COMBINED EXPANSIONS OF PRODUCTS OF SYMMETRIC POWER
SUMS AND OF SUMS OF SYMMETRIC POWER PRODUCTS
WITH APPLICATION TO SAMPLING!

By Paur S. DwYEr

PREFACE

This article is divided into two parts. Part I has for its title “Combined
Expansions of Products of Symmetric Power Sums and of Sums of Symmetric
Power Products” and develops the general mathematical theory which is ap-
plied in Part II to “The Fundamentals of Sampling.” Part II will appear in
a latter issue of this journal.

Each part is treated as an organic unit and has its own introduction and
bibliography. Each article is assigned a given number and each book is given a
letter so that references can be indicated concisely in the body of the dissertation.

Each part is divided into chapters and sections. Braces are used to indicate
the important formulas.

PART I. COMBINED EXPANSIONS OF PRODUCTS OF SYMMETRIC
POWER SUMS AND OF SUMS OF SYMMETRIC POWER PRODUCTS

Introduction

The mathematical material which is presented here has proved useful in
generalizing that portion of the fundamental theory of sampling in which
relations are established between the moments of the sample and the moments
of the parent population. It isthe purpose to establish the theorems in algebraic
form since they constitute an extension of partition and symmetric function
theory and may be of value to someone not necessarily interested in sampling.

A great deal of work has been done in symmetric function theory but not
much of this is of present value to the statistician. His problem deals with
the “power sum’’ while the classical theory, for the most part, deals with the
interrelations of elementary symmetric functions and monomial symmetric
functions. Only one phase of the reasoning developed in this investigation
seems to have received extensive consideration previously and that is the subject
covered in Chapter III.

Previous authors have noted that much of symmetric function theory re-
duces, with a proper choice of notation, to partition theory. It is the plan of
this treatise to present in Chapter I an outline of new partition theory which
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2 PAUL 8. DWYER

shows how the parts of one partition are combined to form the parts of another
partition, and which serves as a means of expressing the main result of Chapters
II, II1, IV, V.

Chapter 11 shows how the formulas of Chapter I are applicable to the problem
of finding products of power sums. The multiplication theorem for power
sums, a generalization of the multinomial theorem, is stated in terms of power
product sums and appropriate special cases are indicated.

Chapter III deals with the expansion of power product sums in terms of
power sums and shows how the formulas of Chapter I may be used.

Chapter IV is the key chapter of the paper. The problem is to expand
products of power sums in terms of power product sums, to multiply each
power product sum by a quantity which is a uniquely defined function of the
quantities composing the power product sum, and then to expand back in
terms of all possible power sums. It is shown that the results can be written
in a compact form which also utilizes the results of Chapter I. This result,
as is shown in Part II, is directly applicable to the sampling problem of finding
the moments of the sample moments in terms of the moments of the universe.

Extension is made to multivariate distributions in Chapter V.

Chapter I. The Combination of the Parts of Partitions

It is the purpose of this chapter to provide a precise notation which shows
how the parts of one partition of » may be combined to form the parts of another
partition of r. For example, 2111, a four part partition of 5, can be made
into 32, a two part partition of 5, by combining the three unit parts into a new
part or by combining the 2 with one of the unit parts to form the 3 and the
other two unit parts to form the 2. This last formation can be made in three
different ways since anyone of the unit parts might be combined with the 2.
The combination of the parts of the partition 2111 to form the parts of the
partition 32 is to be indicated symbolically by Ps -+ 3P, where the subscripts
indicate the number of parts collected and the coefficients indicate the number
of ways in which an equivalent collection can be made.

1. Definitions and Notation. a. Partition [G; 105] [K; I; 1] [16; 105]. We
consider the integer r to be composed of r unit indistinguishable parcels and
define the partitions of r to be all those different groupings into new parcels,
each new parcel containing one or more unit parcels, such that each resultant
grouping of parcels contains exactly all the original r unit parcels. For example
the partitions of 4 are

4;31;22;211 ;1111

b. Parts of Partitions. The numbers of the grouped unit parcels indicate
the parts of the partition. Thus the partitions of 4 above

4 ;31 ;22 ;211 ; 1111 have respectively
1; 2; 2; 3 ; 4 parts.
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The pattern 22 may also appear as 2°. In general a p part partition of r is
to be designated by

P1 D2 Ds - - - D, Where the p’s may or may nqt be equal and where p; 4+ p2 + s
+ .-+ 4+ p =rorby

NXDPXprXpiXx- - Xp,
pit --- pst where{pim + pems + -+ + Daws =71
m4mt - T =0p

c. Order of Partitions. When the parts of a partition are arranged in de-
scending order we say that the partition is ordered. Thus

P12 - - Poisorderedif pr > P2 > p3 > - > D,
and pi* .- prtisorderedif pr > P2 > ps > -+ > ps.

For example, 21° is an ordered partition while 312 is not. Unless otherwise
specified it is hereafter assumed that all partitions are ordered.

It is sometimes convenient to refer to the order of the partition which is
the size of the largest part, p,, when the partition is ordered. Thus the two
part partition, 31, is of the order 3, while the four part partition, 1111, is of
order 1. The set of the numbers p;* ... p;* is to be known as the complete
order.

These definitions of order and part are consistent with the usual definitions.
[16; 105-106] [K; I; 1] [G; 100]. The concept of complete order, as far as I
know, is not found in the literature.

d. Weight of Partitions. Isobaric Partitions. The weight of any partition
is defined to be the sum of all the parts of the partition. Thus the weight of
prt .- patispim + Peme 4 - -+ 4 puaw, = r. Partitions having the same weight
are called isobaric. Thus 4 and 211 are isobaric partitions.

e. Algebraic Partitions. If the r original units are composed of a,, a2, as,
... a, nonseparable primary units, then the result of combining these in any
possible way is to be called an algebraic partition since the r original units
are now replaced by the r algebraic quantities a;, a2, --- a@.. Thus a:, a2, a3
may be combined to form

a1+ az + as; a1 + az-as; a3 + az-Q2; Ay + az-01; A1-02-Q3

which are the algebraic partitions of a; + a2 + as.

The parts of the algebraic partitions are the resulting combinations while
the order and complete order, which indicate the numbers of algebraic expres-
sions combined, agree with the order and complete order of the partitions in
which the a’s are unity. The weight, which is equal to the sum of the parts,
is indicated by w = a; + a2 + .-+ + a,. Thusifa; = 5, a2, = 4, and as = 3,
w = 12. It is to be noted that the algebraic partitions are formed by combining
the parts 5, 4, 3 and not by combining all parts of 12.
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Now a; a2 --- a, is itself a partition of weight w = a; + a2 + --- 4+ @a,.
If groups of the a’s are alike it may be written

atlaz? -- - ap® where
ao + o 4+ - 4 Qo =W
ar+ o+ - 4+ ap =1,

Algebraic partitions having the same weight are called isobaric.
f. Partition Combination Notation. Let (p” 1 p") indicate the number of
Lo pT
different ways the r units, ordinary or algebraic, can be collected to form the
b

partition. Thus <§2> indicates the number of ways in which the five units
can be collected to form a partition with three units in one part and two units
in the other. Since the three units forming the first part can be selected in
sCs ways and since this selection automatically indicates the other two units

forming the second part, it follows that

1° 14
( ) = §Cs = Cs = 10. It is to be noted that(

32 22)=3*‘C”=6

for if the four unit parts are a;, a2, a3, as, then the three 22 partitions are

a1+ a2-a3 4 a4; a1 + G3- a2 + a4; 1 4 A4 G2 + a3
since

a3 + @401 + Q25 Qg + @4- a1 + a3; A2 + A3 a1 + a4

are essentially the same groupings as the first three indicated.

2. Formula for (p" L 1 p")' In establishing this formula we first take the
T...p!
case in which no part is repeated. ie.w = m --- 73 = 1 and p; + p: + s

-+ 4+ p, = r. In this case the formula becomes

( I )_ r!
Pip2---Ps/  prlpel - opi!

T'his results from the fact that the p; units can be grouped in ,C,, different ways.
The p; units then in ,_,,C,, different ways, the p; units then in ,_,,_,,C,, dif-
ferent ways etc. So that

17
(plpz e Pa) = 1Co, r—2:Cp2 r—p1-2:C;s * * * r—p1=p2---2,-1C,

r!

= TRy Compare [B; 49][19; 12]
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If however p; = p, = ... = p,, then the same partition has been used s!
different times since pi, p2, ---, p, may be interchanged in s! different ways,
so that '
(1’) !
pi/  (pul)s!
By similar reasoning
(o ¥ 0) = i
pit - pt) T D ) ) e ’

Compare [19; 12, 13] [I; II, 252]

3} ay ap
1 a2 .« o ah
T2

3. Values of (a v
P1 P2 o Ds

ar' a;’ - - - ar® may be collected to form the p parts of p7* - .. p;* may be indi-
cated by

at' as? .- apt 2111\ _ 1111\ _
(pf‘pf’ pf,")' Thus ( 39 ) =4 and ( 99 ) =

Formulas useful is evaluating this expression can be worked out from the results
of this paper. A table of values of this expression for w < 8 has been given
by the author [19; 29-32].

>. The number of ways in which the r parts of

4. Notation for Combining the Parts of a Partition. Table I. We wish
to indicate not only the number of ways in which a given r part partition of
weight w can be grouped to form a p part partition of weight w, but also the
number of parts of the r part partition grouped to form each of the p parts
of the p part partition. As indicated in the opening paragraph, Py + 3Py

= P(2111> serves this purpose for the case in which the parts 2111 are col-
artas® ... apt

32
lected to form 32. P <p" i p") serves this purpose in the more general
FipT L pT

case. Itsexpansion gives sums of P functions whose subscripts are the numbers
of parts combined and whose coeflicients are the number of ways of forming
the partitions from the parts. For example

(111
P(il) _ P P(21) = 3Py; ete.

ay. ag ap
The use of P(;l,,l ;2,2 :’,‘,,) is so fundamental to the present approach that a
Tipst... pl

table is provided showing the different values when w < 6.

Table I gives values of the function when w = 1, 2, 3, 4, 5, 6. The values
ar' --- ax* are given in the left hand columns and the values of pf* --. pJ* in
the top row. The partitions are ordered from the top and from the left. To
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find a given value, say P(2;;1> we note that w = 5, look for 2111 on the left

and 32 at the top. The result is P;; + 3Py . In the table the order of the
subscripts is important in indicating the number of parts collected to form the
respective parts of the ordered p{! - .- p;°.

The values in the table previously mentioned [19; 29-32] may be obtained

when w = 6 by placing every P in Table I equal to unity.

5. Value of P(ar! az® --- az*). The parts of the partition af' as® --- af*
may be collected to form a large number of partitions of the type pi* --- pJ*.
Thus the parts of the partition 2111 may be collected to form 5, 41; 32, 311,
221, 2111. We denote by P(2111) the values

2111 2111 2111 2111 2111
P( 5 >5+P< 41 )41 +P< 32 )32+P<311>311 +P<221>221
2111
+ P( ) 2111 = P,5 4 3Pu41 + [Py + 3P 32 + 3P;,u311

2111
+ 3P511221 4+ Pun2111
and in general

al LR ah .
P(ai* a3? - -- art) = ZP(al“rl a':,'> p{l p:' ........ {2}
D1l Ds
where the summation holds for every partition pi* ... pJ* which can be formed
by combining parts of ai* --. ax*. The values of P(af* --- af*) for w < 6

are given in the rows of Table I. Thus the value of P(2111) above is found
along the row 2111 where w = 5.

6. Values of P(1") and P(a"). When a; = 1 and &; = r we have
11’
P =Y P( ., ,)"l... T
=2 (pllmpa.' pit - p

and since there are (p"‘ 1 p") different ways of forming py' ... pJ* from
LN

the r units and each way is indicated by P,:...,z. we have
T lr L g
P(I) = X ( 1 'l)Pﬁ‘“-pI'Pll R 2 {3}
pl .o p‘ ‘

When r = 2, 3, 4, etc., we get
P1*» =P, 2 + P, 1*
P(1% = P33 4 3P, 21 + Py, 1°
P(1Y) = Py 4 + 4Py 31 + 3Py 22 + 6Py, 211 + Py, 14
etce.

as indicated in Table 1.
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Similarly when a; = a and o, = r {2} becomes

P@) = 2 (pf : 1' pe ) Pyt (ap)™ (ap2)™ - - - (apa)™ (3"}

r

since there are (p"‘ 1 ,,) different ways of forming the partition (ap;)™ (ap:)™

1 “ e p’
. (ap.)™ from the r equal a’s and each way is indicated by Py...p5.
For example

P(a) = P(Z)a = Pia
2y _ a’ a _ 2
P(a)—-P % +P aa —-P22J+Pua

3

a-a-a

P(a‘) = Ps4a + 4Py 3a-a + 3P22a-2a + 6f)21120,-(lf2 + Py, a‘.

7. Values of P(a;az - - - a,). From the definition

P(ay) = P(al> a = Piay
ay

_ 13702 ayaz
P(alaz) =P (al + dz) +P (al az)

= Pyai+ az: + Puaiae

P(a1aza5) = P( 102 )(al + @+ as) + P( G129 )(al + a5+ a5)

a; + as + a a + a;
aids0ag ayazdas —
+ P(————al T as.a)(al + as-a2) + P(w; T an a)(aa + as-a1)

+ P <a102a3>(alazaa) = Py(a1 + az + as)

apdzqa.

+ Pu{(as + a2-a5) + (a1 + a1 + a3-a2) + (a2 Fas-a))} + Pm(ara2a5)

ete.

Now if complete order of the general partition indicates the number of a’s
collected to form the partition, the subscripts of the P’s are the respective
complete orders. If we indicate the sum of partitions having the same com-
plete order by the term “partition type” and indicate the partition type com-
posed of all terms having the same complete order

pit - pit by Thln. ol
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then
P(a) = PTy
P(a1az) = PyTy + Py Ty
P(a102a5) = P3T3 + PyTu + PiuTu
P(01020304) = PsTy + PyTy + PuTw + PayTon + PunTun
etc.
and in general
Plaiaz -+~ a,) = 2 Pyl i T, 0 {4}

This formula can be used in writing the-formula of Table II or formulas of
weight greater than 6. Thus

P(543) is given by P3Ts + Py To + P T
where
T3 = 12, Tzl =9.3 + 8.4 + 7~5, and Tn] = 54-3

where the dots do not indicate multiplication, but merely the separation of
the parts.

T

In general T,71...,7 is composed of (p" 1 p") partitions since this is the
T

number of ways in which the a’s can be combined to form partitions having
the same complete order, pi'* --. pJ*. )

Formula {3’} is a special case of this formula. If the a’s are all equal, the
(pf‘ 1 pf‘) partitions are equal so that T,m..,= = pit p:,>(ap1)"
.-+ (ap,)™. Substitution in {4} gives {3’}. Similarly {4} gives {3} when
all the a’s are unity.

8. Generalization from Symmetry. The function P(amas --- a,) is a sym-
metric function of the parts a;, a2, - - a,, i.e., the interchange of any two of
the parts does not change the value of the function. It is possible to use this
fact as a basis of generalization and to derive {4} from {3} by its use. From
{3} we have

r 1" k3 s
P) = Z(pfl ...pf‘>Pn:1~-p:-m‘-~~z>. {3}

where (p" 1 p") is the number of the equivalent partitions which can be
n..p!
formed from the r units. In case the r units are replaced by the r different

a’s, there will result (p" 1 p") different partitions having the same complete

1
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order. These ( - 1 ) pf') different partitions defined by T'p11...,1: replace the

1

(p" 1 p") equivalent partitions of {2} and we have
...

8

P(a102 -+ @) = 3 Pyrie.pre Tpripte {4}

9. The Recursion Rule. It is possible to establish a recursion property by
which the value of P(a102 - - - arar41) can be obtained from the value of P(a1a4
...a,). We note, from the results of Table I or by {4} that

P(@3) = P,3
P(321) = P36 4+ Py 51 + Pn42 4 P33 + P11l

P(32) is obtained from P(3) by symbolic multiplication of its expansion, P;(3),
by the expansion of P(2), P1(2). This symbolic multiplication is accomplished
by adding the 2 to the 3 and also suffixing the 2 to the 3. If the 2 is added, the
subscripts of the P’s are added while if suffixed, the subscripts of the P’s are
suffixed.

More generally if P(a;) = Pi(a,) and P(a;) = Py(as), then the result P(a;as)
= Py(a; + a2) + Pu(a)) (az) is obtained by multiplying Pi(a;) by Pa(as) [or
Py(az) by Pi(a;))] symbolically if the subscripts are added when the a’s are
added and suffixed when the a’s are suffixed. Similarly P(a,a2) = P:(a; + aa)
+ Pu(a;) (az) when multiplied by P(a;) = Pi(as) gives

P(a1a2a5) = Ps(a, + a2 + a5) + Pula, + as-a5) + Pala, + as-a2)
+ Py(a;-as + as) + Pui(a1020s)

when the rule of multiplication is the adding of a; in turn to every part of every
partition with the appropriate adding of subscripts and the suffixing of as to
every partition with the corresponding suffixing of subscripts. It is important
to note that the P coefficient of a;-as + a3 is P12 and not Py, although the term
could be written Py a; + a3-a1. The applications do not demand the retention
of a given order of subscripts though the continued application of the recursion
rule does demand it. .

In general the value of P(a; --- a,a,41) can be obtained from the value of
P(a,az - -- a,) by the symbolic multiplication of the expansion P(a;az --- a,)
by Pi(a,.1) since all possible algebraic partitions of @, + a2 + -+ + ar + @rpn
are obtained from all possible algebraic partitions of @, 4+ a2 4+ --- + a, by
adding a,,; in turn to each part of each partition and by suffixing it to each
partition. The corresponding P subscript, indicating the number of a’s col-
lected, is increased by 1.

The recursion rule is useful in checking the entries of Table I. As a matter
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of fact Table I was computed with its use and the order of the subscripts is
that which results from its use. The rule is also useful in finding values when
w > 6. For example, since

P(321) = P36 4 Px51 + Py42 4+ P33 + Piy;;321

P(3221) = P48 + P362 + P3,71 ++ P33 53 ++ P2y 512 + Py 62 + Ppdd
+ P211422 ++ P»53 + P35 + P12,332 + P23 521 4 P12 341 + P12323
4+ Pun3212 = P8 + Py71 42 Py62 + (Py + 2P»)53 + P44
+ 2P31521 + P3431 + Pyn422 4 2Py;332 + Py 3221.

A useful check is based on the fact that the sum of the P coefficients of
P(a; -+ a.) should equal the sum of the coefficients of P(1"). In the above
illustration the sum of the coefficients is Py 4+ 4P3 + 3Pz + 6Pay; + Puu as
desired.

10. Use of the P Function Formulas. The P function formulas, as defined,
represent concisely the ways in which the parts of a given partition may be
combined to get the parts of other partitions. They are also useful in writing
expansions of certain partition functions whose expanded values are expressed
in terms of other partition functions. They are used, in this paper, in expressing
the multinomial theorem, the multiplication theorem for power sums, the
expansions of power product sums in terms of power sums, expansions of mono-
mial symmetric functions in terms of power sums, the double expansion theorem
itself, the coefficients in the double expansion theorem as well as the sampling
laws of Part II. They are also useful in representing the expansions of different
moment functions and can be associated with important concepts of mathe-
matics and statistics such as, for example, the differences of 0. Such applica-
tions, however, are not pertinent to the line of reasoning which is developed in
Chapters II, III, IV, V.

Chapter II

It is the purpose of this chapter to obtain formulas for the expansion of
power sums.

11. Definitions. a. Power Sum. Let z be a variable which is restricted to
the N variates, 21, 22, 23, --- , zy. Then the a-th power sum of the variable
indicated by (a) is defined to be

N
(@=at+a5+ - +ay =2 at {5}

$=]

It is assumed for the purposes of this paper that a is a positive integer or 0.

a

b. Power Product Sum. The expression Z;, z$'zi? is to be called a power
i
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product sum since it is composed of the sum of products of the powers of the
variates. It is to be denoted by (a;-az) or (a1a2). Thus ; iz = (3.2) or

iy
(32). The value (a-a) = (a*) = ; riz} is a special case of (aiaz) where
iNj
a; = a; = a. In general the power product sum is defined by the right hand
member and indicated by the left hand member of

(aay --- a) = ix\ziz\&c..\irx?:x?: x?: 16}

If 4, = 4, , the power product sum becomes

—. Qg * r) = x;lx?"'x?p 7

(a1 + 02004 -+ @) t'x"iz‘“'a\‘!zh\"“\ir 1 7% , {7}
There are many different definitions since there are many different ways of
indicating equality relations among the 7’s. Each results in a unique power
product sum which is to be called, for brevity, a power product. If the a’s
are all unity, there are many duplicates. Thus for the grouping p;* --- p;°,

r

there are (p" 1 pr equal power products (pf* - - ps ). Inthe more general
A%

case we can let Tpn...,7. represent the (p" 1 p") different power products
HEI %,

having the same complete order, pi* --- p;*. We may represent any one of
these forms having this complete order by

(019205 - -+ @)

where N+ @+at-+G=w
or by (¢i*gs* - -+ ¢i)*

where QT+ Qe+ - + QT =w
and T+ 2+ o+ 2= p

c. Symmetric Functions. Both the power sum and the power product are
symmetric functions of the variates since the interchange of any z; with any z;
does not change the value of the function. Also the powder product having
p parts is composed of N® products of powers since the first group of equal
7’s may be selected in N ways, the next group in N — 1 ways etc.

d. Monomial Symmetric Function. It is customary to use the monomial
symmetric function which is defined as

q1 .92 dp
o Z X Ty et T
f1<i2<i3< "<,

* ‘It was intended that the letter representing the exponents of the ¢’s should be the
Greek ‘chi,’ and not the English ‘z.””’
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and which we designate by M(q, --- g¢,) or by M(qi* - -- ¢i*). This function
is not useful for our purposes since the number of terms in its expansion varies
with the number of repeated ¢’s. For example if N = 3 and ¢ X ¢2; M (q1¢2)
= af'zf’ 4 al'2P + 232 + 282l + 2§'2P + 272 = (quq)
whileif ¢ = ¢ =
2

M(¢") = oz} + olaf + afaf = 227,
The monomial symmetric function keeps the number of product terms a
minimum by eliminating all repeated terms while the power product sum
keeps the number of product terms the same by the use of repeated terms,
when some of the parts are alike.

12. The Formula Connecting (¢i'¢:* --- ¢7*) and M(¢f* --- ¢%*). The
power product is composed of N products, each of which is repeated z!z,!
N(p)
lze! oo e xy!
different products which, when repeated z;!z;! - - - . ! times, gives the N’ terms

above. Hence

-+- z;!times. The monomial symmetric function is composed of the

(q’l’l e qf') = xllh! eyl M(q:' . qf‘) {8}
Mg - ¢ = e (@ a) {9}
In the special case in which ¢ = 1 and 2, = p
P
(1) = p! M(1") and M(1") = (_;_') (10}

The function, M(1°) is commonly called an elementary symmetric function.
We refer to the corresponding (1°) as the unitary power product sum.

13. Correspondence of Partitions and Power Products. To each power
product (gi* - - - ¢¢*) there corresponds an algebraic partition ¢i* - - . ¢¢* having
p parts and weight w = a1 + a2 + --- + a,.

This follows at once from the definibions and notation. Thus if w = a;
+ a2 + a3, the power product

> afalafl = ¥ 2ol = (e T o)
f1=ig iy 12
is, by notation, associated with the partition a, 4+ a;-a;. Conversely each
algebraic partition, when enclosed in parentheses, represents a power product
sum.

This proposition is useful in that it enables one to establish a relationship
between the theory of power product sums and the theory of partitions. Eatlier
writers have used a similar correspondence in relating the theory of monomial
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symmetric functions to that of partitions. See for instance [3; 106], [4; 5]
[5; I; 71

Due to this correspondence we do not hesitate to apply such terms as part,
order, complete order, similar, etc. to the power product as well as to the
algebraic partition. Also the sum of all power products (¢i* --- ¢i‘) having
the same complete order is represented by T(pi* ... ps*). This represents
the sum of (p" 1 pre similar power products.

_ L.

14. The Multiplication Theorem for Power Sums. The correspondence
property enables us to derive a theorem, io be known as the multiplication
theorem, which expresses products of power sums in terms of power products.
The type of argument is introduced by establishing simple cases of the theorem

= a1 a2 N
(al)(az) (Z; T )(‘gl T; ) = El 17:: 17::
1=
t2=1

= X atah + X 2l = (a + @) + (110)

=iz thia

(a)(a)(as) = (X s (X a?) (X o) = 2 afiafiall

= (a1 + @+ a) + (@ + aa) + (a1 + a5-3) + (a1-02 + aa) + (a1-02-03)

since the value . is broken into

$1,82.83
) DS ED DD DR D D DR
i1=ig=ig =gty t=tgdeia 1 eia=iy i My
In general, whenr < N
(@)(a) --- (@) = 2 afiafl... 2%
11,82,° " "ty
and this can be broken into summations featuring different equality relations.
These summations. define all the different power product sums of weight w = a,
+as+ - + a.. The different algebraic partitionsof a; + a: + as + --- + a,
correspond to the different power product sums. It follows at once that the
value of (a;)(az) --- (a,) is obtained by writing each algebraic partition of

a + as + --- + a,, enclosing it in parentheses to represent a power product,
and adding. More symbolically we have
(a)(as) - - (a) = 20 (gi* --- ¢i) {11}
where ¢ ... ¢i' represents any algebraic partition of a; + a2 + --- + a..
and the summation holds for all such partitions or by
(a)(a2) --- (@) = 22 T(pi* --- pI*) {12}

where T(p;® --- p:*) represents the (p" 1 p") similar power products and
...

8

the summation holds for each different complete order.
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For example (a1)(a2)(as) = T(3) + T(21) + T(111)
and 7(3) = (a1 + a2 + as), T(21) = (a1 + 02-as) + (a1 + a3-22) + (a2 + a5- @),
and T(111) = (a;-az-as).

The theorem has been established on the assumption that »r < N. If such
is not the case it is possible to satisfy the assumption by adding additional
variates, Twi1, Ty42, - -+ &, all 0, without changing the value of the power

sums or of the product of the power sums since the added terms are always 0.
Thus

(2% + 29l + 2b)(2f + 25) = (2f + 23 + 2L + 2b + 22 (@S + 25 + 9)

when z; = 0
Then

@@)e) =(a+b+c)+ (@+bc)+ (@a+cd)+ (b+ca)+ (a-b-c)
which is

) a+b+c+zxa+b °+Zxa+c "+be+c z; + Z 5 x; 7}

LIETSY ixixk
The term ; x5 :c,- zi = 0 since every product composing it contains an z; = Q.
3%k
The other power product sums are to be applied to the original variates only
since the terms involving z; are 0 in every case.
In general, if » > N, it is only necessary to write out the power product
sums having N or less parts since all those having more than N parts will be 0.

15. The Multiplication Theorem Using the Results of Chapter I. Com-
parison of {12} with {4} shows that {12} can be obtained from {4} by placing
Pla---a) = (a)(az) --- (@), Tprrooopne = T(pi* --- p*) and Ppri... 5o = 1.
Since this can be done for all values of @ and r it follows at once that the entire
theory of Chapter I is applicable to the present problem. For example Table I
shows that

P(321) = P36 + P2151 + P2142 + P1233 + P111321
and it follows that
(3)(2)(1) = (6) + (51) + (42) + (33) + (321)

It should be noted that it is possible to use the table previously published
[19; 29-32] since the entries in this table are the values obtained when
P,z = 1. The value (3)(2)(1) may also be checked from this table.

16. The Multinomial Theorem. The multinomial theorem is a special case
of the multiplication theorem for power sums in which the power sums are all
equal. Ifay == ... =a, =1,

x L2 ]-r x L2
T(pi* --- pi*) = (pln”_p:,)(pl’ e pi)



COMBINED EXPANSIONS 17

and {12} becomes

@ = % (Ve )t 2 (13}

which is the multinomial theorem in terms of power product sums. Special
cases are

1) =) + (1)

(1)’ = (3) + 3(21) + (111)

(1)* = (4) + 431 + 3(22) + 6(211) + (1111)
etc.

The result of {13} may also be obtained immediately from {3} by placing
P(1) = (1), Pyi.gpe = 1l,and pi* --- pJ* = (p* - pJ*).

A more general form of the multinomial theorem is that in which a; = @
= ... = a, = a. In this case

@i +a+ - +2v) = (a)
and {12} gives

(=% (p;' L p: ’)«apx)” -+ (ap)™) {14}

where ((ap:)™ - - - (ap,)™) has parts ap;, --- , ap,. Thus
(@)’ = (3a) + 3(2a-a) + (d°)

so that
() = (6) + 3(4-2) + (2Y).

The result {14} may also be obtained immediately from {3’} by placing P(a")
= (a)’, Ppyi...ppe = 1, and (ap)™ --- (ap)™ = ((ap)™ - (aps)™). When
N = 2, {13} gives the binomial theorem

W =2 (" )

P1P2
special cases of which are .
1) =@ + (1)
(1)° = (3 + 3(21)
(1)* = (4) + 4(B31) + 3(22)
(1)° = (5) + 5(41) + 16(32)

etc.
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These can be readily translated to the usual form. Thus
(@ + b)* = a* + b* + 4(a’b + b*d®) + 3(a’b® + b*a?).

In a similar manner the trinomial theorem appears as

W =2(,r Yome

A special case of the multinomial theorem {13} is also useful in writing N”
in terms of sums of N. When the variates are all unity the power sums are
all N, and the power product sums are the number of terms in the partition
representing it. If a partition has p parts the number of terms in it is N,
We then have

r

1
P1P2Ds

. I ®
N = . . g 15
2] (A (15)
Special cases are

N*=N + N®
N’ =N 4 3N® 4 N©®
N'=N +4N® 4+ 3N® + 6N® + N = N + IN® 4 6N® + N©
etc.
17. The Use of Monomial Symmetric Functions. It is possible to express

the results in terms of the monomial symmetric functions by means of {8}.
Thus

(2)(2)(2) = (6) + 3(42) + (222)
= M(6) + 3M(42) + 6M(222).

In general, Table I may be used to express products of power sums in terms
of monomial symmetric functions. It is only necessary to place every P,z1...,%
= 1 and to multiply by the factorials indicating the repeated entries at the
head of each column. The table [19; 29-32] may be used similarly.

The multinomial theorem in terms of monomial symmetric functions becomes

. r ' . .
pl ) p.
and by {1}

L 7'! 1 ,,. pTs
W = 2 Gty o M P (16]

as it is conventionally stated.
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18. The Multiplication Theorem from the Multinomial Theorem. It is
possible to use generalization from symmetry in deriving the multiplication
theorem from the multinomial theorem though this can not well be done from
its conventional statement (16). The monomial symmetric function does not
have the property that M(a-b) = M(a-a) when b = a while (a-b) does become
(a-a) when b = a. The first step then is to reduce {16} to power product
sums by means of {9}. We then have

| ! "o
W = T G @ mmt -t @)

T

Next it is necessary to introduce the factor (p" 1 p") for there are many

... pf
equal terms for each value p;! - - - py* when the a’s are all unity. This is ve
ry

easy in this case since the value of the coefficient of (p1* - - - p;*) is (Pn" 1 ) p.").

It follows at once that
r lr t 4 w,
@ = Z (1 e )00 -1

Suppose that the r units are replaced by a;az - -- a,. Then the (p" 1 p")
1 **°* Vs

power products, (pi! --- p;*) will be replaced by the (-p" 1 p") different
... pf
power products composing T(p1* --- p;*). It follows at once that

(@)@) --- (@) = 2 T(I* --- pl*).

19. The Determination of the Coefficient of a Given Power Product in the
Expansion of a Product of Power Sums. In some cases we wish to determine
the coefficient of a given power product without computing the compléte

ah.

expansion. This is given by P ( where the P coefficients are unity.
l

Thus the coefficient of (32) in the expa.nsmn of (2)(1)(1)(1) is found from
(21“) Pu + 3Py and is 4.

20. Relation to Previous Results. The multiplication theorem may be
viewed as a generalization of the multinomial theorem. A more general proof,
applicable to multivariate problems, could be presented with the use of more
involved notation. It seems wise rather to present the simpler one variate
case and to emphasize the principle of generalization from symmetry which
will enable us to write the multivariate laws with relative ease.

The general problem discussed here seems to have received a very small
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amount of consideration as much of the extensive classical theory of sym-
metric functions is limited to the interrelations of the elementary symmetric
functions and the monomial symmetric functions.

A monumental work on symmetric functions not subject to this limitation
is the Combinatory Analysis of MacMahon [K]. MacMahon provided a
technique for multiplying power sums in many variables as a special case of a
more general theory. [K; II, 321].

Some of the work on alternants is closely related to the problem of products
of power sums although the alternant, as usually defined, is limited to the case
in which » = N [I; II, 446]. For an example the reader is referred to a devel-
opment by Muir [L; 335-6).

Thiele (1889) gave tables’ of products of power sums in terms of monomial
symmetric functions for partition products of weight <8 [H; 114-117]. J. R.
Roe has later given one for w < 10 [N; Plates 17, 18]. Statisticians have some-
times stated the results in nontabular form. See for example, the multipli-
cation formulas of Church [13; 81-83] [14; 370-1], whose results may not at
first appear to agree with those above since Church has used a less compact
notation and, of course, the monomial symmettic function.

The chief contributions of the present attack are

1. The use of the formulas and tables of Chapter I in writing expansions of
products of power sums.

2. The use of power product sums in place of monomial symmetric functions
which makes feasible.

3. Generalization'from symmetry.

Chapter III

It is the purpose of this chapter to establish formulas giving the expansion
of power products in terms of products of power sums.

21. The Binet (Waring) Identities. It is customary to introduce this subject
with formulas for M(a-b), M(a-b-c), etc. so we first derive the formulas for
(a-b), (a-b-c), etc. We may use the results of Chapter II since the problem
here is the inverse of the multiplication problem. By the multiplication
theorem

@)®) = (a + b) + (a-b)
@@®)c) =(@+b+c)+ (@+b-¢c) + @+ ¢d)+ (b +ca)+ (abdo)
@+d)=(C+b+c)+ (a+ b0

2 These tables are not accessible to me, but Thiele refers to them in his ‘“Theory of
Observations.”’
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so we get

(@-d) = (@)() — (a + b) {17}

(@-d-¢) = (@®)(c) — (¢ + b)(c) — (@ + )(B) — (b + c)(a)
+2(@+b+c¢) {18}

Similarly

(@b-c-d) = (@O))@) — (@ + )@ — (a + b))
— (@ + ®)) — @+ )N a)@) — b+ d)(a)(c)
-+ dD@DO) - (@a+b)(c+a) - (@a+ )0 +d)
— @+ )b +c)+2(@+d+ )d) + 2(a+ b+ d)(e)

+2(@+c+d)®) + 20 +c+d)a) —6(a+ b+ c+d)
{19}

When e X b Xx ¢ X d, {18}, {19}, {20} are also the formulas for M (ab), M (abc),
M(abed). These formulas are quite commonly attributed to Binet who gave
them in 1812 in connection with certain proofs of determinant theory [1; 284]
[I; I; 81]. Waring should be given credit (see Miscellanea Analytica 1762).
Binet gave no proof. The reader is also referred to the earlier work of Paoli
[A; section 28].

A much more adequate treatment was given by Hirsch in the early 19th
century [B; 35-38]. He wrote, out the terms for M(a-b-c-d-e) and indicated
a scheme for extending the results. More than this he proved that any “numeri-
cal expression”’—his term for monomial symmetric function—can be reduced
to numerical expression having one less part [B; 26]. The continued application
of this theorem leads eventually to numerical expressions having only one part,
i.e. to power sums. Hence all numerical expressions can be reduced to power
sums [B; 27, 32].

Recent authers give essentially the same proof. See for example Bocher
[J; 241-242] who states the theorem, “Every symmetric polynomial is a linear
combination with constant coefficients of a certain number of the 2’s.” See
also O’Toole [16; 114] and Burnside and Panton [E;167]. Thus modern authors
provide a proof of the fact that M(a; - - - a,) can be expanded in terms of power
sums but most of them fail to provide, a formula giving this precise expansion.
Even MacMahon after writing the values of M(\u), M(A\ur), M(\}), M(\})
avoids the immediate generalization by stating [K; I; 7], “In actual practice
there are easier ways of calculating the many part functions and the general
formula is of little importance.”

While MacMahon’s statement has a certain amount of truth in that any
given monomial symmetric function may be computed from others having one
less part by the recursion property described by Hirsch, yet there are many
cases in which a definite formula, rather than a method, is desirable. A formula
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particularly is demanded by the statistician who is working with a large number
of monomial symmetric functions simultaneously. See for example the remarks
and efforts of Carver [15; 103-104, 119-120], Church [14; 373, 377-378], and
O’'Toole [16; 115].

Some authors have provided solutions and it appears that statisticians are
not entirely familiar with all the work which has previously been done. It
is the aim of the remainder of this chapter to suggest references which make
previous work available to statisticians as well as to present a logical and quite
complete development. The main results are not essentially new although
their explicit statement in the language of power products is necessary for the
development of the next chapter. The argument features the easy generaliza-
tion from symmetry. The value of (17) is expressed in such a form that the
value (a; - - - a,) may be obtained immediately from it.

22. The Value of (1") from Waring’s Expansion for the Elementary Sym-
metric Function. We first derive the formula (17) from the conventional
Waring’s expression for p. in terms of the power sums. Burnside and Panton
[E; II; 92] give this as

Pn =2

where pn = (—=1)"M(1™) and where S* ... S;* isanyr +r2 4+ -+ + Tm
part partition of m. When m = r and p{*' - .. p,* is any p part partition of m,
{20} becomes

+:
(=1 rateetrm STl ... gl

i+ Do+ 1) - T(rm + 1) 27237 - - m'm (20}

(_l)rM(lr) = Z (—I)P(Pl)" o (pl)" {21}

pl!" vo p,!" mlawe! oo !

Dividing by (—1)" and noting that (—1)*" = (—1)"" we have

no s (=D @) - ()™
M) = B e e o (22}
and hence that
" n o s EDT )T - ()T
() = M) = o (23}

A second proof of {23}, given in the next sections, does not assume the
formula {20} and develops by easy stages. Although somewhat longer than
the method above, it contacts much of the work that has been done in this
field. It also provides two useful arithmetic checks dealing with the coeffi-
cients which the more analytic method above does not provide. Those who are
familar with {20} above and are interested in the immediate development of the
argument with the use of {23} should turn to the equivalent {38} of section 28.
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23. The Newtonian Formulas. The development begins with the well
known formulas connecting the power sums and the elementary symmetric
functions which appeared in Newton’s Arithmetica Universalis. These formu-
las are given by Bocher (J; 244) as follows

Sk = piSea + -+ + (=D TpeaSi + (=D*kpe =0 k=1,2,... {24}

where S; is the sum of the k-th powers and p is the i-th elementary symmetric
function.

So many proofs of this theorem are accessible that a repetition here is hardly
justifiable. A proof using calculus was given by Bocher (J; 243). Proofs
using algebra only were given by Hirsch (B; 16) and Chrystal (F'; I, 437).
Muirhead (9; 66-70) gave three proofs of which the second is perhaps best
adapted to the present development.

24. The Determinant Equivalent of (1”). It is usual to solve the Newtonian
equations for the power sums (J; 244) but our objective is the solution in terms
of the power sums. The equations are

Y40 = (1)
Mp: — 2p: =(
@p: — (V2 + 3ps =@3)

@ — 2p2 + (Vps — 4pa = (4)

whence
1 0 0 0 (1)
) -2 0 0 2)
@ - 3 . 0 (3)
C=-2)—(@C=3)C—-4)............... (=) —-1) (r=1)
o = C-1)—-CC—-2C—=3)............... (=1)"72(1) (r)
1 0 0 0 0
¢)) -2 0 . 0 0
2) ¢)) 3 0 0
r—2)—-(@C=3)0C—-4)............... (=) = 1) 0
C-1D=-0C-=-2C-=3)............... (=1)*(1) (=)

Next, factor out all the negative signs in the even numbered columns in each
determinant. The number of these columns of negative signs is the same as
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the number in the denominator if r is odd. If r is even, there is one more in
the denominator. Hence the negative signs may be dropped in both deter-
minants if (—1)""is inserted in the numerator. Furthermore the value of
the determinant in the denominator is r! Next, change the numerator by
moving the r-th column to the first column position and inserting the com-
pensating factor (—1)"™. If A, represents the resulting numerator determinant,
the value of p. becomes

p= CDTDT,

T

and

We have then

1) 1 0 0
0)) (1) 2 0
@’ = a, = (3) | (2) | (1) | ..... 0' | 0 (25}
Cc-1D0C-2)C—=3) .............. 1) r-1
() C-1)C-2) .............. 2) 1)

The determinant has received the attention of earlier writers {19; 3}. Gen-
eralizations of it will be mentioned at the close of the chapter. Its expansion
in terms of power sums is known and may be written

5 (=D @)™ - ()™
ar = Ep;!" RN /RLER A IR | 126}
where Pim A Pemy e e =7
and m+mt -+ 7=

See for example O’Toole (16; 113).

It is at once evident that {26} is equivalent to {23}. Those who are familiar
with the expansion of A, above may wish to turn immediately to {38} of sec-
tion 28 since the intervening sections are devoted to a rather detailed and rigor-
ous expansion of the determinant. This development follows, in a general way,
that given by Mola (5; 190-195).

25. The Expansion of (1) = A,. The determinant, A,, is a special type
of determinant which is known as a recurrent. There is a simple recursion
property which is useful in its expansions in terms of products of power sums.
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) 1 0 0 0
2) ) 2 0 0
b= | @
() r-1(-2 1) r
r+1 @ (r—1) @ @
If we expand A,;; in terms of the (r 4 1)st column we have
Ay = (DA, — rA, {27}

where A, represents the determinant A, with every power sum in the r-th row
increased by unity. It is only necessary to arrive at some method of designat-
ing these terms if the above recurrence formula is to be applied. This can be
done by inserting the power sum (1) before the other power sums which it is
to multiply. Alsoin forming A, add unity to the first power sums in the expan-
sion of A, being careful to retain the previous order. Thus

A = (1) )
A = (H(A) — 10 + 1) = (1)A) - ()
A = (IAWA) - (23] - 2[(2)1) — B)] = )A)(A) — (1)(2)
- 2(2)(1) + 23)
A= (OO — MM - 2(1)@)(A) + 2(1)B) — 3(2)(W)()
+3(2)(2) + 6(3)(1) — 6(4) {28}
A = (@)D — MHOMD@) — 2(1)D)@)(A) + 2(1)(1)(B)
=3(1)@)(1)(A) + 3(1)(2)(2) + 6(1)B)(1) — 6(1)(4)
— 42 + 4(2)(1)(2) + 8(2)(2)(1) — 8(2)(3)
+ 12(3)(1)(A) — 12(3)(2) — 24(4)(1) + 24(5)

ete.

Vs
By collection of repeated terms and recalling that (1") = A,, the expansion
becomes

= q ‘ )

1) = 1) - @

@) = (1) - 32)(1) + 2(3)

(19 = (1)* - 6@)A) + 3(2)* + 8(3)(1) — 6(4) {29

(1) = (1)° — 10(2)(1)° + 15(2)@)(1) + 20(3)(1)(1) — 20(3)(2)
—30(4)(1) + 24(5).
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It is possible to write values of (17) in terms of power sums though the pracical
difficulty increases as r increases. Also continued use of the recursion formula
{27} is apt to lead to error. Two simple checks are available. If D, represents
the sum of the coefficients of the expansion of (17) and | D, | represents the sum
of the absolute values of these coefficients, then

D, =90 whenr > 1 {30}
| D, | = ! {31}

The proof of {30} and {31} follows directly from {27} since the coefficients
of A,and A,are the same. Thus D,y = (1 — r)D,and | D,a| = (1 4+ 7)| D, |.
Since D, = 0 it follows that Dy, Dy, --- , D, = 0 and since | D,| = 2! it fol-
lows that | Ds |, | Ds |, - -- , | D, | are 3!, 4!, r! respectively.

26. Determination of the Coefficient of Any Ordered Product of Power Sums
in the Expansion of A,. We next attempt to revise the process outlined above
80 as to get the formulas {29} without going through the work of writing out
{28}. We note first that every product of power sums in the expansion of
(1") in {28} has been obtained from (1) by a succession of r — 1 operations
which were either prefixes (when the (1) was prefixed) or raises (when the (1)
was added). Also the order of the power sums in a given term indicates which
operations have been prefixes and which raises. For example (1)(1)(1)(1)(1)
results from 4 prefixes while (5) results from 4 raises. The term (3)(2) results
from 1 raise, 1 prefix, and 2 raises respectively, while the term (2)(3) results
from 2 raises, a prefix, and a raise. The product (p:)(ps)(p=)(p1) results from
prefixes when r = py, r = p; + P2, 7 = p1 + P2 + ps and raises at all other
times.

The sign of the coefficient of (ps)(ps)(p:)(p1) can be determined when we
recall that each raise is accompanied by a multiplication by —r while each
prefix is accompanied by no change in the coefficient. There have been p; — 1
+p—314+p3—1+4p—1=p + p2 + ps + P« — 4 raises so the sign
is (—1)""" where p1 + p2 + ps + ps = 7. More generally if (p,) - - - (ps)(p2)(p1)
is a term in the expansion of (1") where p, + -+ + p3 + P2 + 1 = 7 the
number of changes in thesignisp, — 1 4+ p2 — 14 .-+ +p, — 1 = p1 + ps
+ -+~ +p, — p =1 — p. It follows at once that those products of power
sums in the expansion of (17) which have the same number of factors, p, also
have the same sign and that this sign is (—1)"".

In determining the numerical part of the coefficient we note that each prefix

is accompanied by a multiplication by unity which can be written in the form ;

Each raise is accompanied by a multiplication by r so there appears in the
numerator the product of all possible values of » and in the denominator the
product of those values of r corresponding to each prefix. For example the
numerical coefficient of (ps)(ps)(p2)(py) is
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(pit+ps+p+p— D! _ (P« + ps + P2 + p1)!
(ps+ P2+ 21) (P2 +P))(p1)  (Ps+ Ps + P2+ P1)(Ps + P2 + p1) (D2 + P1)(P1)

Similarly the coefficient, without sign of (p,)(Ds-1), :-- (Ps)(p2)(p1) in the
expansion of (17) is

(pp + Do1+ -+ + ps + P2 + P! (32)
@+ Do1+ - + D+ P2+ P1)(Ppa + - -
+ ps +p2 + p1) - -+ (ps + P2+ 21) (P2 + P1) (D)

The denominator of {32} has a certain resemblance to a factorial. Thus
41=(14+14+14+1QAQ4+1+1)1 + 1) (1) in which the successive factors
are found by dropping the first unit. The corresponding algebraic expression

(s + ps + P2 + P1) (Ps + P2 + P1) (P2 + P1) (1) is found in the same way
and might be called an “algebraic factorial.” It might be designated by

(ps + Ds + P2 + po)i

It should be noted that the order of the terms in the algebraic factorial is sig-
nificant. Thus (p: + P1)i > (p1 + p2)i unless p; = pa.

The coefficient of (p,)(p,-1) --- (p:)(p1) in the expansion of (1) may now
be written

r— 7!
(-1) @+ - T2+ i (33}

For example the coefficient

@M@ s (-D"* 3 =
W@ s (-0~ 5 =3
@@ s (-0 5 =8

and the total coefficient of all terms involving (2)(2)(1) is 15.
With a less formal notation we might designate the sum of the p! “algebraic
factorials” which can be formed from p, , po—1, - -- P2, 1 by

E(Pp'l'?a—ljl- <o 4 P2+ P)i

and the sum of their reciprocals by

1
E(p9+pp—l+"’ + p2 + p)i

This notation calls for the inclusion of all the p! algebraic factorials even though
some of them may be alike. If

My, M, ==+ , M
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indicate the numbers of repeated p’s

1
z:(1r>p+1m»-1+---+1r>z+1r>1)i

1

T.!Z @+ Por+ -+ + P2+ P1)i (34)

== 7|'1!‘l|'3! “oe

, r!
where Z holds for the s o By
In general the total coefficient of (p;)(p2) --- (p,) in the expansion
of (17) is obtained by adding all possible terms {33} in which the same p’s
occur in different positions in the product. Every possible different position
grouping of the p’s is present but once since it is dependent solely on the unique
order in which prefixes and raises have been combined to produce that particular
position grouping. The number of these position groupings varies with the
number of repeated p’s. The sum of the coefficients of these position groupings
of the same p’s, i.e. the total coefficient of (p,)(p:) --- (p,) is then given by

r—p ’ 1
O Y

which can be written by means of {34}

- ! 1
—1,- p r! .
( ) 1rl!1r2!--~1r.!E(p,,+--'+p1)i

non-repeated terms.

The formula for (1) may be written

R Y O T D2

1&!1!'2! e

1
(Po+ -+ + 1

27. Theorem on Algebraic Factorials. The result {35} can be further
simplified by the theorem

1 1
= 36
z:(pp+-~ + D2+ D)i PePor P21 36}

which is proved by mathematical indyction.
A. It is true when p = 2, since

L1 SN A\ 'S
Z P+ p)i (P2 + p)i + m+p)i P2+ m [Pl + P2 y 2y
B. If it is true for p = k, it is true for p = k 4 1 since
1
2 - .
e+ 2+ - + P+ Do)

@)(@2) --- (p,) {35}

_ 1 [Z 1
D1+ -+ D24+ 1 (px + -+ + poi

1
+ pgx E P +Dea + - +pl)i]
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where 2 gives the k terms in which pi., replaces pi, pr_1, - - - , D2, D1 re-
Pk+1

spectively. Now if {36} is true when p = k

1 = 1 l:pk+l+pk+pk_1+~--+p2+pl:|
(Perr+ - +p)i Dot -+ m Drt1Dk Di—1 - * * P2P1

1

C penPr o PPy
C.. Hence it is true when k = 2, 3,4 ... .

28. Formulas for (1"). Formula {35} may now be written

@) =3 (1~ " lpp(pl)(pz)--%pp) (37)

mal - m Pipa -

or if the p’s are ordered it may be written as

_ r! 1 .
W) = T (-0~ @) Y (58]

[ *
"Wa!pl -..pa'

which is the formula previously given as {23} and {26}. In addition the check
formulas {30} and {31} become

— !
(=) — =0 {39}
D1 - Py T1! . sl
r!
> - L= {40}
pl .o p‘ Tyl oo Tyl

These relations {39} and {40} correspond to statements of Cauchy (2), (I; 1;
252-3) and to later remarks of Cayley (D; 577). By dividing by r!, they become

(=1)—
D i s T g el 141}
1
Zp;l...p:-m!...,,,!=1 {42}.

The formula {38} is easily applied. Thus
5 5! 5! 51 51 2 5 e
@ =3 - Low - 2 e+ 2 o0+ 2 e

5! 3, B!, s
— 2 @ + 3

= 24(5) — 30(4)(1) — 20(3)(2) + 20(3)(1)* + 15(2)*(1)

— 10(2)(1)° + (1)%.
with

0
5!

24 —30 — 20 +20 415 — 10 + 1
24 +30 4+ 20 4+20 4+ 15 4+ 10 + 1



30 PAUL 8. DWYER
L

We next write the formula (1) in such form that we use the principle of
generalization from symmetry. If we multiply numerator and denominator
of {38} by (pr — 1)!"(p2 — D)I"™ ... (p, — 1)!"* we get

) =2 (=1)™*(p1 — D" (pe — DI

s D L@ - G

D@D - @D ml

which immediately becomes

(1) = Z (=1)*(pr — DIM(ps — D™
Y )@ ) (88).

cei (=D
.= (o 1

This somewhat formidable appearing formula is easy to apply. For example,
in finding the value of (1°) we write in one row all possible partitions of 5.
In the next row we place the well known values of (p" 1 p") . In the next
...

row we place the indicated products with proper signs. Thus

1° 21° 211 31’ 32 41 5

1 10 15 10 10 5 1

1 -1 +1 +2 -2 -6 +24
results in

1% = (1)° — 10(2)(1)* + 15(2)*(1) + 20(3)(1)* — 20(3)(2)
— 30(4)(1) + 24(5)

as indicated above.

It is immediately recognized that formula {43} can be obtained from for-
mula {3} by placing P(1") = (1"); pi* --- pJ* by (p)™ - -+ (p.)™ and Ppp1...p5
by (=1)""(pr — D! ... (p, — 1)!" and hence that formulas of Table I
may be used in obtaining the values of (17).

29. Values of (a; --- a.). The form of {43} also permits generalization

from symmetry since the (p" 1 p") equal values (p)™ --- (p,)™ are re-
T

r

placed by the <p" 1 p") different values composing T'(p1)™ - -- (p,)™ when
L. ‘

8

the 7 units are replaced by the a’s. It follows at once that

(@az -+ a) = 22(= D) — DI ov (po = DIT@)™ -+ (p)™ {44}
where T = pim + Peme + -+ 4+ DT,
and p= m4+ m+ -+ m.
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As an illustration we write
(abe) = 2(a + b + ¢) — (a + b)(c) — (a + )(®) — (b + ¢)(a)
+ (@)(®)(c)
as indicated earlier by {18} and
(amasa) = — 6T(4) + 2T(3)(1) + T(2)(2) — T(2)(1)* + T(1)*
- (@13aa30405) = 24T(5) — 6T(4)(1) — 2T(3)(2) + 2T(3)(1)*
+ T@YQ) - 7)) + TQY
ete.
30. Table of Valuesof (a; --- a,). The values of the power products with

w =< 6 are given in Table II which follows the general form of Table I. In
fact Table II may be derived from Table I by placing every

Pp{l...p’.'n = (— l)r—p(pl — 1) !'l “ee (p' - 1) !"

as indicated in the next section.

31. Use of Partition Formulas. By comparing {44} with {4} we see that
{44} can be obtained from {4} by placing

Plaaz - - a3) = (a2 - - - ay)
Puo. .= (—1)"(p— D" ... (p, — 1I"

and Toproppe = T(@)™ --- (p)™
It appears then that the values of any power product sum (a;a; :-- a,) can
be obtained by writing the expansion of P(a; - - - a,) and substituting as indi-

cated. Thus since
P(321) = P36 + P2151 + P2142 + P2133 + Pullll
(321) = 2(8) — (5)(1) — (4)(2) — B)B) + (HM)Q).

It is also immediately apparent that Table II can be obtained from Table I
by placing P pi...,1 equal to (— 1)"*(py — 1)!I" ... (p, — 1)!" and that the
main results of Chapter I, including the recursion rule, are applicable to the
present problem.

32. Coefficients of Given Terms in the Expansion of Product Power Sums.
The methods of the last section are also useful in finding the coefficient of any
term in the expansion. For example we wish to find the coefficient of (3)(2)

in the expansion of (2111). We note that P(2;;1) = P; + 3Py and that
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TABLE II
Power product sums in terms of products of power sums when W < 6
W=6
6| 51| 42| 33 411 | 321| 222318 | 2212 [o1e | 10
6| 1 o T W =1
51| -1 1 o R 1
42| ~1 1| | I ERES
33 | —1 1 o
a1 2| -2|-1| | 1 IR
321 2| -1|-1]-1 1 T W=2
222 | 2 -3 R EELR
s | —6| 6| 3| 2 -3| -8 | 1| | | | | 2|1|
ol —6| 4| 5| 2 —1| —4 -1 | 1| | 1 |-1| 1
914 | 24 |—24 |—18 | —8 12| 20 3/-4|—6| 1
19 |—120] 144 | 90 | 40|—90 |—120{—15| 40 | 45 |—15] 1

W =3
3|21 | 111
Ta 1| |
Tar -1 1|
W= T 2)-8| 1

5| 41| 32 311|221 [211afiiin
5| 1 o W=4

al-1] 1 o 4| 3122 |2ufuu
32 | —1 1 - P T I I I
a11| 2| -2|-1]| 1 o st | —1| 1| | |
221| 2| -1|-2 1| 22 | -1 1) |
o111 | —6| 6| 5|-3|-3| 1 a1 | 2| -2|-1| 1|
11111 | 24 [-30 |—20 | 20 |+15 |-10 1| |11 |-6| 8| 3|-6| 1

‘

the coefficient of (3)(2) is Py + 3Py where Py = (— 1)*7?2! = 2 and Py
= (= 1)*? = 1. Hence the coefficient is 1.2 4 3.1 = 5.

33. The Expansion of the Monomial Symmetric Function. If a, X a2 X a3
% ... X g, then M(a; - -- a,) = (a1 -- - a,) and previous results are applicable.
If however the product power sum is of the form

(a‘;la;z e a:")
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then
M(aias® .- ap*) = _r (af* ... af™
alag! -+ an!

and

M@ - - af¥)

1 Loy L L x L4
= alal 12(_1) (pr— DI e (pe — DI T(p)™ - - - (p)™* {45}
apiog: *°° Qpe.

For example
M421) = 2(7) — (6)(1) — (5)(2) — (DB) + D)
M@322) = (7) — (5)(2) — $(4)(B) + #(3)(2)(2).
M%) = —5(6) + (5)(1) + £(4)(2) + 3G)B) — FODQ)
- (@O - :@@)@) + :)W)®Q).

Study will show that the formula {45} is equivalent to one given by Faa de
Bruno (C; 9) and later by Roe (7).

It is possible to use Table II in finding the expansion of the monomial sym-
metric functions. It is only necessary to multiply each term in the expansion
of (a1 .. a,) by —'—}—-—'.

ayp: *°° Qp.

The check formulas give, in the case of the monomial symmetric function:

The sum of the coefficients in the expansion is 0.

The sum of the absolute values of the coefficients is —— 'r! i
Q.02 *** Qp-

The reader might compare the second of these checks with the results of
Fai de Bruno (C; 14).

Tables giving the expansion of monomial symmetric function have been

given. One by J. R. Roe (12; plate 18) includes all cases of weight <10.

34. Previous Results. Previous authors have studied the monomial sym-
metric function. Gordan has deduced a monomial symmetric function formula
which is recommended by J. R. Roe (M; 24-33). MacMahon has given a
general formula (K; II; 320) for expanding any monomial symmetric function
in terms of power sums together with an operational method for its evaluation.
O’Toole also has given a differential operator and showed how it could be applied
in obtaining expansions (16; 115-130). O’Toole has also given a method of
expanding symmetric functions in many variables by means of differential
operators, (17).

Another method of attack was based upon the close relation existing between
the elementary symmetric function and the determinant of the power sums.
This has resulted in the expression of the monomial symmetric function in
determinant form. Brioschi appears to have been the first (1854) to see how
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a symbolic determinant could be used (3; 427) although he gave no proof.
Bellavites tried in 1857, but obtained incorrect results (4). In 1876 Fad de
Bruno made an attempt, but he too was in error (C; 10). In 1898 E. D. Roe, Jr.
proved that Brioschi was right (7). Muir also gave a proof in 1908 (11; 5-9).
The summation of determinants, rather than the symbolic determinant, was
used by Hankel (6; 90-94) (L; III, 220).

The determinant of the power sums has been generalized in another way.
A group of writers has studied the “immanents” of its matrix. D. E. Little-
wood and A. R. Richardson have recently written a series of papers on this
topic. One of these papers (18; 99-141) defined the term “immanents”’ and
gave references to previous investigations dealing with this matrix.

It has been the aim of this chapter to present an easy development of the
subject of the expansion of product power sums and monomial symmetric func-
tions. This development is characterized by

1. The use of the formulas and tables of Chapter I in writing expansions of

product power sums.

2. The use of product power sums in place of monomial symmetric functions

which makes feasible

3. Generalization from symmetry.

4. References to previous work.

Chapter IV. The Double Expansion Theorem

In the present chapter we combine the multiplication expansion of Chapter II
and the power product sum expansion of Chapter III into a new result which
is to be known as the double expansion theorem. We show that this result
may also be expressed in terms of the partition notation of Chapter I.

35. The Value of K(a:)(a;). We know

(a)(@) = (a1 + @) + (a:1-a)

.and if we multiply (a1 4 a2) by ks and (a;-az) by ki we have a new expression
which we designate by K(a:)(az).

K(a1)(a2) = ka(ar + @) + ku(ai-az) {46}
Since (0:102) = (a1)(@) — (a1 + a2)

K(a:1)(a2) = ka(ar + a2) + kul(a) (@) — (a1 + a2)]

K(@)(@) = (ks — ku)(@ + o) + ku(ar)(a)

which can be written

K(a1)(a:) = Ka(a: + a2) + Ku(a1)(az) {47}
ifk2 — ku = Kz and Ku = ku
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36. The Value of K(a,)(az)(a;). We know from {12} that
(a)(@)(as) = T) + T(21) + T(111)

and we define K(a1)(az)(as) = k:T(B) 4 kauT(21) + kiwT(111). Inserting

the values Ts = (a1 + a2 + a5), Tos = (a1 + a2 as) + (a1 + as-62) + (a2 + a5-a1),
T = (ai1a20;) and reducing to power sums by {44}, we get

K(a)(a2)(as) = (ks — 3ka + 2km)(ar + a2 + a3) + (ka — k)
{(a1 + @)(as) + (a1 + as)(az) + (a2 + as)(ar)} + kuu(ar)(az)(as)

which may be written
K(a:1)(a2)(as) = Ks(a1 + a2 + as) + Ku{(a: + a2)(as)

+ (a1 + as)(a2) + (a2 + as)(@)} + Kin(ar)(az)(as) {48}
where K3 = ks — 3ka + 2k, Ko = ka — , Kin = ks -

37. Definition of K(a;)(az) --- (a,). We define
K(a:)(a) --- (@) = 2 kpgroppe T(pi* -+ pI*) {49}

where T(pf* --- pI*) is composed of (p" 1 p") power product sums. We
... pr

wish to find the value K(a;)(a;) --- (a,) in terms of power sums. This in-
volves the expansion of each power product sum in terms of power sums and
then the collection of the results. This algebraic process is to be called the
double expansion process and the theorem which results, the double expansion
theorem.

38. Special Cases of the Theorem. The results {47} and {48} are special
cases of the double expansion theorem when r = 2,3. When r = 1 it is evident
that K(al) = Kl(al) = kl(al). {50}
The results {50}, {48}, and {49} may be written symbolically by

K(a) = K,T()
K(a1)(a2) = K.T'(2) + KuT(l)2 {51}
K(a)(a2)(as) = KsT(3) + KauT(2)(1) + KinT(1)

It can also be shown, with a much more extensive use of the results of Chapters IT
and III, that

K(a:)(22)(as)(as) = KiT(4) + KaT(3)(1) + K=T(2)°

+ K T(2)(1)* 4+ KuuT(1)* {52}
K(a) --- (as) = KsT(5) + KaT(4)(1) + K=T(3)(2)

+ KT (3)(1)* + KT (2)’(1) + K T(2)(1)°

+ KumT (1) {53}
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where
K, = ks — 4ksy — 3kos + 12ke; — 6kun
K; = ka —3kan + 2kun
Ky = koo — 2konn + kun - {54}
Koy = kon — kun
Ky = kun
and
K; = ks — 5ky — 10ks; + 20ks; + 30ksar — 60kary + 24kinn
Ky = ka — 4dksu — 3kar + 12kymn — 6k
Kn = kg — ks — Skm 4+ Skun — 2Enm
Kay = kan — 3kan 4+ 2kwn p {55}
Ky = ke — 2kan 4+ ki
Ko = konn — ki
Kum = f -

We may say then that, forr < 6
K(al) cee (ar) = Z kppi...pm T(pi*1 ce p:')
= E kppr...p5e T(pl)’rl cee (pa)n {56}

where K,p1...p7. is defined by the relations {47}, {48}, {54}, and {55}. In
examining the value of K, we note

K=k

K, = ks — ku

K; = ks — 3k + 2k

K, = ky — 4ks — koo + 12k9y — 6kun

Ky = ks — 5ky — 10kss + 20ksy + 30koe; — 60karnn + 24k1n
and that these are given, for r < 6 by

K, = Z (=1 — D! (pf‘ .1' p:') kpri.. .o {57}

It is further to be noted that {567} can be obtained from {3} by placing P(1")
= K,, pi* -+ p* by kppi...pre, and Pppi...pne by (=1)°(p — 1)! Hence the
last rows of Table I may be used in writing the values of K,. Thus from

P(1%) = Py(3) + 3Pu(21) 4+ Pu(1)?



COMBINED EXPANSIONS 37

we get
K; = ks — 3ka1 + 2ku .

It is further evident that if K3Ke = (ks — 3kas + 2kwm)(k2 — ku) indicates
multiplication by suffixing of subscripts that K;K; = kss — ks — 3kezs + 5kan
— 2kyn = Ka

and in general it can be shown that for r < 6

Krlrg = Kr1 Kr,
K rpey = K, Ky, Ky, {58}

etc.

so that all values K,11...,= may be obtained by symbolic multiplication of
equations {57}.

The method of this section can be used in demonstrating that the results
{56}, {57}, and {58} hold also when r = 6,7, 8 ... | but the amount of alge-
braic manipulation increases enormously with each increase in r. We establish
these results, for all integral values of r, by a more general approach.

39. A More General Definition. We providé a more general definition of
K(a,) - - - (a,) by letting the subscripts of the k’s agree with parts of the given
partition rather than with its complete order. Thus

K'(a:1)(a2) = kayya(a1 + a2) + Kaya,(@:102)
and in general, if ¢i* ... ¢f' represents any p part partition having complete
order p;*® ... p;*, then we may define
K'(a)(a) - (@) = 2 kggroqe (a3 - - 4F*) {59}

where the summation holds, not only for every different complete order as
does {49}, but for every possible partition. By {44} (¢i* --- ¢i*) may be
written as

(g -+ ¢ = 2= - D — D! -+ (d — DIT@) --- (d)

where d; + dy + --- 4+ d; = p and where groups of the d’s may be alike. If
(w)(wz) --- (w,) is one of the products of power sums having the complete
order (d; --- d;) we may write

(@ - ¢i) = 2(=1)(dr — D! - (dp — DWw)(wn) -+ (w;) {60}
where
B+ -t ani=w=wt+wt -+ W
and
4 -+ 2T=p
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and where the summation sign holds not only for every complete order d, - - - d,,
but for all power sum partition products (w;)(ws) --- (w,).
The insertion of {60} in {59} gives

K'(a:)(a2) - - - (ar)
= D k@ 2 (=1 — 1) (dy — DN wy) -+ (w,) {61}

40. Value of K, . The notation of K, is used to indicate the coefficient of
the power sum (w) = (a1 + a2 + --- + a,) in the expansion of {61}. In this

case d; = pand g 1 so that
Ky = 2 kagioogze (1) (o — 1)1 {62}
which may be written more symbolically as
Ko =2 (=1 o= Dk, {63}
where w, represents any algebraic partition of a; + .- + @, and p indicates

the number of its parts.

41. Products of K”’s. The notation K,,, K., is used to indicate the product
of K., by K., if the rule of multiplication is the suffixing of the subscripts of
the k’s in the expansion of K, and K., . Thus

K;;+¢3‘K;; = (k¢1+u, - kalag)(ka,)

= kﬂ|+¢2'ﬂa — Kayaz0

More generally, if we write, from {63}
Ko, = 2 (=)%Y d — D! ke,
Koy = 25 (=1)"7(d; — 1)! L2

.............................

Koy = 25 (=1)"%7(d, = D'k,
and use multiplication by suffixing of subscripts we have
Ko Koy - K,',., =2, (=1 dy — Dh--. (d, — 1) LS {64}

where p = d; + d2 + .-+ + d; and the summation holds for every partition
which can be formed by combining any algebraic partition of w; , any partition
of wy, - .., any partition of w, .

42. The Coefficient of (w;)(w;) --- (w,). The coefficients of any specific
product of power sums (w;)(w,) - - - (w,) is from {61}

Keowogowg = 2 kgiteogze (=1)°7(dy — 1)1 -+« (dy — 1)! {65}
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where the summation holds, not only for the partitions of a1 + @ + --- + @r,
but for the partitions w,, Tw,, -+ -, 7w, since these partitions can be combined
to form (w;)(ws) --- (w,). Hence {65} becomes

Kowgoowg = 20 (=1 (dr = Do (dg = Doy ooom, {66}
and it is immediately seen that the right hand expressions of {66} and {64}
are the same and hence that

’ 7 ’ [
Kooy, = Ky Kug -+ - Kuy

as expected from (58).
We can now say that

K'(a)(@) -+ (@) = 2 kaproqpe (g1 -+ 47)

= 3 Koy wor (W) (w2) - -+ () {67}
where
Ki=2 (=17 — Dk, {68}
and
Kooy 0y = Koy Koy -+ Ko, {69}

Relations {67}, {68} and {69} constitute the general double expansion
theorem.

43. The Double Expansion Theorem. The case of the double expansion
theorem in which we are especially interested is that in which the coefficients
of all similar power sum products are the same, i.e., Kqft...q%s is a function of
the complete order indicated by kyp1...,5+. In this case {68} becomes

Ko =X (—=1)*p — 1! (pf‘ 1 p:,> gt p1e {70}

where the summation holds for all possible complete orders. Suppose now
that the r algebraic expressions, a1, @z, - - - , G- are all unity then {69} becomes

_ 1"
K. =X (=1 — D! <p1,, p.,.) kpri...pfe
and we find that Ko = K,. We may then write {67}, {68} and {69} as
K(ay) --- (ar) = 2 kpln...p%e (pI" - - i) =2 Kooy T(r) - -+ (r,) {71}

where

— 17
Kr = E (_l)P 1(}’ - 1)! (p;l . p,—.) kp'{l...p:n {72}
and
Krlrg-ur, = Kn Kr, Ve K,-

[]

{73}
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Now 7y --. r, indicates any grouping of the a’s, and hence any complete
order of @, 4+ a2 + -+ 4 a,. So {71} may be written, with a slight change
of notation as

K(a) - (@) = Zkppopre T(pI* - - - pI*)
=2 Ky ppn T(p)™ - (p)™ {74)
The relations {74}, {72} and {73} are the desired generalizations of {56}, {57}
and {58} and hold for all positive integral values of r.
The double expansion theorem provides a method of writing out the result

of the double expansion process without going through the work involved in
the process. Thus

K(3)(2)(1) = Ks(6) + Kxu{(5)(1) + (4)(2) + (3)(3)}
+ Km(3)(2)(1) = (ks — 3ka + 2k1)(6) {75}
+ (k2 — k) {(5)(1) + (4)(2) + B)(B)} + ku(3)(2)(1)

44. The Double Expansion Theorem and Partition Notation. It is im-
mediately evident that {74} can be obtained from {4} if P(a, - - - a,) is replaced
by K(a1) --- (a,), if Pypi...,% is replaced by Kymi...,n, and if pi* ... pJ*is
replaced by T(p))™ --- (ps)™*. It follows at once that the entire theory of
Chapter I,—table, recursion formula, etc.—is applicable to double expansion
theory. For example {75} above is obtained from

P(321) = P36 + Px{51 + 42 + 33} + P, 321

simply by replacing the K’s by the P’s and enclosing the parts in parentheses.
We can as well use P’s as K’s to represent the double expansion theorem and
hence have available a list of double expansion formulas when w < 6. We
also have available a recursion property for writing double expansions beyond
the scope of the table. Thus for example, the illustration at the end of sec-
tion 9 may be interpreted as a statement of the double expansion theorem
when a; = 3,a: = 2,a; = 2, a4 = 1.

45. The Case of Equal Powers. In case a; = a3 = a3 = --- = a, {74}
reduces to {3’} of Chapter I with
- 1
o= T 0= 01 () b (76)
pl oo p‘
and

P, sy..op = PPy, -+ Py,
Formula {74} also reduces to {3} whena; = a2 = ... =a, = 1.

46. Special Values of Kr1...,7..
A. kppi...pre = 1. In this case the coeficients are all unity and

P(a)(az) - - (ar) = (a1)(a2) --- (ar)
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It follows that P, = 0 and that P,m...,7ze = 0 except that P, = 1. Placing
P, = 0 and kyni...,7» = 1 in {72} or its equivalent {76} we have, when r > 1

0= 06 -01(n ¥ ) (77)

where the summation holds for every partition of ». This formula should be
compared with {39} and {40}. When r = 4 and the partitions are

7 4, 31, 22, 211, 1
{77} gives 1 —4 -3 +12 -6 = 0
{39} gives —6 +8 +3 —6 +1 = 0
{40} gives 6 +8 +3 +6 +1 = 4!

The equivalent of {77} was first given by Cayley (D; 576) who at the same time
noted the similarity to {39}.

It follows immediately that the sum of the coefficients in the expansion of
P17, except Py, is 0, for the sum of the coefficients of Pyy1...,7: is the sum

of the coefficients of (P,,)™ ... (P,)™ and is 0. For example the sum of the
coefficient of Pg = ksz — ksiy — 3kza1 + Skay — 2kin is 0.
Since the coefficients of (u1)™ --- (ue)™ (19; 25) in the expansion of Thiele

half invariants are (—1)"'(p — 1)! it 1 p") it follows from {77} that the
.l

sum of these coefficients is 0.
()]

B. kppipie = ]%G) . In this case all terms having the same number of parts,
(0

p, have the same coefficients. If we indicate No by p1, p2, --+, whenp = 1,
2, ..., {57}, {76} become

P, = P1

Py=p— p

P; = py — 3p2 + 2ps

Py = pp — Tps + 12p3 — 6ps

Ps = py — 15ps + 50p3 — 60ps + 24p5 .
ete. '

which are the formulas which have been used by Carver (15) and O’Toole (16).
Many other additional cases can be obtained by giving different values to

ky11...p7e, but a discussion of these is hardly justified here as the case in which

kpt1...,7e is a function of the number of parts, p, is to be used in Part II.

47. Relation to Previous Results. No general statement of the double
expansion theorem has previously been given although the special case K(a")



42 PAUL 8. DWYER

has been developed by Carver (15) and O’Toole (16). Their results are further
restricted to the special case (B) of section 46. The application of the double
expansion theorem in this case is very useful in studying sampling from a
finite universe as Carver has shown and as is demonstrated in Part II.

Most writers who have worked on the problem of moments of moments have
gone through the double expansion process, but Carver was the first to note
that the result of the process can be written in terms of the P polynomials
above. It seems appropiate therefore to refer to these P polynomials of the
coefficients as Carver polynomials.

Chapter V. The Multipartition and Multivariate Formulas

It is the purpose of this chapter to show how the results of Chapters I, II’
III, and IV may be extended to the case of different variables.

48. Multipartitions. Tables. Formula {4} is still applicable if we let the
a; units be the units of one quantity, the a; units to be the units of a second
quantity, etc. Thus for example the formula P(a;a:0;) may be used to repre-
sent the precise number of ways in which a, apples, a; pears and a; peaches can
be formed into groups without breaking up the groups of apples, pears, and
peaches.

Various conventions for representing multipartitions of this type have been
used. We adopt the one in which the individual partitions are written in
successive columns. The partitions of the first number are combined with the
partitions of the second number to form all possible multipartitions. Thus the
multipartite number 111 has the partitions

111 110 101 011 100
001 010 100 010
001

where the parts are given in the rows. It is desired to show the number of
ways in which any one of those partitions may be combined to form partitions
of fewer parts. Thus

100 110 101 011 100
010 | = P;111 4 P 001 + P, 01C + P;100 4 Py, 010
001 001

This is obtained from P(a,aza;) by placing a; = 1,, a2 = 12, as = 13, and could
be written from {4} as

P(111215) = Ps(11 4+ 12 4 15) + Paufl; + 1o- 13+ 1 + 13- 1o + 1o + 1514}
+ P li-1s-15.
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Similarly
10 20 02
P10 = P;2 4 2P3;21 + 2P 12 4 Py 20 4 2Py311 + Pyy301 4+ Py 10
01 2 01 10 02 11 01 10
01
11 10
+ 4P2;;10 + Pyn 10
01 01
01

is a special case of P(a;a2a3a,) where a; = 1;, a2 = 15, a3 = 15, a4 = 13. For-
mula {4} is also true where the a; units are not of the same kind. Thus

P(a102) = Py(a1 + @2) + Pu(aian)

gives
11 11
P = P221 + Pn when a = 11 + 13 and a = 11.
10 10
TABLE III
The Multipartite Number 11
11 10
01
11 P,
10
01 P, Py
The Multipartite Number 111
111 110 101 011 100
001 010 100 010
001
111 P,
110 P, Py
001
101 P, ' Py
010 :
011 P, Py
100
100 P Py, Py Py P
010
001
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TABLE III—Continued
The Multipartite Number 22

22 21 12 20 11 20 02 11 10
01 10 02 11 01 10 10 10
01 10 01 01
01
2 | P,
21 | P, | Py
01
12 | P, Py,
10
20 P, Py
02
11 P, Py
11
20 Pa 2P21 P21 Plll
01
01
02 | P 2Py | Py Py
10
10
11 P; P, P, Py Py
10
01
ig Py | 2Py | 2P3y; | Py | 2Py, | Poy | Pen | 4Pon | Pun
01
01

Tables can be made for the partitions of the various multipartite numbers.
In Table III are presented values for the numbers 11, 111, 22.
When the units are indistinguishable 11 condenses to the w = 2 part of
Table 1.

When the units are indistinguishable 111 condenses to the w = 3 part of
Table 1.

When the units are alike 22 condenses to the w = 4 part of Table I.

49. Multivariate Distributions. The chief results of Chapters II, III, IV
also hold for multivariate distributions. Some additional definitions are neces-
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sary. We suppose that the N variates z;, #2, --- , z» are replaced by the
Nr variates of the array
11y 122, ** , 1TN
2xly2x2y e y2xN {78}
rxl,rx2, A ,rxN

where the presubscript represents the variable. The power sums become
(al) =2 4 a4+ Y= Z a
(@) = o2 + o732 + -+ + 2% = sz:}z

It is not necessary to utilize the presubscript since it is precisely the subscript

of the a. That is the power sum (a) is defined by > z*. Similarly (a,a:)

= ; 173 225 can be written as (aiaz) = é; x5! 25 without introducing ambiguity.
137 13%7

In general {6} as well as {4}, now holds for the multivariate case. It follows

at once that the results of Chapters II, III, IV can be written for the multi-

variate case by means of the formulas of Chapter I as indicated by the previous

section. Thus the formula for P(1,1,1,1;) may be written as [Table III]
P[10-10-01-01] = P,22 + 2P»21-01 + 2P»12-10 + P20 02 + 2P 1111
+ P3120 01 01 + P21:02 10 10 + 4P2u11 10 01 + Puyu 10 10 01 01
and can be interpreted as:
(10)*(01)* = (22) + 2(21-01) + 2(12-10) + (20-02) + 2(i1-11) + (20-01-01)
+ (02-10-10) + (11-10-01) + (10-10-01-01)
by {12} of Chapter II. It may also be interpreted as
(10-10-01-01) = — 6(22) + 4(21)(01) + 4(12)(10) + (20)(02)
+ 2(11)(11) — (20)(01)(01) — (02)(10)(10)
— 4(11)(10)(01) + (10)(10)(01)(01)

by {44} of Chapter II. It can also be interpreted as a double expansion by
means of section 44 where the values of the P’s are given by the usual

_ 1
Pr = Z (—I)P I(P - 1)! (p;'l . p:‘> kpfl...p:n

P.... =P,P, --- P,

Tg

50. Summary. It is apparent that {4} not only expresses (a) the number
of ways in which the parts of one partition may be collected to form the parts
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of another partition, (b) the formula for expanding products of power sums
in terms of power product sums, (c) the formula expanding power product
sums in terms of power sums, and (d) the formula for double expansions, but
also that it can be used to make similar expansions in the case of multivariate
distributions.
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