ON THE APPLICATION OF THE Z-TEST TO RANDOMIZED BLOCKS

By M. D. McCArTHY

1. Introduction. When a series of experiments is performed with the object
of measuring some quantity, it is implicitly postulated that the quantity in
question has a “true value,” which is theoretically obtainable as the result of an
infinite repetition of the experiment under the standard conditions. In certain
experiments, especially those of physical and chemical science, the materials and
the methods employed are subject to such accurate control by the experimenter
that he can repeat his experiment again and again with the “essential”’ factors
kept constant, and with biassed errors eliminated. This repetition gives a series
of observations of the ‘“true value” in question subject only to random errors.
All that is needed, usually, to increase the accuracy of the estimate of the ““true
value” is to continue the repetition of the experiment. Not only does such a
repetition make the estimate more exact but it also provides an estimate of the
degree of accuracy present, permits a comparison between different quantities
and makes it possible to test various hypotheses as to their relative values.

In many cases which arise, notably in biological and social science and in
dealing with data provided by modern mass-production methods, it is a practical
impossibility to repeat an experiment under the same essential conditions. The
material available is definitely non-homogeneous with regard to at least some
of the qualities influencing the results. In testing, for instance, a number of
varieties of some plant, to find which gives the best yield, it is possible to
guarantee, that to a high degree of accuracy all the varieties are cultivated alike.
If a relatively small area is covered by the experimental plots, it can be said
that all the varieties experience the same climatic conditions and it is not diffi-
cult to ensure that they are all treated alike as to measurement of produce and
so on. It is, however, practically impossible to make the plots, on which the
varieties are grown, homogeneous as regards fertility of the soil and, even if
this were possible, it would partially defeat the purpose of the experiment which
is to test the varieties over a certain limited range of soil types. In a similar
way in many other fields of biological or social experiments a similar non-
homogeneity of the experimental material exists.

In experimenting with homogeneous materials, where the conditions of the
whole series of experiments are the same, the differences which occur between
the theoretical “true value’’ and the observations are explained as being due
to a multiplicity of causes outside the control of the experimenter and of such a
nature that their incidence varies “randomly’” from experiment to experiment.
It is a fact that certain fundamental factors influencing the results are defi-
nitely non-random in their incidence which differentiates the experiments with
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non-homogeneous material from the others and it is by artifically introducing
randomization, as suggested by Fisher [1, 2, 3] that such experiments are made
amenable to the usual error laws.

For convenience, in what follows, the word ‘‘variety’’ will be used when
speaking of a single object of those under test, whether it actually be a variety
of some plant, a manurial treatment, a method of feeding or anything else of
the sort. For instance, if five varieties and three manurial treatments are
being tested in the same experiment, a ‘“variety’’ would be any one of the fifteen
combinations of an actual variety under test with a manure. The word “plot”
will be used for that portion of the non-homogeneous material which is required
for the performance of an experiment on a single “variety,” and the term “yield”
will be applied to the value of the observed quantity obtained as the result of
testing a ‘“‘variety’’ on a single ‘“plot.” The plots are, of course, equalized with
respect to “‘size,” or whatever similar property would influence the test.

2. Randomized Blocks. Suppose that there are s varieties to be tested and
that the necessary replication is attained by testing each variety on n separate
plots. That the plots on which each variety is tested form a random sample
of the material available is guaranteed by assigning each of the s varieties to n
of the available ns plots at random, that is, as the result of a physical random
experiment with cards, dice, or the like. This method of randomization may
be so employed that no restrictions are put on the plots to which the varieties
are assigned, or it may be further refined in different ways so that, while pre-
serving the random nature of the assighment, certain restrictions may be placed
on it. Such a method of randomization with restrictions is the method known
as “randomized blocks.”

The basic idea is that compact ‘“blocks” of the non-homogeneous material are,
probably, much more uniform than the material taken as a whole. Conse-
quently, the material is first divided into n such “blocks,” as compact and
uniform as possible, each block containing s equal plots. Each of the s varieties
under test is assigned to a single plot in every block and randomness is attained
by making the assignment of the varieties to the plots in each block as the
result of a separate random experiment. Thus the n plots to which each variety
is assigned do actually form a random sample of the non-homogeneous material
with the restriction that to each plot of any variety corresponds a plot of any
other variety from the same block.

3. Mathematical Formulation. X, denotes the “true yield” of the kth
variety which would be obtained by testing it on the Ith plot in the jth block.
k=1,2 ...,s denotes the number by which the variety is known, | = 1,
2, ---, s the order-number of the plot in the block and j = 1, 2, ... , n the
number of the block. Following Neyman [4, p. 110] we define the ‘“true yield,”
again with particular reference to agricultural experiments, as:

“Suppose that the experiment is repeated indefinitely without any change of
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vegetative conditions or of arrangement so that the kth variety is always tested
on the plot (j, 7). The yields from this plot will form a population, say ;4 ,
and X ;) is defined as the mean of this population.”

Thus, in any block, there are s* different possible populations with corre-
sponding “true values,” but in any single experiment on that block observa-
tions will be obtained from only s of the s* possible populations. To distinguish
those populations for which an observation is available from those which are
entirely hypothetical X, will denote the “true yield,” as already defined, of
the kth variety on the plot to which it has been assigned in the jth block. Since
this assignment has been carried out as the result of a random experiment the
‘“true yield” is itself a random variable; X ;4 is randomly selected from the set of s
possible values X 1k » X j2(k) g * vt X ja(k) - .

Using the dot notation to denote the mean of a quantity taken over all values
of the letter replaced by the dot, it is clear that

Xiaw = Xooo + [Xj — Xow] + [Xaw — Xj.0]
=X..m + Bix + vum ,

and .

Xiw = X + Xy — Xoowl + [Xiw — Xj.w)

= X..; + B + nix,

where

Bir = Xim — Xetn, v = Xawm — Xjm
and

i = Xiw — Xiw -

Obviously

n 8
EB,';, =0 and Zu,w,) =0
i=1 =1

from their definitions, while #;; is a random variable, with zero expectation,
selected from the sequence wjg) , %jem - - Ujsey - Neyman (loc. cit.) calls
nx , thus defined, the ““soil error” of the kth variety when tested on its assigned
plot in the jth block. The actual yield observed when the kth variety is tested
on its assigned plot in the jth block is z;; and the difference z;; — X;qy =
€;x is termed the “technical error.” Clearly

1) i =X..wy + Bix + i + €x.

Both “soil error” and “technical error’”’ enter into any comparisons which may
be made and it is well known that the major source of error in, for instance,
agricultural experiments is that due to the heterogeneity of the soil. As regards
the relative magnitudes of the two errors, that of course depends on the experi-
ment in question, but Fisher [5] has stated that in an agricultural uniformity
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trial (i.e. when the same variety is tested on all the plots) yields from plots of
1/40th of an acre frequently vary sufficiently among themselves, owing to soil
heterogeneity, so as to give a standard deviation of ten per cent of the mean
yield, while the inevitable random errors in treating the plots can be kept down
to a much lower figure. By confining the randomization to a “block’ of the
material, which comprises only a relatively small compact portion of the whole
material under test, the effects of soil heterogeneity may be much decreased.
It appears, however, that it may very often be an unwarranted simplification to
consider that the ‘“true yield” of a variety is the same for all plots of a given
block.

The two types of “‘error” are random variables of altogether different proper-
ties. Both have zero expectation and may be considered as independent of one
another in the probability sense. It, therefore, appears reasonable to assume
that e; is independent both of the “technical error” in any other observation
and of the n’s. On the other hand #; is a random variable selected from the
sequence

2) Uity 5 Uizh) 5 =+ * 9 Ysa(h)

and since, if 7,; has the value u;ix) and ;= is free to assume any one of the values
Ujtomy » Wia(m 5 -+ + » Ujs(m) €XCEPE Ujymy, it is clear that 5, and 5, are not inde-
pendent. In the case of 9,4 and 7;m where j' > j, the random variables are
drawn as the result of two separate random experiments from different sequences
of the type (2). Obviously this means that the ‘“‘soil errors” for different blocks
are independent for either the same or different varieties. Writing E for the
expected value, or the mean value in repeated experiments, since

8 8
2 uagy = 2 Uitem = 0,
l=1 =1

the variance of 7; is o7, With

3 Typ = 8 Z whe

and also

4) ~ Elnpnml = — {s(s — n}~ ; Ujtk) Uit (m) «
Using (1), (3) and (4) it follows that

®) Elzp] = X..@y + Bir = s,

say,

(6) Eli — an)’] = El(nix + €)'l = ony + 08,

E[(zjn — ai)(@ivm — @im)] = El(nin + €7)(jrm + €50m)]
= Elnjxnirml
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The expectations of the various product terms on the right-hand sides of these
equations vanish except in the case of the last one. If j/ 3 j/ it too vanishes,
whatever values of k£ and m, and it follows that the correlation of the observed
yields of any two varieties, or of the same variety obtained from different blocks
is zero. It is clear, however, that such is not the case when the yields are ob-
tained from plots on the same block. Denoting by p;um) the coefficient of
correlation between z; and z;, and using (4)

8
lZ:, Uji(k) Ujt(m)
s(s — 1){‘:;» + Vz;}i{o':;m + d’f,-}* ’

when k > m, while, of course, p;ary = 1. .

It may be noted that even when two sequences such as in (2) are identical
the correlation p;xm).is not zero. In this case, when the varieties react in
exactly the same way to variations in fertility within a block, o}, = o, = o3, ,
say, and

(7a) piemy = —(8 — )71 — o%,/a0;} .

Then the coefficient of correlation is negative and depends only on the relative
magnitude of the technical and soil errors for the block in question, and on the
number of plots in the block. In a given block it is greatest in absolute magni-
tude when the technical error is zero, or at any rate negligible with respect to
the soil error which, of course, is usually uncontrollable. In order to have zero
correlation between the yields of every pair of varieties it must be assumed
either that (a) there is such a complete lack of relationship between the ways
in which the various varieties react to the differences of fertility within a block
8

) Pitkm) = Pi(mky =

that for each pair of varieties k and m all the products such as . %k %im
lwal

vanish identically even though the 4’s themselves are not zero, an assumption
that lacks plausibility, or else that (b) all members of each sequence of the
type (2) are zero. This latter assumption means that no allowance whatsoever
is needed for variations of fertility within a block. Once variation of fertility
within a block is admitted it appears only reasonable that it should be taken
into account and the effect of the resulting correlations on any test concerning
the yields of different varieties examined.

Cramér has shown [6, 7] that if the sum of two independent random variables
be normally distributed each variable must itself follow the normal law.
Strictly, therefore, it cannot be correct to apply normal theory to the random
variables z;; in the mathematical model elaborated above, for, though e;x may
readily be assumed normally distributed, 5, can obviously take only a finite
number, s, of values and, consequently, as its distribution cannot be normal, it is
impossible that z;; can be exactly normally distributed either. However, as a
first approximation, taking into account the correlations, it will be assumed
that the yields from any block form a set of single observations of the variables
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in an s-variate normal distribution. Further, for the sake of simplicity, it will
be assumed that the variances and covariances of the populations appropriate
to the different blocks are the same. Dropping the distinguishing j’s, the
variances of the yields, as in (6) are defined by ok = o3,, + %, and pim is Written
for pjam in (7). We define y; and Aim by

® Yik = Tix — Qi
and
(9) Akm = m = Amk

where A is the s-rowed determinant | pim |, symmetrical about its principal
diagonal, A the cofactor of pim in A and A is written for | Axm | the deter-
minant of the positive definite matrix || Aim ||. Then since the interblock
covariances are zero, the elementary probability law for the whole set of ns y's
is given by

(10) plyal = A" exp {— 2 T Awmyisvin.

It may be noted that 7 and I where they occur run through all integral values
from 1 to n while k and m take values from 1 to s. A sign such as Y means
km

that the summation is taken over all the pairs of values of k and m the term
(m, k) being taken as distinct from the term (k, m) and including the terms in
which k = m. 2 implies a similar summation with the omission of terms in

k¥m
which & = m.
The distribution law (10), or similar one substituting the z’s for 3’s from (8),
takes into account also cases in which, though the correlations may be zero,
the variances of the different variety yields differ.

4. The Z-Test. If {z,},q = 1,2, ... f1, is a set of f; mutually independent
random variables each of which follows the same normal law with zero mean

and variance o} , and if ; = ﬁ: z: , then the distribution law for v is, v; > 0,
q=1

(11) : pw) = (/TGRS e

with f = f; and ol = 2":- If also us = 2?[3, where {y.},r = 1,2, ..., /i,
re=]

is another set of mutually independent random variables each of which is nor-
mally distributed with zero mean and variance o3, then the distribution law of
us is (11) with ™ = 203 and f = f;. If, in addition to the independence of
the variables within each set, there is also independence between the sets,
then u; is independent of us and the distributions of different functions of u;
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and us used as criteria may be obtained. The one originally proposed in this
connection was z, defined by,

z = § log. (fiwe/fow) — loge (o2/a1)
and its distribution law is [8, 9, 10]

A1 T [3(fy + )€
2 = .
a2 PE) = S GAITGR (h + fad )T

Any other single-valued, monotone function of us/u; would when a1 = o3,
as a criterion, be equivalent to z. F = ¢ = fius/four, v = us/u and w =
us/(ws + us) have been adopted as criteria and their distribution laws are
readily deduced from (12). All these criteria are equivalent in providing con-
trol of “errors of the first kind”’ [11, 12], that is, the risk of rejecting a hypothesis
tested when true. As usual the procedure is to select arbitrarily in advance a
certain “level of significance,” say ¢ = 0.05, 0.01 etc., and, assuming the hy-
pothesis tested is true, to determine the value of the criterion, say the value
2o of 2, such that

(13) P{zzzolH}=pr(z)dz=e-

If the sample of observations gives a value of z > 2z H is rejected, if z < 2,
H is accepted. It is merely a matter of convenience which of the criteria
z, F, w or wis used and tables are available to facilitate numerical work. Tables
for z and F are given by Fisher [2], Fisher and Yates [13] and Snedecor [14],
while for w Tables of the Incomplete Beta Function [15] may be used.
Though no tables are directly available for v it is the simplest to use in theo-
retical discussion and in subsequent sections it is its distribution law, and not
that of z, which will be considered. The latter may, of course, be readily
deduced.

Considering the distribution law (10) with ;. replaced by zs — a; when
pem = 0 and ox = om = o, i.e., all the observations are normal and independent
with the same variance. Writing

(14) U = Zk (xik -z — . + fv--)zy
(15) | Uy = ’Zk (xx—z.)=n ; (e — 2.)%
(16) U = § (z;. —z.) =s ’Z (zj. — z..)%,

then it is readily seen that

w + ug + us = Ek (xp — x..)%
1y
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Now if a;; may be put in the form M + B; + V; with EB, = zk: Vi=0

Hi

then wu, is distributed as in (11) with f = (n — 1)(s — 1). If, in addition to the
additive assumption, V; = 0 for all values of k then u, follows the same law,
independently of u; , and with f = s — 1. Similarly if B; = 0, for all values
of j, us has the same distribution law withf = n — 1. It may be shown [16]
that if a;z = M for all values of j and k the three quantities u; , us and u; follow
independently the law (11) with suitable values for f, and then the corresponding
values of z follow the law (12).

Making the assumption of additivity for @z, of which, incidentally, the
correctness or adequacy cannot be tested without more than one set of ns
observations of the variables, the z-test may be used.to determine whether or
not there is a “block effect”’ or a “variety effect,” i.e., whether B; = Qor Vi = 0
for all values of j and k. For instance to test the hypothesis Vi = 0, k = 1,
2, .--,8 2 = }log. {(n — 1us/w} is calculated from the observations and
the hypothesis is rejected if z > 2z where 2 is found from Fisher’s tables corre-
sponding to a suitable value of ¢in (13). Otherwise the hypothesis is accepted.
This is the usual method of applying the z-test to randomized blocks.

The problem before us now is to consider what happens to such a test when
or # om and pr # 0 in (10), and the hypotheses to be tested must be related
to (1) and (5). As already stated this method of testing hypotheses controls,
at a suitable level, the risk of rejecting the hypothesis when it is true. A
complete examination of the application of any criterion as the test of a sta-
tistical hypothesis should involve, alsb, investigation of ‘“‘errors of the second
kind,” i.e., the risk of accepting the hypothesis when some alternative is true.
That is to say such an examination should involve a study of the “power func-
tion of the test” [17, 18, 19], and this would require a knowledge of the proba-
bility distribution of the criterion when the hypothesis tested is not true. In
this paper, however, attention will be confined entirely to ‘“errors of the first
kind.”

5. Hypotheses Tested. In order that

(14a) U = Ek Wir — yx — yi. + 1‘/-.)2
1y

and

(15a) Ug =1 kE (o —y..)*

may be true it is sufficient that
QA — Q. — Q. +a. = Xj.(k) - X..(k) - X,'.(.) + X..(.)

and

ar — a. = X..(k) - X..(.)
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must both be zero in every case. It has been suggested by Neyman [4] that it
would be desirable to test the hypothesis that X..q, is independent of %, i.e.
that the average of the true yields over the whole field is the same for all
varieties. He suggests that the variations in the responses of the different
varieties within the field are relatively unimportant so that, while allowing for
the effect of the variations in fertility within the field on the various distribution
laws, it is the average over the whole field which should be tested. The func-
tions u; and us will not test this hypothesis for, in order that they may have
the same expectation not only must X..x be independent of k but also X ;.
must be independent of k for every j. Consequently one of the hypotheses
tested here is that X;.4) = X;.c,, and therefore, of course, X..4y = X..(,, for
every j and k, i.e. that the mean of the true yields over all the blocks is the same
for all varieties while, by using (10), we make allowance for the variations in
fertility over each block and for the resultant correlations introduced. We shall
not consider u; from (16) as we are interested only in the presence or absence
of a “variety effect.”

It appears that two other hypotheses lead to results which are particular cases
of the above. If we test whether the true yield on every plot is the same for
all varieties, i.e. that X ) is independent of k, then, assuming the hypothesis
tested is true, the varieties all react in the same way to the variations of fer-
tility within each block and in (10) ox = om = o, say, while pym = p. On the
other hand if we neglect all the variations in fertility within each block all the
correlations vanish and ¢, = om = o.. The hypothesis tested then is that
either X ;4 or, what is the same thing, X ;. is independent of k.

It does not appear that the assumption of normality need cause any difficulty.
E. 8. Pearson [20] has examined the effect of skewness on the parent popula-
tions and by carrying out sampling experiments has concluded that even with
skew populations “...it seems probable that the more elaborate forms of
analysis of variance are also of fairly wide application, provided that the number
of degrees of freedom apportioned to the residual variation is not too small.”
A further investigation by Eden and Yates [21] was also designed to test the
effect of skewness, but the negative result there obtained was to be expected
owing to the amalgamation of the observations into groups. It appears that
the effect of skewness in the original populatlons will not have very much
effect on the distribution of z.

Welch has examined [22] Randomized Blocks and Latin Square experiments
from the “randomization” point of view. In the case of randomized blocks,
in terms of the notation used above, he has taken e; = 0 or, expressed in
another way, he has assumed that the actual observed yield in any plot is the
“true yield” on that plot of the particular variety tested on the plot. The
hypothesis he is then testing is that X4 , or, what is the same thing for him
Zap is independent of k. Taking the (s!)" different ways in which the varieties
may be tagged on to the different yields he has considered the (s!)" different
values of what we have called, w and he has compared the finite discrete distri-
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bution so obtained with that given by normal theory. Getting E(w) and o2,
from the finite distribution, he fitted a Pearson Type I curve in a number of
examples and found that the 5 per cent and 1 per cent points in his fitted curves
did not differ much from the corresponding points of the normal distribution
of w. His theoretical discussion showed, however, that if there is too much
discrepancy between the variancies in the different blocks the randomization
test may seriously underestimate the significance of any differences between
the varieties as compared with normal theory.

It was Neyman [4] who first pointed out that, when the variations of fer-
" tility within each block are taken into account, the correlations between the
observed yields should be allowed for, and the method adopted here is a de-
velopment of his point of view. A number of authors, however, while agreeing
that such variations of fertility do occur, hold that this does not seriously affect
the distribution of 2.

6. Distribution of u; and uz. As already stated, it is the distribution of
v = ug/u; which will be sought, not that of z, where u, and u, are defined by
(14) and (15), or rather by (14a) and (15a), since the hypothesis tested is
assumed true. Writing ¢ = 4/ —1, the characteristic function of the simulta-
neous distribution of «; and uz, that is E [exp {i(ius + tauz)}], is found from (10).

From (14a) and (15a), by straightforward expansion, using the conventions
already explained for & ; ete., we get

m m

U

-

= (ns)™" [((n=1)(s—1) Ek ?/?k - (n—-1) E kg Yik Yim
2 Fi m
—(s—1 . Ui
(s—1) @ ]Z.: YikYue +,~§' kg’. YirYim] »
uy = (n8) " [(s — 1) {Eyfk + 2‘: O Yk} — 20 2 Yiklim — 2o 2 YikYml
ik il i k>m ixl kxm
and using these expressions with (10) the characteristic function of u; and u, is

Purug(ty, o) = Abrgime [ plyir} -exp {{(hiun + thug)} dY

o gin i f

exp { Zz kZ Bix, im ?/;‘k?/lm} dY
—® H »m
where dY = Il dy ir and the integral is an ns-fold one taken over the whole space
i
of these variables. B is defined by
a7 Bitim = 611 Akm — 1:(85;;,,. — Dfti(né;y — 1) + t2)/ns

where the §’s have the usual meaning being equal to 1 when the suffixes are the
same and equal to zero when the suffixes are different. This integral, since the
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real part of Bj.m is positive definite, may readily be evaluated [23, 24] and
gives

(18) Puyug(lr s ) = A’n/B‘

B being the ns-rowed determinant | Bjx,im |-
The determinant B may be written in the form

Pl [Q --- [Q]
B=|Q [P]...[Q]

...............

Q @ --- [P

where [P] = [pim] = [Bir.iml 80d [Q] = [gim] = [Bjrim] and there are n’ such
arrays in B. This gives at once B = | pem + (0 — 1)Gim || Ptm — Qim [*,
whence on substitution

(19) B = IA)",. -_ ‘itg(85km -_ l)/8 I-I Akm - z't;(s&k.. -_ 1)/8 I"_l.

The two determinants in (19) are identical, with ¢ and ¢; interchanged, and
are readily reduced to symmetrical (s — 1)-rowed determinants by: (a) Adding
to the terms in the last row the corresponding terms in the other rows and
repeating for columns, (b) Multiplying the terms in the last row successively
by Miy/M (k = 1,2, 3, ---,8) and subtracting from the corresponding terms
in each of the other rows, with

(20) Mi=2 Ain snd M=2Mi= 3 A
mam] =1 k,mm=1

The following operations then reduce these (s — 1)-rowed determinants to ones
which are symmetrical and contain ¢’s only in the diagonals: (i) To the terms
in the last column add the corresponding terms in all the other columns and
repeat for the rows, (ii) Multiply the terms in the last column by (+/s + n™
and add them to the corresponding terms in each of the other columns, repeat
for the rows, (iii) From the terms in the last column subtract the sum of the
corresponding terms in the other columns multiplied by s} repeat for the rows,
(iv) Divide the last row and the last column by s, The determinant then
becomes M/s. | C — 4tI | where || C || is the matrix || cem ||, I the unit matrix
and ‘

Cim = Cmt = Aim — (V5 + 1) A + Am) + (Vs + 1)7°A.
- MM — (Vs + )M Mn — (Vs + 1D M.

It should be noted that henceforward k& and m run through integral values
from 1 to s — 1 only unless the contrary is specifically stated.
Thus it follows that

Cuus(ty , 1) = (As/M)™ | € — eI | F*0. | € — il [

1
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Putting C = | ckm | and noting that ¢u,,4,(ti, ) = 1 when &, = &, = 0 clearly
As/M = C and the characteristic function factors into the form ¢y, (t) - ¢u,(t2),
where

(22) ou(t) = v l C — il l —Hn-D
(23) Cugts) = C*| C — itT | .

This demonstrates that u; and u. are stochastically independent and that the
correlations introduced by allowing for the variations in fertility within the
blocks does not affect the independence already demonstrated [16, 25].

|| C || being a square positive definite matrix of rank s — 1, its characteristic
equation | C — A | = 0 must have s — 1 real positive roots. It follows that
| C — 4tI | must factor into s — 1factors of the type a-it where ais a real positive
constant. Some or all of these factors may be equal and various combinations
of factors of different multiplicity are possible depending on the value of s.
Only two cases will be considered here: (a) when all the roots of the characteristic
equation of || C || are equal, and (b) when all the roots of the characteristic
equation are unequal.

Suppose that all the roots of the characteristic equation are equal, say to a,
then |C — itl | = (a — 4t)" 'and C = o' giving

(24) ¢“1(tl) = a“"_l)('_l)(a — itl)—}(n—l)(a—l)’
(25) Pus(te) = a‘('_l)(a - itg)—“'_n

It is seen at once that u; and u, are distributed asin (11),f; = (n — 1)(s — 1)
and f; = 8 — 1, and thus z or v follow the usual distribution laws.

Clearly when the variations of fertility within each block are neglected and the
hypothesis tested is that X;u, or X;.«), is independent of k, the roots of the
characteristic equation are all equal. Then there is no correlation, o = o,
A = 20" = et = @, Aem = 0 = cim(k > m) and the usual results are
obvious.

On the other hand when allowing for the variations of fertility within a block
while testing the hypothesis that X; i, is 1ndependent of k, the variances and
covariances are all equal ie. ot =01+ 0t =0, pe =1 and pgm = p =
—a2/{(s — 1)(o3 + ¢%)}, k > m. This gives

Aim = [{1 4 (s — Do}dm — ol1 — p)"™", A= {1+ (s — 1)p}1 — p)"7,
Aim = {14 (8 = 1)éem — p}/26°A, A = 1/(26%'a,
Cm = 81;";{202(1 - P)}_l) c {272(1 - P)}_.+lr

where, as usual, é;m = [(1) z : ::] From this it follows the roots of the char-

acteristic equation are all equal, & = {26°(1 — p)} " in (24) and (25). Thus in
this case also, the z-test or its equivalent gives exact control of errors of the first
kind. There is, however, this difference that w;/(n — 1)(s — 1) and us/(s — 1)
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are to be considered not as estimates of o° but as estimates of ¢*(1 — p) =
(8 — 1) {sos + (s — 1)a7}.

When s = 2, even though the variances differ, since. there is only one root of
the characteristic equation @ = (o1 + o7 — 2po10s) " the characteristic functions
are of the form (24) and (25). Consequently, in this case, 8 = 2, when only two
varieties are tested for the hypothesis that their average ‘“‘true yields” are the
s¢ 1e on each block then, even though the varieties may react in different ways
to the fertility levels within the blocks, granting normality, the usual z-distribu-
tion applies. This, of course, includes the case when even though p may be
zero the variances differ. u;/(n — 1) and u, are to be considered as estimates of
1(of + o3 — 2p0103).

F roceeding next to the case in which all the roots of the characteristic equation
| C — A| = 0 are unequal, the roots are, say, &y < az < --- < a,—; where, of
course, all these quantities are real and positive. This case will arise in testing
the hypothesis that the yield for each variety is the same for every block, that

+ =R o P — +R

X X

Fi1a. 1

X;.y = X;.(m, while allowance is made for the different responses of the
varieties to the differences in fertility within the blocks. The mathematical
formulation would be the same even if there were no correlations but the vari-
ances were different for the different varieties. Then we have [26, 27, 28] for
both u; and u, from (22) and (23)

(26) " pw) = Cm@n) L (1] (e — ] ™dt

withm = }(n — 1) for u; and m = }forus .

Replace ¢t by the complex variable z and integrate round the contour shown in
Fig. 1. This contour consists of: (i) The real axis from +R to —R, where
R > a,, (ii) The quadrant |z | = R, = < arg z < 3x/2, (iii) The imaginary
axis from A[—¢R)] to B[— (a1 — 7)i], cutting out the singularities by small semi-
circles of radius r, as shown, (iv) The imaginary axis from B to A, as in (iii), (v)
The quadrant | z | = R, 3xr/2 < argz < 2r. Within this contour f(2) is analytic
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and hence the contour integral zero. It may also be readily seen that the
integrals over the two quadrants tend to zero as R increases, and by examining
the changes in the amplitudes of (o — #2)™™, k = 1, 2, ...,8 — 1, as the
contour circles the points —ia;, —1as - - -, it will be seen that the integrals over
the straight lines between (—tas, —ias), (—Zay, —1tag), - - - cancel whether m be
half an odd or half an even integer. Then

(26a) plu) = C™(2x)™" ; L e [LI (o — 12)] ™" dz.

The contours D, are those shown in Fig. 2 and consist of ‘‘dumb-bells’’ encircling
the points (—ta,, —tari1), r = 1, 3, 5, - - -, in the negative direction. If s is
even, the last integral consists of only one half the “dumb-bell” extending to

x! (=] X
-id,
o i
-lda
1 ]
.
[]
[
e
-1ids
Ds 14
-1d4
[ ]
P
-ids

oe Tt

-ide

od

Fic. 2

—4o. It may also be noted that if n be odd and so m an integer, the other
straight line integrals, those of the “‘dumb-bell” contours in question, also cancel
and leave only the contributions of the small circles about, what are now,
the poles.

=1

Now we put 7z = w and &,(w) = bI_I (ax — w)™™ omitting the terms contain-
1

ing ar and a,4, it follows that &,(w) is analytic in and on a circle of centre
3(a, + ar41) which contains the points a, and a,4; but not a,—; or a,42. Thus
the function ®,(w) may in the interior of this circle be expanded as a uniformly
convergent series in terms of 3(ar + ;1) — wgiving, r = 1,38, ...,

@ &,(w) = 5_: arplH s + i) — W},
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Since termwise integration is then permissible it is necessary to consider only
integrals of the form
Irp zf {3(ar + arp) — w}”e ™ dw
b;  {(ar — w)(art1 — w)}™
where D is a contour similar to D, but circling instead in a positive direction the
points a, and ar41 on the real axis. We then have

)

(26b) p(u) = C™(27)~ E E Urpdrp.
Now if
_ e " dw
Jr ’fo: [l — W) (arss — W)}7

it is clear that J,, is obtained by applying the operator {%(a, + ary) + %}
p times to J,. Now putting w — % (& + ar1) = (ary1 — )i, it follows that

ie—iu(ar+ar+1) Q+,—14) —}ut(arﬂ—ar)
Jr = —— f o
r ezmn{,}(ar“ _ ar) }2m—l i ( — l)m

and this gives [29, p. 171],

rr(‘;‘)u’"—* —)u(ar+ar+1)I -;Hu(aru _ Olr)}
2" (m) (§(or41 — a;)}m?

I,(2) is the Bessel Function of purely imaginary argument defined, —r < arg
z < = by

_ 0 (%z)p+2r
(28) LG = ?-"B rIT(u+r+ 1)

Jr =

Hence it may be found that

— 27"11(%) —bulartarsy) 6” m—} _
o = I'(m)(art1 — a,)"“*e a@:[u L {3u(ary — an)}]

and this gives

crr e—bu(ar+ar+x) L o7 —
:I‘(rri)%) r (arp—ar)™ 550 arpi)‘;;" [ *I,,,_;{%u(ar.,.l ~ il

where a,, is defined by (27) with m = 3(n — 1) for w; and m = 3 for u, .
In the case s = 3 there is only one “‘dumb-bell” contour and &(w) = 1, so
that we get, for u; , us > 0.

(29) p(w) =

=1 1
P —3u)(a Q n—
@0 2 = o R =y ¢ sl — )

(B1)  plu) = (arag)te @t [ (19, (ay — a)}.
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It may be noted that if the series in (28) is substituted in (30) and (31) these
distributions may be considered as the sum of an infinite number of x*-distribu-
tions all with the same o® but with different degrees of freedom. It may also be
noted that with oy = a3 all the terms, except the first, vanish and thus a single
x’-distribution is left.

When s is even the last contour is one from + « circling o,-; negatively.
Using Hankel’s integral for the Gamma-Function, putting w — a,-; = {/u

(a5—1+) o+
I =1 f € (tpmy — w) " dw = te 1y ! f (=)™ ¥dr
— 27 —Uag—y m—1
"~ T(m) “

Denoting by D differentiation with respect to » under the sign of integration
and by D' the corresponding integration from zero to u,

(ag—1+)
D?I =4 f (—w) e (at—1 — w) " dw.

Then we can write

8—2 8—2

ITew-w™=(o™?I1a0 - amw™
b=t =1

0
= Z o1, —w)F
p==0

the expansion being justifiable since | ax/w | < 1. Since (s — 2)m is an integer
the additional term to be added to (29) to give p(u) is, therefore,

(32) C™/T(m)- Zo Ao,y DT [y )
=

7. Distribution of v = uz/u; . Though the distributions of u;, and u. have
been given in a rather complicated form for any value of s when the roots of
| C — N | = 0 are all unequal, the distribution of v is given only for s = 3.
In this case, since u; and u, are independent, from (30) and (31)

= (a1a2)hr(%) $(n=2) —}uitus)(artas)
Pl ) = (IR D) ¢

Io{3us(az — 1) Hyonn { 3wz — 1)}

0 (u1, us)
a(u, v)

= y and putting

Now making the transformation u, = u, u; = uv with

the .exponential term

]
rhsrecten _ (L D+ DV 41 1 o) + a)l,
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then on integrating with respect to » over the whole range of variation, from
zero to infinity, we get

(e {(1 + 0)(ar + e} [° 31 7 (4 _
(a2 — a)}@DT{3(n — 21)} f u! )IO{fm’(az a)}

Lo {3u(ar — o) }K4{3u(l + 0)(a1 + @)} du,

K(2) being the modified Bessel Function of the second kind.
This integral is a particular case of one investigated by Bailey [30, 31] and it
gives

(33) p(v) =

p(v) =

(n — D) (aa)™
{30 + ) (1 + )"

where 8 = (a2 — a1)/ (a2 + a;) and F,is Appell’s fourth hyp‘ergeometric function
of two variables [32]:

On performing a similar integration when s > 3, p(v) may be obtained as a
rather complicated series of terms similar to (33).

Fu3(n +1),3n;1,3n;8°0* /(1 +0)°, 82/(1 + )}

8. Approximate Moments of the Distribution of ». As the distribution of »
is complicated even in the simplest case of s = 3 it appears adv1sable to examine

its moments even though only approximately. Writing S, = Z ay " and putting

s—1

[I1 @ —t/a)™ =exp {—m 2 log (1 — t/ak)}
k=1 k=1
= exp {2 mS,t'/r!},

k. being the r-th semi-invariant of u, we get
k. = Sm.-(r — 1)!
Thence the first four moments of u about its mean are
4 = mS,; , ue = mSs
ps = 2mSs,  ps = 3m{28s + mS3},

mbeing 1(n — 1) in the case of ; and % in the case of us .
Now to get, approximate moments for v we write § = (w — )/% and 7 =
(ug — 1)/ and, expanding in terms of £ and 7, obtain

v=t/-{1+n—E—tn+ &+ En— -}
This glves M, being the r-th moment of v about the origin and writing T, =

S,/8i = Y‘ oF / (kg a,})',
M= (n— 1)‘1[1 + 2Ty(n — 1) — 8T5(n — 1)2
+ 12(4Ts + (n — D)T3}(n — 1) .. ],
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My = (n—1)(1 + 2Ty)[1 + 6Ty(n — 1)~ — 32Ts(n — 1)°
+ 60{4T, + (n — DT3}(n — 1) ...],
M; = (n— 1)1 4 6Ty + 8T3)[1 + 12T2(n — 1)~ — 80T3(n — 1)7°
+ 180{4T% + (n — 1)T3}(n — 1) .-.],
M,= (n— 1)7*{1 + 12T, + 3275 + 1247 + T3)}[1 + 20T (n — 1)~
— 160T5(n — 1)~ + 420{4T, + (n — DT3}(n — 1) ...].

The moments around the mean may readily be found if needed. If the o’s
are all equal

u! = TGA —nTGf +1).
’ INCINNE L)

from the known distribution of the ratio of two x™s with fo = (s — 1) and
fi = (n — 1)(s — 1) degrees of freedom respectively. Then developing M, as a
series in terms of f1" and f7"

M= (R/HNA + 2T + 470+ ),
Mi = (/) + 2) (L + 67 + 287 4 - ),

M = (H/f)°(1 + 6f2* + 822 (1 + 12f* + 10072 + - . .),

M = (f/f)'Q + 127" + 412" + 48/°)(1 + 20f7" + 260f7° + --.).

It is then easily seen that the difference between these moments and those of v
when the o’s are unequal is due to the deviation of T', from (s — 1)", the value it
would have if the a’s were all equal.

9. Numerical Illustrations. The distribution of » has been obtained in
workable form only when s = 3 and, consequently, it is only that case that is
considered here. In equation (33) the variable terms in the Appell function all
contain B = (a2 — a1)/(az + 1) and it is this fraction or, perhaps better, its
square which measures, in a sense, the deviation of the distribution of v from the
usual form. There are, therefore, two stages in this examination. It will first
be investigated how 8 changes with the correlations and variances; and then the
changes in the “levels of significance’’ due to differences in g will be examined.

Using (9), (20) and (21) it will be found that the equation | C — NI | = 0 for
s = 3 becomes 4p\’ — 4g\ + 3 = 0 with

2 3 2 2 2 3
P = 0203A1n + 030142 + 010245 + 2010203(01425 + 0245 + 03A1),
2 2
g = ot + o3 + 05 — 0903pss — 0301 — 0109P12

where, of course, A = | prm | and A is the cofactor of py» in A. This equation
may readily be solved giving a; and a; .
Taking first the case of zero correlation and putting of = kio’, 03 = kso® and
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o3 = kso® it will be found that while a; and a; depend on the k’s and on ¢* the
fraction 8 = (as — a1)/(a2 + 1) depends only on the k’s. For different values
of the k’s the following table shows the values of g

TABLE 1
Values of 82 of different values of ot : 63 : 03 = ky : ks : ks. No correlation.

K ks ks s

0
.2 0.003
.0 0.037
" 0.083
0.111
0.177
0.221
0.250
0.250
0.250
0.529
0.790
(N —1)°/2N + 1)
(N = 1)%/(N + 2y

(=]
[
t—‘zo—ln—cp)&l—cncolhwi—t—‘)—-
=t N
OU O M QN = =

Pttt et et et et et ek ek ek ek ek et
N
220\@@@»&

It is clear that to get a considerable value of g°, one standard deviation
must be at least three times the other two. It also seems to produce a
considerably larger value of 8* to have one large k and two small k’s than to have
two large ones and one small, with the same order of magnitude of the ratio
large to small. Furthermore, when the ratios of the ¢° are 1:1:N the limit of
B’ as N increases is 1, while if the ratios are 1 : N : N the limit is 0.25.

Examining now the definition of px» , omitting the j's in equation (7), we find
that pim can be written in the form

Pkm = —Trm(s — 1)—1[(1 + 03/0:.,)(1 + 0’3/0’:,,)]_‘,
where

§7 22 Uinge irem
Jm=]
rkm = e—————————
Ont Onm
and 7im is itself a coefficient of correlation, i.e., the correlation between the
true yields. The second part of pxm depends on s and on the relative magnitudes
of the soil error and of the technical error. Its maximum value, in the case of
8 = 3, is 0.5 which occurs when the technical error is small with respect to the
-soil error.  If both types of error have the same variance then the second term is
0.25. There appears to be no data available which enables us to assign values to
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Tim , 80 the method adopted is to choose some values of 7x» which appear likely
to affect seriously the value of 8° and then to take the second factor equal 0.5.
If the values of pim are all equal and the variances are also equal the normal
theory has been shown to apply, and hence these values are taken to differ
considerably. Table 2 shows the effect on g of taking different correlations with®
various values of o} : o3 : 03 .

It is clear from the table that if there exist correlations of the order of magni-
tude of those assumed, they can cause the distribution of v to deviate considerably
from that which arises on the usual theory. For instance, if the variances are
equal the value of 8° may be 0.444 a value it would attain if, with no correlations,
one variance was seven times the other two. Taking the cases in which o
os:03=1:4:90r1 :9 :16 the value of 8° with no correlations is, in either case,
0.250 while with the correlations it may be as low as 0.008 or as high as 0.869.

TABLE 2
Values of B for different values of the correlations and of o3 : o3 : o3 .
oliolia}
P12 P13 P23 N
1:1:1 1:4:9 1:9:16 | 1:25:25 1:1:25
0 0 0 0 0.250 | 0.250 | 0.221 | 0.790
-0.4 | —0.1 0.2} 0.009 | J0-083 | 0.075 | 0.059 | 0.721
0.2 —0.1 —-0.4 ’ 0.523 | 0.549 | 0.543 | 0.851
—0.25 | —0.25 0.2} 0.074 0.132 | 0.104 | 0.056 | 0.766
0.2 —-0.25 | —0.25 ’ 0.423 | 0.429 | 0.402 | 0.843
0.4 0.2 —0.4 0.265 0.706 | 0.698 | 0.658 | 0.909
—-0.4 0.2 0.4 ’ 0.028 | 0.019 | 0.020 | 0.690
0.4 0.4 —-0.4 0.379 0.793 | 0.765 | 0.709 | 0.937
-0.4 0.4 0.4 ) 0.016 | 0.016 | 0.038 | 0.673
0.4 0.4 -0.5 0 444 | J0-869 | 0.845 | 0.793 | 0.954
—-0.5 0.4 0.4 ’ 0.008 | 0.010 | 0.042 | 0.654
0.4 0.1 —-0.3 0.189 0.606 | 0.596 | 0.551 | 0.890
-0.3 0.1 0.4 ) 0.055 | 0.035 | 0.012 | 0.721

On the other hand when £ is large, in the case of zero correlation, say 8° = 0.790
when o} : 03 103 = 1:1 :25, the correlations, as might be expected, appear to
have less effect, the values of §° varying from 0.654 to 0.954. We may, therefore,
conclude that if such correlations exist their effect on 8°, and therefore on the
distribution of v, is certainly comparable with that of fairly large differences in
the variances.

We now examine

Piv > w8} = fnp(v)dv
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for different values of v and 8. Writing p(v) in full from (33) and interchanging
integration and summation we get

Plo > w|p} = (n — 1)(1 — " ig {3 + 1

) arn(n + k) getae
()2k!

. f o1 + o)V % gy,

Changing the variable to z = (1 + »)™" the integral part becomes

0 gktn—2 5, 2+ Dr@k+n-—1) _ .
j‘; T 14 2)%de = @ F 2+ ) I.,2k +n—1,27 + 1),

in the notation usually employed [15]. Substitution gives
— (1 —ag 3 @HE = Diw gn — 12
Plo>ulp) = (1= 80 3 S B L@k + 0 = 1,2 + 1),
Two sets of values of this expression were obtained, one for n = 3, and the
other for n = 6, while 8° was given the values 0.1, 0.2, 0.3, 0.4, and 0.5. The
values of z, were chosen so as to cover the 1, 5 and 10 per cent significance levels.
Table 3 shows these results.

TABLE 3

P{v > vo/B} for certain values of vo and B
(a) n =3
Values of g*
Zo Yo
0.0 0.1 0.2 0.3 0.4 0.5
0.05 19 0.0025 | 0.003 0.003 | 0.004 | 0.004 | 0.005
0.10 9 0.010 0.011 0.013 | 0.014 | 0.016 | 0.018
0.15 5% 0.0225 0.025 0.027 | 0.030 | 0.034 | 0.037
0.20 4 0.040 0.043 0.048 | 0.051 | 0.056 | 0.061
0.30 21 0.090 0.095 0.100 | 0.106 | 0.112 | 0.117
0.40 13 0.160 0.165 0.170 | 0.175 | 0.181 | 0.187
b)n==¢6
Values of g2
Zo Yo
0.0 0.1 0.2 0.3 0.4 0.5

0.002 0.003 0.004 | 0.005 | 0.006 | 0.007
0.010 0.012 0.015 | 0.017 | 0.020 | 0.022
0.031 0.035 0.039 | 0.043 | 0.047 | 0.050
0.078 0.082 0.087 | 0.092 | 0.098 | 0.106
0.168 0.171 0.173 | 0.176 | 0.181

coocoo
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The 1, 5, and 10 per cent levels of significance for z, were obtained in both
cases by graphical interpolation and the corresponding values of v, then cal-
culated. Table 4 shows clearly the changes in these significance levels. It
must be remembered that values of 8° considerabiy in excess of 0.5 may easily
arise.

*TABLE 4
Changes in the levels of significance 82 = 0 and 0.5, n = 3 and 6.
1 5 10
per cent. per cent. per cent.
Zo Yo o [ v Zo Yo
n=3 =0 0.10 | 9.00 | 0.22 | 3.47 0.32 | 2.16
g =0.5 0.07 | 13.0 0.18 | 4.6 0.27 2.7
n=6 32 =0 0.40 1.51 0.55 | 0.82 | 0.63 0.58
- B2 =20.5 0.32 | 2.1 0.50 1.0 0.59 | 0.7

This work shows quite clearly that the effect of any correlation between the
yields, such as that introduced by variations of fertility within a block, or of any
difference between the yield variance of different varieties tends to cause a
significant deviation to be recognised when, in fact, none exists. When the
number of varieties tested is three, the variation in the levels of significance

may be quite large.

10. Conclusion. The mathematical model appropriate to Randomized Block
Experiments is examined and it is suggested that the use of the z-test, as ordi-
narily applied, is theoretically justifiable only when the variations in fertility
within each block are negligible.

Correlations between the yields of the varieties, due to randomization in a
limited set, are introduced when the differences in fertility within each block are
allowed for.

It is suggested that, as a first approximation, a multinormal population may
be used for the yields from a given block, the variances and correlations being
assumed equal from block to block, though the means, of course, differ.

The simultaneous distribution of the usual sums of squares is found in this case,
and these sums of squares are shown to be independently distributed as the sums
of squares of s — 1 and (n — 1) (s — 1) quantities from another multinormal
population.

It is shown that the usual distribution results apply when the variances and
correlations of all the varieties are equal as well, of course, as when the variances
are equal and the correlations zero. It is also shown that the same is true when
the number of varieties is two, though the variances may differ.

The distributions of the above sums of squares are obtained for all values of s,
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the number of varieties, and the distribution of their ratio for s = 3. The
method of obtaining the distribution of the ratio for s > 3 is also indicated.

The relative importance of the deviations from the usual distribution produced
by differences in the variances and differences in the correlations is examined
when s = 3, and it is found when the variances are all equal that the latter can
produce deviations comparable to one variance being seven times the other two.

That the presence of the correlations or of non-equality of the variances causes
a tendency for a significant difference to be found when none exists is clearly
shown.

In conclusion, I must express my gratitude to Prof. J. Neyman, now of the
University of California, for suggesting this problem to me, to Dr. R. C. Geary
and to Prof. S. 8. Wilks for valuable suggestions. .
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