THE DISTRIBUTION OF THE MULTIPLE CORRELATION
COEFFICIENT IN PERIODOGRAM ANALYSIS

By D. M. STARKEY

1. Geometrical interpretation of the problem. We begin with a summary
of some recent work by Hotelling, in a form relevant to this particular problem.'
He suggests that the general question of finding the distribution of the multiple
correlation coefficient corresponding to a fitted regression of ¥ upon z may be
solved by evaluating definite integrals corresponding to invariants of certain
curves, surfaces, etc. For the purposes of illustration we may consider the case
of fitting the relation

Y = a + bf(z, k, ¢

where f is an arbitrary function, and a, b, k, € are constants, to the observations
y, where we are given n values of ¥, 41, ¥z, - - - , Y= and the corresponding values of
Z, %, -+ ,%,. We shall postulate that the y’s are independent and normally
distributed about a certain mean and that the regression may be fitted by
means of the principle of least squares.

We must minimize the sum of squares

a=n a=n

a;l (ya - Y«z)2 = aZ—l [ya —a — bf(xa, k; 6)]2

and hence we differentiate with respect to a, obtaining the first condition for a
minimum
a=n

GZ_ZI [Ya — @ — bf(za, k, &] = 0.

In the following, all summations take place over a range « = 1 to n. Then we
have

a=¢—0bf
where

__ 2Ya _ 3f(xa, k, €
p=0 I=T

Thus we minimize the sum of squares

P:'[(yat - ?7) - b(f(xa ) k; é) - f)]2

1 Harold Hotelling, ‘‘Tubes and spheres in n-spaces, and a class of statistical problem’’,
American Journal of Mathematics, April, 1939.
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328 D. M. STARKEY

or, putting ya = ya — §
Y; =Y, — Y= bf (xe , K, €) _f

we see that the quantity Z(y, — Y%,)’is to be minimized.

Geometrically we may regard the set of values (y1, ---, ¥.) as defining a
point in n-space, and (Y, ..., ¥,) will also represent a point in n-space on the
4-dimensional surface which may be obtained by eliminating a, b, k, € from the
relations Y = a + bf(z, k, ). The points (y1, ---,yn) and (Y1, ..., Y})
represent the orthogonal projections of (y1, ---, y.) and (Y1, ---, ¥Y,)
on the plane = y, = 0. Hence we have to minimize the distance between these
projections, noticing that (Y1, - -, ¥7) now lies on the 3-dimensional projection

of the surface on which (Y1, ..., Y,) lies. The multiple correlation between
the observed and fitted values is defined as
. — P — V) _  Zy.Y.

T V2. - NZ(Ya— P Vv

and this is equal to cos 6, where 6 is the angle between the lines joining the origin
to the points (y1 , - - -, yw) and (Y1, ---, ¥2). For the purpose of evaluating R
we may thus consider the projections of these points on the unit sphere in
T y« = 0 with centre the origin, these being

!’ !’ !’ !
yl oo e yﬂ d Yl oo Yn
V2 V) MY \VEY? VErR)

As by hypothesis the distribution of y has spherical symmetry about some
point on the liney; = y2 = ... .. = y,, then the distribution of 3’ has spherical
symmetry about the origin, and the probability distribution of the projection
of ' on the unit sphere is uniform. The projection of Y’ lies on a 2-dimensional
surface on the (n — 2)-dimensional sphere, and for a given Y’ the probability
that R is as great or greater than cos 6 is proportional to the volume of the
sphere in the (n — 2)-dimensional spherical space with centre Y’ and geodesic
radius 8, so that the total probability that R lies between cos 6 and 1 is equal
to the ratio of the “‘area’” of the portion of the unit sphere included by the
envelope of these geodesic spheres to the ‘“‘area’” of the unit sphere. This
envelope is that part of the unit sphere in £ y, = 0 which is at a geodesic distance
6 from the 2-dimensional surface on which the projection of Y’ lies, termed a
“tube’” by Hotelling.

For very small values of 6 it may be assumed that this ratio is equal to the
area of the two-dimensional surface on which Y’ lies, multiplied by a fixed
multiple of 6. This is fairly evident intuitively, but has recently been
substantiated by some results of Weyl® who shows that this is correct for small
values of 8, and indicates a series from which could be derived a series of ascend-

2H. Weyl, “On the volume of tubes,’’ American Journal of Mathematics, April, 1939.
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ing powers of 8 by which successive adjustments could be made for larger values
of 8. The coefficients in this series are finite invariants of the surface in which
we are working. If we accept the first approximation we must consider the
question of the extent of the surface, which depends on the range of values of
the parameters k, e. The range which is eventually chosen depends on the needs
of the practical statistician, while keeping in view the mathematical possibilities
of effecting a solution. In the following work we consider in particular the case
of periodogram analysis by putting f(z, k, ¢) = cos (kz + ).

2. The case of periodogram analysis. With the notation of the preceding
paragraph, we fit
Ye=a -+ bcos (kx, + €
todata (Ta, %) a=1,2,...,mn.
We shall assume that the variate z is a measurement of time or some other

quantity for which the measurements are made at equal intervals, taken as
unity for convenience, so that

z =0, z2o=1 ..., 2, =n — 1.
Now we shall see later that we are interested in values of k such that 0 < k < 2.
For this range
7= Z cos (kxe + €
n

_ sin (3nk) cos [e + 3k(n — 1)]
- n sin (3k) )

Hence, if Y’ represents the projection of Y’ on the unit sphere

sin (3nk) cos [e + 3k(n — 1)]]
n sin (3k)

Yl = )\[cos (kxe + ¢ —

where A is to be determined so that

Yl =1.
Now
0.2 2
e N2 2 _ sin’ (3nk) cos® [e + 3k(n — 1)]]
IY'"? =\ [2 cos’ (kxe + ¢ 7 sin? GF)
and
2 1 1 sin nk cos [2¢ + k(n — 1)]
T cos (kx¢+e)—§n+§ R’
and hence
1

r= 1‘/1 - Lsin nk cos [2¢ + k(n — D] _sin? (3nk) co8’ [¢ + $(n— D))
2" T3 sin k - n sin? (3k)
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the expression being continous at k = =.
Then Y = Mcos (kzo + € — ])
= A cos (kxoa + €) + £ say.

Regarding % and e as curvilinear coordinates of a point on the surface, we apply
the formula

VEG — F*dkde
for the element of surface area, where
_ aYZ)’ ) ¢4:) g4 _ (an.’)”
E_E<ak ’ F_zak "0’ G=2 % /-

In evaluating these summations, we shall need the following results: Y, = 0,
Y = 1, from which we obtain

1 Z cos (kxe + €) = :X—M
2
@ 3 cos* (koo + 9 = L HE
Differentiating these relations, we have
3) 224 8in (kze + ) = %(_’;‘ﬁ)
_ b _ nbh
A A2
. _ o (n
4) Z sin (kze + € —a—e()‘>
_ Nk _ méA
DY A2
2 .2 I 1821+n£2)
(5) Zxsin® (kre + ¢ = §Ea:., + ZTI&’(T
_nn—1)2r—1) , 11/ 2N |, 6 2
= 2 +z[( ~ tTw)0+D
— O 4 2 (et + ei)]
. _ 13 (1428
(6) 2o €08 (kxo + €) sin (kze + €) = _QEE(T)

M) ng
ST T e
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) 10 (14 ng
) Z cos (kza + ¢ sin (kza + ¢) = _55;( A2
e nk.
2 1 1 0 1+n£’)
(8) 2z, sin” (kza + ¢) = 5 2%a + 4 M(—V_

”EkEe nEEek _ nEEexk
+ 2\? + 22 A3

Now
Y,
—5];‘3 = A, co8 (kxo + €) — Azosin (kzo + € + &
and
aY”

5 = Aecos (kx, + ¢) — Asin (kz. + € + &

so that with the above definitions of E, F, G we obtain
E = N2 cos’(kza + €) + N2 sin’(kza + € + nék — 2\\2z, cos (kza

-sin (kzoe + €) — 2ME 224 sin (kza + €) + 2MeE2 cos (kxa +

>\kk

+ e + —-1)@2n — 1)

2 24 2
2\ 12 LT R

F = AN cos® (kzo + €) 4+ N2z, sin’ (kzo + €) + nédx

331

n)\‘ EE/;

+ ¢

€)

—A\Z sin (kxa + €) cos (kza + €) + EMZ cos (kxa + €) — ANEZxosin(kza + €

+ AekiZ cos(kza + €) — M Zzqsin (kzo + €) cos (kza + €) — A&Z sin (kz, + €)

1 Ake Ma(n — nffke 2 _ M fkf
() <2 4= e,

G = A2 cos® (kza + e + A2 sin’ (kz. + o + nE: — 2\EZ sin (kza

— 2\\Z cos (kxo + €) sin (kxo + €) + 2AEZ cos (kza +

A2
-5 + A — ("2 + 1) — na'f?,

after using the relation £ = —f\ to eliminate &.

+ ¢

€
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These relations give

2 _)\Ick )\lzc n—1 _ 2_1 2 1 2.2
2
© X (";‘Tz + 1 — (nf*AF + 1) — n)ﬁ]f)
_ (mk M Ma(n — 1) " nffeeN’ n)@j',,fe)2
2)\2 2\ 4 2 2 )
The area of the surface on which Y’ lies is
VEG = F? dk de

over an appropriate range of values of k and ¢, but it a:ppears that this integral
cannot be evaluated exactly. We shall obtain an approximation for large
values of n, by obtaining approximations to A, f, and their derivatives, when n
is large.

The range of periods, g,:—r , will be considered to vary from quantities greater

than one up to half the range, that is #(n — 1). This is chosen on the grounds
that the intervals of time would be adjusted so that there would be no expecta-
tion of periods less than the interval, and that enough observations would be
chosen to include at least two periods in the range. Although this supposes
some a priori knowledge of the possible periods, it seems reasonable to expect
that the experimenter would have at least a rough idea of the range of periods
which might fit his data before attempting to fit a harmonic curve. This range
gives a range of values of k from 47r/(n — 1) to 2x(1 — v) where v is arbitrarily
small, but fixed. In all cases the epoch, ¢, varies from 0 to 2.

It is readily seen that the surface is traced out only once for this range of
values of k, ¢, so that the problem in its approximate form is reduced to that of
the evaluation of the definite integral

‘/;21 f2:(1-v) VEG Fidhde.

4r

n—1
We shall obtain the approximations mentioned above, in the first place excluding
from consideration values of k in the neighbourhood of 0, =, 2, the integrals
over small ranges including these values being obtained separately.
If kis not in the neighbourhood of 0, , 27, we note that

sin (3nk) cos [e + 3k(n — 1)]
sin (k) )
is a bounded function of k, the upper bound being independent of k, and at most
equal to | cosec % ki | , where k; is the angle in the range considered nearest to 0,
m, 2r. Similarly the upper bound of
sin (nk) cos [2¢ + k(n — 1)]
sin k
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is at most | cosec k; | . Hence as n is increased, we may expand A/n in ascend-
ing powers of n". For large n, therefore, A = O(n™*), and is approximately
(2/n)}.  Since differentiation with respect to k introduces a multiplying factor n
in some of the terms, it follows that this is compensated for by the factor A~
which occurs in the denominator of the derivative, and we may conclude that
M = O(n™). No such compensating factor n occurs in the numerator of A,
and it is therefore of order (n™). It may readily be seen without actually
evaluating the derivatives, which are very long and unwieldy expressions, that

Mie = O, A = O™, Je = O(n™), fi = O(1),
fue = O(n), fre = 0Q1), f = O(n_l)-

(n—=1)n@2n — 1)
12

We thus see that the term of highest order in £ =

The term of highest order in @ = n\* — 1.

nn—1)
4

These are approximately constant for large n, and are equal to n°/3, 1, n/2 to a
first order of approximation. Hence

, n
—- 2~ —=
VEG - F ST

The range for k may be broken up as follows:

The term of highest order in F =

(a) from to = where « is a finite angle, independent of n.

1
o
(b) from;ﬁto'rr—-n—*

o o
(c) from”—h—éto”-'-ﬁ

o [e 3
(d) from 7 + 5 to 27 — 5

(e) from 27 — ﬁ to 27 (1 — v).

The method of procedure will be to show that in ranges (a), (¢), (e) the mtegrand
is of order n, and that since the ranges in all three cases are of order n~ ! the
values of the integrals in these ranges are O(n*) which is negligible in comparison
with the contrlbutlons from (b) and (d), which are O(n).

In (a), < k< -—, we put k = —6, a = 4r, and let & range from p to

%, where p isa posmve quantlty defined by the relation (n — 1) = n'™®. Then
M, J, are of orders n~* and n~° respectively. For this range of values of 3, the
orders of the derivatives are:

M Ak Ae Nke I A |

— — —}— —_ 1— — —
nianisnisnis nsnsnns
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These being decreased, it follows that the order of A/EG — F? is not increased
for any positive 8, and v/ EG — F2 = O(n) as before.

In (c), * — — <Ic <r+ Vweputk =r+ l_',,accordingaslc 2 =, and
consider 0 < & S . The orders of the derivatives are as stated in (a) above for
this range. The remainder of the range = — g <k<m+ s is such that the

values of the derivatives are of orders as stated with & = 0, while A = O(n™?).
Thus v/EG — F? = O(n) throughout.

In (e), 27 — -1% <k < 2r(l — v),weput bk = 27 — n_“x:"’ and consider 0 <
6 < 1. Inthisrange the orders of the derivatives are asin (a). In the remainder
of the range, 2r — g < k < 2x(1 — v), the orders of the derivatives are as in

(a) with & = 0, so that /EG@ — F2 = O(n).
As the ranges (b) and (d) are not independent of n, it remains to be shown

that this fact does not affect the final result. We consider, therefore, k = n_?:‘

and k = 7 — nii“ where 3 < 6 < 1, and since, as in (O) the second and third
terms in the denominator of A are O(n'™%) and O(n'™™) or O(n™") respectively,
A~1 / ,‘/g , while the derivatives have values as in case (a). Thus, in these

ranges, \/ EG — F? ~ ;/n—ﬁ throughout. Thus we may conclude in all cases
that A/EG — F2 = O(n).

The surface area = ./0‘ " [ f Va + j; v + W

4x

A ':75
+ [ TV / " VR Fedk] de
r+\%;‘ 27—\-‘/"—;
—f”[f ‘r+f ‘/_\/EG dek]d
Va w
+ f 2'[ "+ " f wj) VEG = F? dk:l de.
= \/; 2"7‘

In the first two ranges, v/ EG — F? ~ ——

V12

In the last three ranges, /EG — F* = O(n) and therefore the integral = O(n?).
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Thus the area is equal to

4o 4x’ 2’ =
(10) o (21r — —) + terms of lower order = ——.n = —— /3 n.
V12 nt V12 3 v
In the case of fitting a linear regression with 3 independent variates, the
distribution of R is well known to be

T[4 — 1)]
IArian — 4]

It may readily be seen by a repetition of the argument used in the first paragraph
that this expression could be derived by considering the volume of a tube in
spherical space of (n — 2) dimensions, in which the base surface is a 2-dimen-
sional unit sphere of area 4x. We are assuming that the first approximation
to the volume of a tube is equal to the area of the surface multiplied by a fixed
function of 6. If, therefore, we divide this expression by 4w, and take R suffi-
ciently close to 1, or § = cos 'R sufficiently close to zero, we shall obtain the
expression by which to multiply the surface area, (10), in order to obtain the
first approximation to the frequepcy function of R.

Using Stirling’s approximation, we have

Tli(n — )] ~ vV2x " (0 — P
and P[%(n - 4)] ~ ‘\/2—1l' e_*("_”[%(n — 4)]}(1;—4)—-,}'

3 $(n—4)
The ratio of these = e 327 (1 + n——4> (n — D(n — 4} ~ 27},

(B — RH a(B?).

Hence the multiplying constant is approximately n}/+/2x. Substituting
R = cos 6 in the frequency function divided by this constant, we obtain
2cos’ 0 sin" %0 sin 0 do giving 26" ° d6 as the first approximation.

Hence the approximate frequency function for the quantity 6 in the case of
periodogram analysis is

27" vV/3n
¥
n n—5 3 —3 % bo—}n—b
——20""d) ——— =203 8" "ds.
V2 4

Thus the first approximation to the probability that 6 should be as great or
greater is

n—4
27 tpt g 0—
n—4

4
o[ T gn—t
n (6)0

or

approximately.
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The approximations which have been introduced have been forced upon us
by the limitations of the mathematical machinery involved. It must be ad-
mitted that these approximations are not those which the experimenter would
choose, for the following obvious reason. If we are testing the null hypothesis
that the population correlation is zero, for large values of n the sample correla-
tion will approach its expectation value, namely zero, and we shall in general be
interested in values of R which are small, and corresponding values of 8 in the
neighborhood of #/2. This situation is not provided for in this investigation.
It may be, however, that there exists a large correlation in the population,
and that owing to the large number in the sample the value of R calculated is
near this value. Provided that this population correlation is sufficiently close
to unity, the value of 8 will be small enough to apply the distribution obtained
above, and in such a case will enable us to reject the null hypothesis when the
probability calculated from the distribution is sufficiently small.

UNIV&RSITY OF LONDON.



