DISTRIBUTIONS OF SUMS OF SQUARES OF RANK DIFFERENCES
FOR SMALL NUMBERS OF INDIVIDUALS'

By E. G. Oups
I. INTRODUCTION

In a recent article,” reporting the results of research under a grant-in-aid from
the Carnegie Corporation of New York, Hotelling and Pabst have given a
comprehensive treatment of the theory and application of rank correlation and
have contributed significantly to existing knowledge on the subject. It is not
the purpose of this note to evaluate their contribution but to attempt the
solution of a problem they suggest.

In 2§33 they have given the well-known formula for rank correlation, ' = 1 —
n?it.i . where n ts the number of individuals ranked and =& = 12-1 d? (d; being
the rank difference for the 7th individual). In §5 the question of the significance
of 7’ in small samples has been considered from the following point of view; if the
value of 1/, obtained from a comparison of the ranks of n individuals as a possible
measure of the relation between two attributes, is such that there exists a high
probability that it could have occurred by virtue of a chance rearrangement of
the n individuals, then the value of »' does not furnish a significant indication of
relationship. Then one test of the significance of a particular value of ' is to
note whether it has a probability less than P (P equal to .01 or, less stringently,
equal to .05) of occurring because of a chance re-ranking.

To apply this test it is necessary to have some information regarding the
distribution of ' for the chance rearrangements of the numbers from 1 to n.
Hotelling and Pabst have given the distribution of ' for the cases, n = 2, 3, 4.
They have noted that the distribution is symmetrical for each value of n and
that it has a range from —1 to 1. From a consideration of the probabilities
corresponding to Zd* = 0, 2, 4, 6, they have discussed the significance of values
of ' forn = 5,6,7. In §8 they have stated, ““Another problem is to find con-
venient and accurate approximations to the distribution of 7/, for moderate
values of n, with close limits of error. A table calculated along the lines sug-
gested in §5 would be very useful.” This statement, along with the interest
manifested by others in private communications, has led to the investigation
reported in this paper.

! Presented to the American Mathematical Society, December 29, 1936.

2 Harold Hotelling and Margaret Pabst, Rank Correlation and Tests of Significance
Involving No Assumption of Normality, Annals of Mathematical Statistics, Vol. VII,
1936, pp. 29-43.

3 Loc. cit.
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134 E. G. OLDS

II. EXACT DISTRIBUTION OF SUMS OF SQUARED DIFFERENCES

In the paper mentioned above, the authors have given the exact probabilities
for all possible values of ' for n = 2, 3, and 4. Since 7’ is a linear function of
=d* for any particular value of n, there is a one-to-one correspondence between
values of Zd” and values of 7. For example, for the case of n = 3, we have the
following:

=0 2 6 8
o1 L1 _
r =1 5 3 1

1 2 2 1
P=31 31 31 3i

where p represents the relative frequency of ' or of 2d’. Therefore it seems
pertinent to investigate the distribution of Zd’ for various values of n.

If n individuals are ranked 1, 2, 3, ... n, by one criterion and then are re-
ranked at random there are n! possibilities for the new ranking. Let us consider
the differences between the numbers in the new and in the original rankings.
Suppose these differences are represented by dy ,ds, -+ ds. Then it is apparent

that Edf =0. If weleta;,a, .- a; represent an arrangement for n = k,
t=1

insert k + 1 after a, and advance the cycle one position at a time, we have the

following arrangements for the case, n = k + 1:

a y 22 y as, . . . Qg y k + 1
Q2 ) as ] Q4 ) * * ¢ k + 1; a;
(1)
7% ) k + 1) a ) M ¢ * Q-2 ] Q-1
k41, a , az, . . . Q-1 i

Now, forn =k, di = a1 — 1,ds = @a — 2, --- di = ax — k. If we list the
differences for the & + 1 derived arrangements, we have

d L dy, dn e - , 0
d+1  , d+1, d+1, - . . 1 L di—k
ds+2 , di+2 d+2 - -2 d+l—Fk d+1—k

. . . .o . . (2)
de+k—1, k-1, d—2 - - - . dpy — 2

k L di—1, di—1, - . . . d — 1
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It is apparent that each row of differences is formed as follows: the entry in the
first column is formed by adding 1 to the entry in column two in the row above,
the entry in the second column is obtained by adding 1 to the entry in the third
column in the row above, and so on until we come to the entry in the last column
which is obtained by subtracting k from the entry in the first column of the
preceding row.

If we form the sum of squares of the entries in each row we observe an interest-
ing property of the set; the sums are all congruent, modulus (k + 1). Let us
write the sums, denoting them by S;, Sz, - -+ Siy1. Also let di; represent the
entry in the ¢th row and jth column. Then

ket
8; = )'_‘1, di.;
=
b4l k+1
Sip = Ex din; = ;; (dii + 1)* + (din —k)?

= =
K+l

= El @i+ D'+ @in — 8 — din + 1)° 3)
=

k+1

= }:1 (@;+2di;+1) — @iy — k+ DE+1)
y=

=8+0+F+1) — i —Fk+DE+1)
=8+ (k—2d)k+ 1)
Noticing that d;y = di + ¢ — 1,fors = 1,2, ... k, and dyy11 = k, we have
8 =8+ (k—2d)k+1)
8 =8+ (k-2 —2)(k+1)
S =8+ (k—2ds —4)(k+1)
' @

Sipr = S + (B — 2dx — 2k + 2)(k + 1)
Seiz = Sk + (6 — 2k)(k + 1) = Ses — k(K + 1)

Of course, Si2 = S1, as the (k 4+ 2)nd row is identical with the first and the set is
closed. So we may write

Skr = S1 + k(e + 1) (5)

The analysis given above not only establishes the congruence of the sums,
modulus (k + 1), but also indicates a method of deriving the sums forn =k + 1
k

from the sums for n = k, since 8; = 2 di. It is also worth noticing that Sii.
=1

depends not only on S; (and therefore on S;) but also on di,, (and therefore
on ds‘—l)-
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Another matter needs attention. It is the relation between the sums of
squares of deviations for a particular order and for the reverse order. Let
@y, @z, --- a, be a particular arrangement. Then the reverse order is a,,
@n1, .-+ @ . The sums of the squares of the deviates are, respectively,

S=(@m—-1"4+@ -2+ (& —k)
and S=(tr =1+ (@ — 2"+ - (@ — k)
Then
8+ 8 =[(ar— 1)+ (a1 — &)1 + [(a2 — 2" + (@ — k + 1)’]
+ o llo = 8"+ (@ — 1))

(6)

= ;[(ar—r)2+(ar—k+r—l)2]

==;um—ﬁ+%m-k+r—DF—zgau—mm—k+r—n

r=]

k k k k
=42£-4@+DZ¥A%h+DEI—2E£

k k k
+2(k+1)§1a,_2(k+1)§r+22r’.

r=]

Noting that Za? = 2’ and Za, = Zr, we readily obtain the result*

3
S+S=k;k @

3 3
It is now apparent that the sums range from 0 to k ; k with a mean of k 6_ k

As the exact frequencies for sums of squares do not seem to be available, it
seems useful to compute them for certain small values of » and, at the same time

4 The geometric representation of the problem may be of some interest. Let the co-
ordinates of point R, in Euclidean n-space be (1, 2, 3, - -+ n), the coordinates of B be (n,
n—1, --- 2,1), and the coordinates of P be (1, z2, -++ z.). Letusrestrict the 2’sto be the
numbers (1, 2, 3, - -+ n), but not necessarily in the order given, i.e. the locus of P is a set of
n! points, corresponding to the permutations of the numbers 1, 2, 3, .-+ n. Then it is easy

2 n
“ ;_ " and that points P lie on an n-flat or hyperplane. Also Zx? =

t==]

to see that Z Ty =
i=1
n(n+1) (2n+1)
6
the joins PR and PR. It is readily established that they are orthogonal. Then (PR)? +

3 _
(PR)? = (RR)? = L 3 nor, since S = E (z; —7)*and § = Z @—n+i—-1%48S+ 8

1=1 1=1

so points P lie on a hypersphere with center at the origin. Let us consider

nd - n
3

a result previously established otherwise.
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to devise a method which can be used successfully to extend the computation to
larger values of n if desired. The details of the method follow.

Let D, represent any series of n differences, dy, dz, --- d,., and let O, be an
operator such that O, operating on D, (written O,(D,)) means that D, =
(d,ds, --- d;)ischangedto(de + 1,ds+ 1 ---do+ 1,dy — (n — 1)). Letm,
written following d; , dz, - - - dn, indicate that =d> = m. Forn = 3

D3,l = (0) 0) 0):9
0s(D3;) = Dy = (1, 1, —2):6
03(D3z2) = D33 = (2, —1, —1):6

3

But we have shown that S + S = 3

have S + S = 8, so sums of 0 and 6 indicate corresponding sums of 8 and 2
when the order of the elements is reversed. Thus we have, for n = 3.

|
|

for n = k. Therefore, for n = 3, we

Sums

0’2’468
0| 2|1

Frequencies

For n = 4 we have
D4,l,l = (O; 0) 0: O)

D4,2.1 = (1; 1) _2; 0)
D4.3.1 = (2) '—ly ’_1: 0)

where these are obtained from Dj,;, Ds» and Ds; respectively by inserting a
zero as a fourth difference. We operate on each of these four times with O, .
For example,

Dy, = 1l 1,-2, 0):6
O4(Dsgy) = Dige = (2, -1, 1, -2):10
Os(Ds22) = Dips = (0, 2,-1,-1): 6

04(Ds23) = Dygs= (3, 0, 0, —3):_1_8_
04(D4,2,4) = D4,2,l = (1’ 1) _"2’ 0)

As a check on computation, we notice, first, that the set is closed by the re-
appearance of Dy 2, ; and, second, that 10, 6, 18 and 6 are congruent, modulus 4.
In like fashion, one of the sets for n = 5, is the following;

D5,2.4,1 = (3y 07 07 "“3’ 0):1_8.
D5,2.4,2 = (1) 17 _27 1; _l): §
Dygas = (2, -1, 2, 0, -3):18
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Dysua= (0, 3, 1,-2, -2):18
Dsous = (4, 2, -1, -1, —4):38
Ds.z.m = (3; 0) 0) —3} 0)

Of course the sums for » = 5 can be obtained from those for n = 4 by making
use of (4). For Dys4 = (3,0,0, —3):18 wehave S, = 18,k = 4,d; = 3,d, = 0,
dy = 0;,d; = —3. Then

S =18
S =8+ (4 -23)5) =8

Ss= S+ (4 — 2.0 — 2)(5) = 18
Si= S+ @ —2.0— 4)5) =18
Ss=Si+ (4 —2.—3—6)5) = 38
S = 8 — 4.5 = 18.

However, results obtained by this latter method do not help with the case of
n = 6. If we desire to obtain results for n = 6 we will need to exhibit the
complete sets of differences for n = 5 as we did by the former method.

An alternative method for obtaining frequencies of sums of squares is of some
interest. It will be illustrated for n = 4. Let us consider the square array

ay bl C1 d1
az b, Cy dp
as bs C3 ds
(7} bs C4 ds

If we form all possible products a;b;ccdi(s, j, k, 1 = 1,2, 3, 4;¢ = j= k#1),
the subscripts give the 4! permutations of 1, 2,3,4. Now let us form a new array

a b o 4
a b G dy
a_z b ¢ d
a3 b—z C1 do

where subscripts in each column represent the vertical distance of the term
above the principal diagonal. Since the original terms had subscripts giving all
possible' arrangements of 1, 2, 3, 4, terms formed in a similar fashion from the
new array will give all possible arrangements of the differences. Now form a
third array

- e
8 8 8

x
X
X

8 8 8

9

X
4

X
1

x
0

4
1
(]
1

© B = o
-

x x z z
where the exponent of z is the square of the corresponding subscript in the
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TABLE 1
Frequencies of sums of squares of rank differences
>d? N 2 3 4 5 6 7
0 1 1 1 1 1 1
*

2 2 3 4 5 6

4 *0 1 3 6 10

6 2 4 6 9 14

8 1 2 7 16 29
10 *2 6 12 26
12 2 4 14 35
14 4 10 24 46
16 1 6 20 55
18 3 10 21 54
20 1 *6 23 74
22 10 28 70
24 6 24 84
26 10 34 90
_28 4 20 78
30 6 32 90
32 7 42 129
34 6 29 106

% -

36 3 29 123
38 4 42 134
40 1 32 147
42 20 98
44 34 168
46 24 130
48 28 175
50 23 144
52 21 168
54 20 144
56 ‘ 24 *184

*The asterisk shows the location of the mean. The frequencies for n = 6, 7 extend be-
yond the limits of the table but may easily be obtained by symmetry.
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second array. It is easy to see that, if terms are formed from the new array
by the same method as before, our terms are powers of x where the exponents
represent sums of squares of differences. If we now define the array to be equal
to the sum of the terms formed from the array, then

9
xo xl 1134 T
Il?l .’Co xl 334 2 10 1
0 8 20
4 1 ) ]| =k + k2™ 4+ - ke o ke + ki,
x x x x
x9 x4 zl xO

and the k’s give the desired frequencies for sums of squares corresponding to
exponents of z. For example Zd* = 0 occurs k; times, Zd* = 2 occurs k; times,
ete.

It can be readily verified that, for n < 5, the array can be expanded as a
determinant and the values of the k’s can be obtained by taking the absolute
values of the coefficients in the expansion. Also, considering the arrays as
determinants, their values for n = 2, 3, 4 are, respectively, (1 — 2%, (1 — z%)?
-2 0 -2 -2 @1 - 2%. If it were possible to obtain a general
form of this type it might be possible to greatly reduce the labor which is in-
volved in expanding the arrays. At present, however, this method of attack
does not seem feasible on account of the lack of adequate sub-checks, the amount
of work involved, and its inappropriateness for use by inexperienced clerical help.

Hotelling and Pabst’ have given exact results in terms of » for the cases
=d® = 0,2,4,6. Itis certainly possible to follow their method to obtain general
results for =d” larger than 6, but, as they suggest, the work becomes very labo-
rious. For Zd* = 8 we need the sets of possible integral values for z; , z», - - - &,

under the following conditions: (a) 2 z; = 0, (b) D % =8, (¢) 1 + 21,2 + 2,
i=1 i=1

34+ 23,4+ x4, -+ n + z, are the numbers 1, 2, 3, - - - n, (but not necessarily

in that order).
Possible solutions are:
(a) #i2 =271 =0,2; = —2( = 3,4, ... n) and the other z’s zero,

®) p2=2,001= -1, = -1, 2,3=12,=-1(a=25,6..-n;b=3,
47"'0'_2))

) va=12p= -1,22=221=—1,2,=—-1(a=5,6,-.-n;b= 2,3,
ceva — 3),

@ 2= -2, 00=1,=1,2y=12,=-1(a=5,6,...n;b=3,4,

...a_2),

@€ 2y =12= -1,2 2= -2,2,3=1,2.=1(a=5,6,---n;b=2,3,
...a_3)’

(f) Xg—1 = el = Tp—1 = Tg—1 = 1;$d=xc=a)b=xa= —1 (a,=8,9,...n;

b=86,7,.---a—2;c=4,5 ...b—-2;d=23,...¢c—2)
Frequencies for each of these types must be considered separately. The

& Loc. cit. p. 35.
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method of evaluation will be illustrated for type (f), since this type yields the

polynomial of highest degree. It is apparent that the required frequency is
n a—2 /b—2 fc—2

obtained by computing E (Z (E (E 1))) It can be verified that the re-
8 6 4 2

sult is

m—9DY —Hn —-5nL6)n—17)
4 24

The total of (a), (b), (¢), (d), (e), and (f) is

(0= + 20— 3)® 4 2=

For =d* = 10, the result seems to be

(n -5 (5)

2 —3) + (n — 3)? + (n — H® + ]

For sums greater than 8 the method becomes quite uninviting, not only
because of the intricacy of the necessary analysis, but also because of the
opportunities for mechanical errors and the absence of satisfactory checks.
Besides, if the exact distribution fox; a particular value of 7 is desired, we need
n —n

6
the requirement of 42 formulas. It is fairly evident that these formulas will
comprise polynomials ranging in degree from 0 to 41.

expressions for Zd* = 0, 2, 4, - .- — 2. For n as small as 8, this means

III. APPROXIMATIONS

Since the exact distributions of sums of squares are not easily obtained, we
next consider the problem of finding approximations for them. Hotelling and
Pabst® have given a method of deriving the even moments of the distribution of
7/, (the odd moments being zero), and have recorded the values of the second and
fourth moments. They have also remarked that the kurtosis, 82 = us/u3,
approaches 3 and that the distribution of ' approaches normality as n ap-
proaches infinity. These are valuable and interesting results. Because of
them the normal curve suggests itself as an approximating function. Its use
has been considered a little later in this investigation.

But a distribution with a finite range causes trouble at the tails when a normal
fit is attempted, and, for this problem, we are particularly interested in the tails.

It seems more feasible to attempt an approximation with the Pearson type I1
2

curve, y = yo(l — -2—5) . This has the advantage of a finite range and three

¢ Loc. cit. p. 32 et seq.
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constants to be determined. The values of these constants, as given by Elder-
ton’ are

56: — 9 2 2usfs, N XT(2m+2)
Mm = ——— a4 = — = 8
23 — B8y’ 3-8’ Vo= o X [T (m + 1)F ®
(where N is the total frequency).

If we use this distribution to approximate the distribution of sums of squares,
it proves convenient to define z as equal to one-half the deviation of Zd® from its
mean, i.e.,

= '—-n

TT 9T 12
Then the relative frequency of Zd* = k is approximated by
zs+4 i k ‘ na —n
f@) dz = f(x.) where r, = 5" 15—

zs—4

(Of course, closer approximations may be obtained, if desired). The approxi-
mation used is clear if we remember that only even values of k are possible and
—-n

that the range is now
The moments for z are now obtained from the moments for #* by multiplying

3
by the proper powers of 1&—1}-1—2 . We have’

@ = (= 1)[”—("{—1—)]2

The value of B is uhchanged. For 7/ or z it is

5,  3@6n' — 13n° — 730" 4 37n 4+ 72)
2= 25n(n + 1)¥(n — 1)

Forn = 5, uo = 25, 8, = 2.0720, N = 5!. Using these values and equations
(8), we obtain a = 10.566, m = .73276, yo = 7.8545. The approximating

2 78276
functionisy = 7 .8545(1 ) In table II the computed values of y

x
T 11164

and the true frequencies are listed for comparison.
When testing the significance of a particular value of =d” our principal interest
is in the probability that Zd* < k, rather than in the probability that =d* = k.
The probability that Zd*< k requires cumulation of frequencies, followed by
division by the total frequency. If results, given in table II, are compared it is
noticed that the maximum error in using the type II function is .0194 and the
average error is .0072. Comparisons for other values of n are given in table III.

" Elderton, W. P., Frequency Curves and Correlation, Layton, London, 2nd ed., 1927,
p. 84.



Comparison of exact and approximate frequencies for n = &

TABLE II

(Approximations obtained by computing ordinates of

7845 (1 22 ).mvo)
y=1 ( T 116
Froquencies | CUmUIBte (cxpreeed
>d? Difference of cumulatives
Exact | APPrOXi- | pygey | APPROXI-
0 1 1.50 .0083 | .0125 —.0042
.2 4 3.04 .0417 .0378 +.0039
4 3 4.21 .0667 .0729 —.0062
6 6 5.14 .1167 1157 +.0010
8 7 5.01 .1750 .1650 +.0100
10 6 6.52 .2250 .2193 +.0057
12 4 7.01 .2583 L2777 —.0194
14 10 7.39 .3417 .3393 +.0024
16 6 7.65 .3917 .4031 —.0114
18 10 7.80 .4750 .4681 + .0069
20 6 7.85 .5250 .5335 —.0085
average of abso-
lute values = .0072
TABLE III1
Approximating functions, with errors involved
Approximating functions A g i
n
J Exact— Exact— | T II—
Type II Normal t;;g I norfnal zg:ma.l
T 22 \7827 51 __:_:,
5 [7.8545 (1 I 64) 5o’re .0072 .0194(.0200 .0415.0210 .0357
_ 22 1.3716 6 z?
—_— 122.6
6 [31.652 (1 5) \/ o) 516 .0030 .0126.0131 .0273|.0136 .0270
- 22 2.0160 71 2:z’
—_ 61.33
7 1156.33 (1 84) \/261—.331_re 0017 .0067 |.0106 .0221|.0108 .0209
o z? 8! Eio:'
— 4
8 1918.72 (1 2098 4) \/50_5 e .0086 .0175
22 \3-3140 91 _=
9 |6276.3 (1 - 4332‘6) o= 0
- z2 3.9665 10! z2
10 | 64515 (1 - 8266.6) Vi 51re 15125
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It would be very convenient if the cumulative frequencies could be approxi-
mated by the use of normal curves. In table III are listed the proper normal
curves, along with comparisons with the exact values and with the values
obtained from the type II curves. For the values of n investigated the normal
curve is not as satisfactory as the type II. This, of course, is to be expected
because of the lack of agreement between the fourth moment of the normal curve
and of the exact distribution. However, in view of the fact that, for values of n
investigated, the maximum and average errors decrease as n increases, it seems
satisfactory to sacrifice accuracy to expedience and use the normal curve as an
approximating function for cases of n greater than 10. This has been done in
constructing table V. In further justification it might be noted that 8, , which
approaches 3 as n approaches infinity is an increasing function of n for n greater
than 3.

IV. TABLES TO TEST THE SIGNIFICANCE OF THE RANK CORRELATION COEFFICIENT,
WITH EXAMPLES OF THEIR USE

Table IV gives the probability that, for any given value of n and a computed
value of Zd” less than or equal to the mean, the value will not be exceeded by
chance. For a value of Zd’ greater than or equal to the mean, it gives the
probability that the value will be equalled or exceeded. The values for n =
2, 3, 4, 5, 6, 7 are computed from exact frequencies; those for n = 8, 9, 10 are
computed from type II curves.

Table V is constructed by the use of normal curves. It gives the limits of
=d’ for a few of the more useful probabilities.

It seems desirable to explain why values of Zd* were tabled rather than values
of r’. It was done for two reasons: first, to avoid the difficulties arising from
discrete variates; and, second, because the tables seem more useful in the form
given since the labor of completing the calculation of 7’ can be avoided if the
computed value of Zd’ tests as not significant.

Example 1. Seven individuals are ranked by two criteria, as indicated below.
Are the results significantly alike?

A1 2 3 4 5 6 7
B2 1 6 3 4 7 5
d 1 -1 3 -1 -1 1 -2/ 0
d&d1 1 9 1 1 1 4 / 18

Solution: Rows 3 and 4 give the differences and squared differences, respectively.
If we enter table IV with n = 7 and =d* = 18, we find P = .0548, so we would
expect that a value as small as 18 would occur by chance more than 5%, of the
time. This does not usually indicate significance so it is useless to compute the
value of 7. It is interesting to notice that ’ actually does prove to be equal to

72
.68 and that, if we had used the formula, ¢, = 1.0471 (1 \—/1_: ) we might have
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TABLE 1V

145

The probability that Zd* > 8 for 8 > Z u, or that 2d* < S for 8 <2y (where 2 »
represents mean value of sum of squares)

N=2 3 4 5 6 7 8 9 10

Zy 1 4 10 20 35 56 84 120 165
S

0 | .5000{ .1667| .0417| .0083 | .0014 | .0002 | .0003 | .0001 | .0000
2 | .5000/ .5000, .1667| .0417 | .0083 | .0014 | .0006 | .0002 | .0001
4 .5000, .2083| .0667 | .0167 | .0034 | .0011 | .0003 | .0001
6 .5000] .3750| .1167 | .0292 | .0062 | .0018 | .0005 | .0001
8 .1667, .4583| .1750 | .0514 | .0119 | .0028 | .0007 | .0002
10 .5417) .2250 | .0681 | .0171 | .0042 | .0010 | .0003
12 .4583| .2583 | .0875 | .0240 | .0059 | .0015 | .0004
14 .3750, .3417 | .1208 | .0331 | .0081 | .0020 | .0005
16 .2083 .3917 | .1486 | .0440 | .0108 | .0027 | .0007
18 .1667| .4750 | .1778 | .0548 | .0141 | .0035 | .0009
20 .0417) .5250 | .2097 | .0694 | .0179 | .0045 | .0011
22 .4750 | .2486 | .0833 | .0224 | .0057 | .0014
24 .3917 | .2819 | .1000 | .0275 | .0071 | .0018
26 .3417 | .3292 | .1179 | .0331 | .0087 | .0022
28 .2583 | .3569 | .1333 | .0396 | .0106 | .0027
30 .2250 | .4014 | .1512 | .0469 | .0127 | .0032
32 .1750 | .4597 | ..1768 | .0550 | .0152 | .0039
34 .1167 | .5000 | .1978 | .0639 | .0179 | .0046
36 .0667 | .5000 | .2222 | .0736 | .0210 | .0054
38 L0417 | .4597 | .2488 | .0841 | .0244 | .0064
40 .0083 | .4014 | .2780 | .0956 | .0281 | .0075
42 .3569 | .2974 | .1078 | .0323 | .0086
44 .3292 | .3308 | .1207 | .0368 | .0100
46 .2819 | .3565 | .1345 | .0417 | .0114
48 .2486 | .3913 | .1491 | .0470 | .0130
50 .2097 | .4198 | .1645 | .0528 | .0148
52 L1778 | .4532 | .1806 | .0589 | .0168
54 .1486 | .4817 | .1974 | .0656 | .0189
56 .1208 | .5183 | .2150 | .0726 | .0212
58 .0875 | .4817 | .2332 | .0802 | .0237
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TABLE IV—Continued

N 3 7 8 9 10

Zy 35 56 84 120 165

S

60 .0681 .4532 .2520 .0882 .0264
62 .0514 .4198 .2715 .0966 .0293
64 .0292 .3913 .2015 .1056 .0324
66 .0167 .3565 .3120 .1149 .0358
68 .0083 .3308 .3330 .1248 .0394
70 .0014 .2974 .3544 .1351 .0432
72 .2780 .3761 .1459 .0472
74 .2488 .3082 .1571 .0515
76 .2222 .4205 .1688 .0561
78 .1978 .4431 .1809 .0609
80 .1768 .4657 .1935 .0659
82 .1512 .4885 .2065 .0713
84 .1333 .5113 .2198 .0769
86 .1179 ,4885 .2336 .0828
88 .1000 .4657 L2477 .0889
9 .0833 .4431 .2622 .0054
92 .0694 .4205 .2770 .1021
94 .0548 .3982 .2922 .1091
26 .0440 .3761 .3077 .1164
08 .0331 .3544 .3234 .1239
100 .0240 .3330 .3394 .1318
102 .0171 .3120 .3557 .1399
104 .0119 .2915 .3721 .1483
106 .0062 .2715 .3888 .1570
108 1 .0034 .2520 .4056 .1659
110 .0014 .2332 .4226 1751
112 .0002 .2150 .4397 .1846
114 .1974 .4568 .1944
116 .1806 .4741 .2044
118 | .1645 .4914 .2146
120 ' .1491 .5086 .2251
122 .1345 .4914 .2358
124 .1207 4741 .2468
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TABLE IV—Concluded

N 8 9 10 N 8 9 10
Iy 84 120 165 Iy 84 120 165

8 S

126 | .1078 | .4568 .2580 168 | .0003 | .1459 | .4865
128 | .0956 | .4397 .2694 170 .1351 | .4731
130 | .0841 | .4226 .2810 172 .1248 | .4596
132 | .0736 | .4056 .2928 174 1149 | .4462
134 | .0639 | .3888 .3048 176 .1056 | .4328
136 | .0550 | .3721 .3169 178 .0966 | .4196
138 | .0469 | .3557 .3293 180 .0882 | .4063
140 | .0396 | .3394 .3418 182 .0802 | .3931
142 | .0331 | .3234 .3545 184 .0726 | .3802
144 | .0275 | .3077 .3673 186 .0656 | .3673
146 | .0224 | .2922 .3802 188 .0589 .3545
148 | .0179 | .2770 .3932 190 .0528 | .3418
150 | .0141 | .2622 | .4063 200 .0470 | .3203
152 | .0108 | .2477 .4196 202 .0417 | .3169
154 | .0081 | .2336 .4328 204 .0368 | .3048
156 | .0059 | .2198 | .4462 206 .0323 | .2928
158 | .0042 | .2065 .4596 208 .0281 | .2810
160 | .0028 | .1935 .4731 210 .0244 | .2694
162 | .0018 | .1809 .4865 212 .0210 | .2580
164 | .0011 | .1688 .5000 214 .0179 | .2468
166 | .0006 | .1571 .5000 216 .0152 | .2358

(Tables for cases 9 and 10 can be completed by symmetry.)

judged the value of 1’ significant, since ¢ = .213, and .213 is less than one-
third of .68.

Example 2. Six golfers found, upon ranking their scores and also ranking
their respective amounts of sleep for the previous night, that the two orders
were the reverse of one another except that the two ranking 1, 2 in sleep ranked 5,
6 in score. Is the negative correlation too great to be reasonably attributed to
chance?

Solution: We find =d* = 68 and, upon consulting table IV, P = .0083, so we
conclude that more sleep might mean fewer strokes.

Example 3. Before an examination a teacher ranked his class of 13 members.
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After the examination he found that the sum of the squares of the deviations of
rank on examination from rank estimated was 144. Should he consider the
agreement satisfactory?

TABLE V
Pairs of values between which Zd? has a probability, P, of being included

N P=.9 .98 .96 .90 .80

11 40.8 | 399.2 58.2 | 381.8 77.1 | 362.9| 105.6 | 334.4 | 130.8 | 309.2
12 60.9 | 505.1 82.4| 483.6 | 105.9 | 460.1 | 141.2 | 424.8 | 172.5| 393.5
13 93.3 | 634.7 | 119.6 | 608.4 148.2 | 579.8 191.2 | 536.8 | 229.3 | 498.7
14| 1259 | 780.1 | 161.4 | 748.6 | 195.8 | 714.2 | 247.4 | 662.6 | 293.3 | 616.7
15| 174.5| 945.5| 211.8 | 908.2 | 252.6 | 867.4 | 313.8 | 806.2 | 368.2 | 751.8
16 | 227.8 | 1132.2 | 271.6 | 1088.4 | 319.4 | 1040.6 | 391.2 | 968.8 | 455.0 | 905.0
17 | 290.5 | 1341.4 | 341.4 | 1290.6 | 397.0 | 1235.0 | 480.4 | 1151.6 | 554.6 | 1077.4
18 | 363.6 | 1574.4 | 422.3 | 1515.7 | 486.3 | 1451.7 | 582.4 | 1355.6 | 667.8 | 1270.2
19 | 447.9 | 1832.1 | 514.9 | 1765.1 | 588.2 | 1691.8 | 698.0 | 1582.0 | 795.6 | 1484.4
20 | 544.1 | 2115.9 | 620.2 | 2039.8 | 703.4 | 1956.6 | 828.1 | 1831.9 | 939.0 | 1721.0
21 | 653.0 | 2427.0 | 738.9 | 2341.1 | 832.8 | 2247.2 | 973.6 | 2106.4 | 1098.7 | 1981.3
22 | 775.5 | 2766.5 | 872.0 | 2670.0 | 977.3 | 2564.7 | 1135.3 | 2406.7 | 1275.7 | 2266.3
23 | 912.5 | 3135.5 | 1020.2 | 3027.8 | 1137.8 | 2010.2 | 1314.2 | 2733.8 | 1471.0 | 2577.0
24 | 1064.7 | 3535.3 | 1184.3 | 3415.7 | 1315.1 | 3284.9 | 1511.1 | 3088.9 | 1685.4 | 2914.6
25 | 1233.0 | 3967.0 | 1365.4 | 3834.6 | 1510.1 | 3689.9 | 1727.0 | 3473.0 | 1919.8 | 3280.2
26 | 1418.2 | 4431.8 | 1564.1 | 4285.9 | 1723.6 | 4126.4 | 1962.7 | 3887.3 | 2175.3 | 3674.7
27 | 1621.1 | 4930.9 | 1781.5 | 4770.5 | 1956.5 | 4595.5 | 2219.2 | 4332.8 | 2452.6 | 4099.4
28 | 1842.7 | 5465.3 | 2018.1 | 5289.9 | 2209.8 | 5098.2 | 2497.3 | 4810.7 | 2752.8 | 4555.2
29 | 2083.7 | 6036.3 | 2275.1 | 5744.9 | 2484.3 | 5635.7 | 2797.9 | 5322.1 | 3076.7 | 5043.3
30 | 2345.0 | 6645.0 | 2553.2 | 6436.8 | 2780.8 | 6209.2 | 3122.0 | 5868.0 | 3425.2 | 5564.8

Solution: Entering table V with n = 13 we see that P = .96 for a value between
148.2 and 579.8, and that P = .98 for a value between 119.6 and 608.4. There-
fore the probability of not exceeding 144 by chance is between .02 and .01. It

would seem that the teacher showed considerable knowledge of his class.
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