+0,)%]
€ e where

57 .
L [remstsd (1ea, s AN1-RE (240,02
1C) P £ 2 1*0 1% f
- + - ’d #[‘1‘ 2.1* )fV
Ve AL (1ea] )% ? 2y )15 2)) s Z«i;‘;)

and

1 d, ]+/l;
V{=-17/)—,/d’,+41’,/;)* eﬁ%}% ’ Op+ Ay )

are to be found from the equations (3) and(?={2--k)

where d/
Taking the partial derivitives of % with respect to 2 and

) p W obrain,

OPn_1 % 1 0Pn

oD k] %, dd,
(6)

OPn 1 JdPn 1 o0Pn

Pl k-t

00, % 0dy «, od,
It can be easily vertified that 92r_ 9Pn _ . . i
can be easily vertified tha 9D ° oy, O if and only if

9Pn
=—“ .0
oa /
The probability P,, treated as the function of variables

¥ ’ ” 73 . .
D ’7/""74(.1:6;"‘6/(")/' .-,ik,/l? ...Ak'p/‘,./o“xs a maximum when,

s--'9k_/3d{lA{{=/]§ =/0[=01({’11‘?, .../()

This proves theorem (4.1).
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Theorem (4.2). 1f all hypotheses are satisfied and if
then the & posteriori probability that the sample came from the
universe, the quantity x of which satisfies the inequality 'Z-X l<€
may be expressed by,

PRI <
2
Petma) € <, Vhere

o

(7) x
2422 &
0’3;/‘5’:‘ Z} Wg ) and

1,«/—-5/ (z er /—%} ]} 712, k)

Proof. Let P,,,, denote the maximum probability, then it
follows from (6) that,

Nk 1
(8) Boax=€ 77 and

2 (Z”";/Jy{ /_/."1;’2/”[

N, n, W,
y2) /4. 02 ] (4 —_L;j
> =e”7¢L s e Rty )?
/

Prnax /*/)/f,l’lﬁ/);} ll-l’;/fr,a/)zJ
¥ kr [1-7}

Nu./{ - NW W,
e 2l1-Bf(1+0 ?l
k1+ J)1+2, )’1—?2(1*4 }2] k5 ‘

. N,
where the value of Wp given by (5) and Wf”—'?

As in Part I or Part II if we expand the /og —-—m terms of
7.,9:4; /\ /\"A A L./3:4,» the first term that does not vanish

is quadratic in form in terms of the variables,

D, n, i6, G i A, A Dy, AL 0,0,
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and this in turn by linear transformation can be expressed as,

9) 4

(MICDSG 5l nC5l)i o, >0(¢-1234 54)

A
9

C= r's
z
’ W,

/
when

\ &y - !+/("2E-1~P;//-/r; ] and

To complete the proof we proceed as in Part I.

i M;&W-Wﬁ



