PARABOLIC TEST FOR LINKAGE
By N. L. Joanson

1. Introduction. In this paper a problem in testing statistical hypotheses
which has applications in genetics will be treated from the standpoint of the
Neyman-Pearson approach. This approach has been developed in a series of
papers, [4], [5], [6], [7], [8], [9], [10], to which the reader is referred for definitions
of the concepts of a simple statistical hypothesis, critical regions, power function
of a test with respect to alternative hypotheses, and that of a test unbiased in
the limit employed in the present paper.

2. Statement of Problem. We shall consider M independent experiments,
which will each yield results falling into one of the four categories described by
the possible combinations of the 4 events a, not-a (or @), b, and not-b (or b)
as set up in the following table.

a not-a

b 4! D2 P,
not-b | ps Da 1-P
P,|1—-P, 1

We shall assume that the marginal probabilities are known and have values
Py,1 — Py, P,,1 — P, as shown in the table. Thus P, = probability of
event b happening whether event a occurs or not. It is obvious that if, further,
the probability of a result falling in any one category or cell is fixed, then the
other three cell probabilities will also be fixed. For if p,, p2, ps, ps be the
four cell probabilities as shown in the table above, we must have

(1) P+ p2= Py P+ ps= Ps; P+ pi=1—P,.

Hence the values of the cell probabilities will be determined by a single parameter

0, say, as follows ‘
@ p1 = PPy’ P2 = Pi(1 — Py’)
‘ pa=P2(1—P180) p4=1—P1—P2+P1P260.

The range of values which 8 may take for the set of admissible hypotheses is
found from the conditions
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3) 0<pm<1 (¢t=1,23,4)
to be

)] — 0 < 0 < min (—log Py, —logP;) if P+ P, <1

but

(6) log (Pi' + P3' — PT'Py') < 6 < min (—log Py, —log Py) if P, 4 P > 1.

The hypothesis tested, Hy, is that § = 0, i.e. that the events a and b are
independent. It will be noticed that H, is a simple hypothesis, since it specifies
the probability law of the observed variables completely. In fact, if m; be
the number of results out of our M experiments which are in the zth category,
then m, , my , ms, my are our observed variables, and we have

mi m3 mi_ mi
6) Plmy = mi ma = mhy my = mily my = mi | Hoj = M Pit P pis pis
my! me! mg! my!

where py; is the value of p; when 6 = 0.

This is the conceptual model used in testing for linkage in two pairs of genes;
H, corresponds to the hypothesis “there is no linkage.” Fuller explanations
are given by Fisher [3]. It should be noted, however, that Fisher uses a pa-
rameter 8 corresponding to 1o’ in this paper.

3. Basis of Selection of Test. The question now arises; what test shall we
choose for the hypothesis Hy? That is, what should the critical region w be
to give us results as satisfactory as possible? The main aim must be to avoid
errors, both of first and second kind, as far as possible. The first kind of error
is subject to control, since the probability of the sample point E falling in w
when H, is true (which we shall denote by P{E e¢w | H,}) can be determined
approximately, H, being simple. The critical region w is therefore chosen, if
possible, to give a definite level of significance to the test associated with it.
However, there will usually be many regions which will do this, and in
order to decide which of them give more satisfactory results we consider
(1 — P{E ew | H});i.e. the probability of the second kind of error with respect
to an alternative hypothesis H, the first kind of error being fixed.

In the present case H will be determined by 6 and so we may put
P{E ew|H} = B(w| 60), where B(w | 6), considered as a function of 6, will be
the power function of the test associated with the critical region w. We want
w to be such that B(w|0) = a. « being the fixed level of significance while
B(w | 6) is as large as possible.

It is also desirable that we should accept the hypothesis Hy more often when
it is true than when any one of the alternative hypotheses (H) is true. Ex-
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pressed symbolically, this means that
7 Bw|0) < B(w|08) forall 65 0.
Any test satisfying the last condition is said to be unbiased.
If 8 and g-g are each continuous and differentiable functions of 8, and we

consider only those alternative hypotheses specified by suitably small values
of 6, sufficient conditions for the test to be unbiased will be

8] _
®) %] _o,
2
©) gg > 0.

According to the terminology recently adopted by Daly [1], the tests of
which it is known only that they satisfy (8) and (9), are called locally unbiased.
If a region w could be found such that, » being any other region for which

(10) B(w|0) = B(v|0), then A(w|0) > B(v|0)

for all 6 # 0, this would give a test which would be the best with respect to any
alternative hypothesis. However, it has been shown by Neyman [4] that under
certain conditions, which many probability laws satisfy, such a test will not
exist. An attempt is therefore made to control the power of the test with
respect to hypotheses specifying values of 6 near to 0; hoping that the powers
of the tests so obtained with respect to the other hypotheses will behave in a
satisfactory manner. Thus Neyman and Pearson [9] define an “unbiased test
of Type A” as a test corresponding to a critical region w such that if » be any
other region in the sample space W for which

(11) -~ Bw|0) =p(|0) = a
and
(12) 3w | 0)1 aﬂ(v | 0] _
=0 =0
" then
OBw | 0)] S O8] 0)1
(13) a6* b0~ 06% -0
In the problem which I am treating the conditions
_ . Bw] 0)] -
(14) Bw|0) = a; 8 o =

implied by (11) and (12) above cannot, in general, be satisfied, since the distribu-
tion is discontinuous, i.e. P{E e w | Ho} is a discontinuous function of w and, in
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fact, for a given sample size, has only a finite number of possible values, none
of which need be equal to a.

However, it may be possible to find a test of H, of a type called “unbiased
in the limit (as M increases),” based on the limiting form of the multinomial
distribution which is a continuous function of w. The definition [6] of a test
“unbiased in the limit” will be taken as follows:

Suppose we have a sequence (wa) of critical regions, wu corresponding to a
sample of size M, such that

(2) for any M, if v » be any region for which

(15) B(wi | 0) = B(va | 0)
and
Bwu |0) | _ 3B(va|06)
(16) o0 ]a—o - a0 ]o=o
then
3°B(war | 6) 3°B(va | 6)
(a7) Mz’—]oso = a6? ]o-o
)
(18) }lim Bwx | 0) = a,
(121) of
(19) S=M®O—-0)=/Mb
. aﬁ(wulﬁ) _
(20) Jim T]o.o =0

then the test associated with this sequence of critical regions is unbiased in the
limst. T shall call such a test a test of type A .

The reason for using ¢ as the variable in condition (19) above is that, unless
our sequence of critical regions has been very badly or unluckily chosen, we
shall have

(21) }(im Bwx|0) =1 6 = 0)

B(wa | 6) .
% will not

while, by (18), lim B(wy|0) = a and so, in general, }llin
exist at 6 = 0. Rﬁ’eo:xce we introduce ¢, termed the normaliz:d error, and, keeping
¢ constant (and hence méking d tend to zero) we form lim w(—w{:’ﬁ).

In the next section will be obtained a test of Hp whichugwof type 4, .

4. Derivation of Test. The composition of a sample of M experiments is
uniquely determined by the numbers of results my, ms, ms falling in the 1st,
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2nd and 3rd categories respectively. Thus any sample may be represented by a
point E(m) in a three-dimensional sample space W(m) with coordinate axes of
my, me, and my. It will occasionally be convenient to represent the sample
by a point in a three-dimensional space with other axes. The following sample
spaces will be used.

W (m)—space with coordinate axes of m; , ms, ms

w(d)— *“ “ “ “ “dy, dy, ds

W)— “ « “ A,

Wmn)— “ “ “ “my, ng, mg
where
(22) di = m; — Mpy; (G=1,23,4)
(23) zs = (mi — Mpoi)/(Mpos)* (G=1,23,4)
(24) ng = mi/M (¢ =1,23,4).

I shall use w, indifferently to denote ‘“the critical region corresponding to
sample size M’ in any of the four sample spaces above; E indifferently to
denote corresponding positions of the sample point in any of the four sample
spaces: except in cases where confusion might arise, where I shall use wx(m),
w x(d), w (), wu(n) and E(m), E(d), E(x), E(n). When necessary the size of
sample with which a point E is associated will be denoted by a subscript; e.g. E » .

In finding a test of type é,, we shall need to consider the quantities
B(wa | 0), 3w | 9) 0)] , and 98w 6) , where ¢ = 0+/M.
ad =0 96? =0

The probability law of the observed values m, , ms , ms is discontinuous with
respect to the points of the sample space Wy . For if E® be a point which
corresponds to integral values m] , m3 , mg of my, my, ms ; subject to the re-
strictions

(25) 0 < mi (G=123)
(26) 0< 2 mi <M

then

@ P{Ey=E|0=0} = M;‘l’,’!fi g’fi z,’!"'ifz’f"g

where

(28) ‘Z:; mi =M
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and

P = PP Pz = Pi(1 — Py)

P = Py(1 — P1) pu=(1— P)(1— Py
while if E° be not such a point

(29)

(30) PEx=E|6} =0
whatever the value of § may be. Now

_ M! p'lnn p’;’ p;nx p:u
(31) Blux|0) = 2 =

where p, , Pz, ps, D1 are as defined in (2) above, and ), denotes a finite sum-

wy
mation over all points E’ in w » for which P{E ,, = E’ | 6} = 0. Differentiating
each side of (31) with respect to 6, we get
a0 =0 wa Ml malmglmy!

x [ml(]- — Py — P;) — maPy — my Py + m4P1Pz:|
a1 -P)(1-p,)

(32)

and
8’ B(wa | O)L -3 M pint pisk prus pid
902
1

v malmg!mslmy!

[{m(l — P, — P;) — maPy — msP, + MP,P,}’

(33) ‘T =Py = Py
— {mP,Py(1 — P, — P3) + myPy(1 — P, — P, Py)
4+ msP\(1 — P; — P, P,) — MP,Py(1 — P))(1 — Py}l
THEOREM 1. The sequénce of critical regions (w ) defined by
(34) v+ B> Ainwy; v + Bu’ < A elsewhere,

where

@5) u = 2P1P)'A = Pi — P) — %P1 — PP — :PY(1 — P)'Py
Y= {PiP(1 = Py(1 — P)JF

Pi(1 — P)(2P; — 1){z(P, Py)! + z: P31 — Py}
+ Py(1 — Py)(2P, — ){z(P,Py)! + . Pi(1 — P,)}}
[Ple(l.— Pl)(l - Pz){Pl(l— Pl)(l - 2P2)2+ Pz(l - Pz)(l - 2P1)2}]*

B MP,Py(1 — P1)(1 — Py) '
@7 B = [ Pi(1 — P)(1 — 2Py)* + P,(1 — Py)(1 — 2P1)2]

36) v =
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4o o
(38) 1 {e""" f PR dv} du = a
27 0 A—Bu? .

mg; — Mpo.
and x; = ————
(Mpx)?

Hy(0 = 0) which is unbiased in the limit, of type A, at level of significance a,
provided that

(39) 0<P:;: <1 z=1,2)
s

and P, and P, are not both equal to }.
In LeMMA 1 of the Appendix (paragraph 9), put s = 2, and let

as defined above, 1s associated with a test of the hypothesis

f1 = individual members of the summation for 8(wx | 0) (see (31))
fz = “ 173 “ o« “« “« aﬂ(wﬂlo.)l (see (32))
a0 0
a"'ﬂ(wu | 0)1
— 43 ({3 43 [{3 {3 ¢ T F
fs= 2 b (see (33)).

From LrmMMA 1 we see that the regions (w) defined by
fs 2 afi + agfpinw
fs < aifi + aof2 elsewhere
will maximize ..Z fo with respect to all regions for which ; fiand ‘..‘: f2 are fixed.

(a; and @ are arbitrary constants depending on the fixed values of > fiand

(40)

Efz). Hence any sequence of critical regions (w ) defined by

{m(1 — Py — P;) — mePy — myP, + MP,P,}*
— {mP\Py(1 — P, — Py) + maPe(1 — Py, — P\Py)
+ msPy(1 — P; — PyP;) — MP\Py(1 — P))(1 — Py)}
> aifm(l — Py — Py) — mePy — msPy, + MP,P;} + a2

(41)

in wy , will satisfy conditions (Z) given above in the definition of a test of
type A, . The inequality (41) may be rewritten

{m(1 — P, — P;) — mePy — msPy, + MP\P; — aa}z
(42) - [Pz(l - Pl){’ma - MPl(l - Pz)}
+ Py(1 — Py){ms — MPy(1 — P}l 2 a4

the a/’s being arbitrary constants.

Also, by THEOREM 1 of the Appendix, we have that, for any given ¢ > 0
and any region w, there is a number M, independent of w and such that for all
M>M,,
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(43) [Bw[0) — I(w) | < e
where
1 "
(44) I(’w) = W";‘if 6_’ o dxy dog dxs
and
(45) E 2} (1 + poipor) + 2 E ;2;(poi po;)’ Do -

We will now apply a transformation to the coordinates m, , ms , ms which will

(a) transform inequality (42) into a simpler form,

(b) transform I(w) into a form to which the tables of the Normal Probability
Integral may easily be applied for purposes of calculation.

This transformation is

2(PiP)Y(1 — P, — Py) — mPY(1 — P)'P, — 2, Pi1 — PP,

(46) u = (PPA1 — P)( = Py’
P\(1 — P)(2P: — 1){z(P, P,)* + 2, P}(1 — Py)}}

7) o= + Pol — P)@P, — D{z(PrPy) + mPi(1 — Po)}}
[P1Py(1 — Py)(1 — Py) {P:(1 — P))(1 — 2P,)* + Po(1 — Pa)(1 — 2P,)%}
(2P1 - 1){271(P1P2)’ + z3 P (1 - Pl)%}

48) ¢ = — (2P, — D {z(PyPy) + %P1 — Py}

{Pi(1 — P1)(1 — 2P,)? + Py(1 — Py)(1 — 2Py)*}}

This is a proper transformation, since under the conditions of the theorem
0 < P; < 1 and P, and P; are not both %; and the Jacobian

a(u; v, t) — =t

(49) = m 04
is non-zero and of constant sign.
Also ,
(50) xo=u +0 4+ &
Hence
(1) I(w) = (_21—”), [[[ et quas a.

w(u,,t)
The inequality (42) is transformed into an inequality of form B(u — as)* +v > A
where B has the value stated above; as and A being at present arbitrary

constants.
Therefore we may put a; = 0 and define A by the equation

1 -Hoo a2 ) io2 _
(52) 5l {e L o dv} du = «
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and conclude that the sequence of critical regions (w,) defined by the in-
equalities

Bl 4+v>A inwx
(53) R
By’ 4+ v < A elsewhere

will satisfy conditions (z) for a test of type 4, .
From (51) and (52)

1 % v
Iww) = s f f f e D Gy dy g
wM

1 e ~3u? * —jv2
= e f e dvpdu = a.
2 — o0 A—Bu?

By TueoreMm 1 of the appendix, as mentioned above, we have

(54)

(85) |Bww|0) — I(wy) | < e forall M > M,
i.e.

(56) | Bwx |0) — a] < e forall M > M,
and so

(57) Bwy|0) > a as M — .

Thus the sequence of critical regions (w ») satisfies the condition (¢7) of the
definition of a test of type A, .

If w be any region defined by inequalities on « and v only (as are the regions
wy) then, as a special case of THEOREM 1 of the Appendix, we have that for
any e > 0 there exists a number M, such that for all M > M,

_ 1 —3(u24v2)
(58) lPu(w) 5= f f e du dy

w(u,v)

<e

where P y(w) = P{Eyew|0}.
By (31) and (32), noting that ‘ﬁ’—;”}"—) - V- ‘1’3(%‘—@, we have

aB(g;i 0)].,=0 = Zfl(u, v).u.(PIPZ)i(l - Pl)—-a(l _ Pz)__;
= Zfl(u, v).uk

where k = (P/Po)l(1 — PY*(1 — Py > 0.
By TueoreM 1 of the Appendix, as last stated above, we have

(59)

(60) filu, v) = 51,; Audv.e (1 + Ru)
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where for convenience we have written Au, Av for A, Ao the units of
and v when sample size is M, and Ry for Ru(u, v) which has the property that

(61) Z Ry(u, D)A(y) u-A(u) v.e_,(,,z.,.,,z) —0
uniformly with respect to w as M — .

Now let w" denote that part of w where Ry > 0 and w™ that part of w where
Ry < 0. Then

_ Aulv —}(u24v2) Aulvy —}(u2+v?)
(62) ;kufl(uyv)_ ;k.-z—ﬂ—‘—.ue +wz+k—§?uRye .

Let

S} z; kAgAv uRue —$(u+v2)

_ Audv —3(u24v2) Audv\} _1(u240?)
RGeS RCEE }

By Schwarz’s inequality

(63)

S+ Aulv , —H(u2+v?) 4 AulAv _3(ut4v?) 4
(64) ’< 5 W Bue ; 5 Bue
But
6 D = DA e | 8 i,

Now w*fi(u, v) > 0and 2 u*fi(u, v) is finite (since «*is a homogeneous function
w

of second degree in the zs and so has a finite expectation) and is bounded
as M — o, Hence Z+ w’fi(u, v) is finite and bounded as M — ., Further,
w

as M — «
(66) EAuAv 2 Hutboy) f f 2, —utton) du db.

wt 27r

Hence z; é;—:vquye"’(""“’) is bounded as M — . From this result,
w

together with (61) and (64) it follows that Sk — 0 as M — « uniformly with
respect to w. Putting

(67) Z i 2uAat AuAv —}(u’+a’)

it will follow in a similar manner that Sy — 0 as M — « uniformly with
respect to w. Hence

aﬂ(;vdl 0)]',-0 - Zw: kufi(u, v)

(68) A
= Trogug e 4 g,

where Su = S + Sy andso Sy —0as M — uniformly with respect to w.
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Hence whatever be ¢ > 0, there is a number M ! such that for all M > M.

(69) laﬁ(wli’)l-o _ f f it g o

EY) <e

whatever be the region w. In particular we may take w = w,, and then
we have

k jf —4(u2+e2) — k e —4u? ® —3v2 _
(70) 3 ue dudy = o .[“ ue /; oy e dvpdu =0
wy

and so

(71) aﬁ("’“ ' "):L_o \ forall M > M’
ie.,

. 9P (wa | 0)] _
@) B s b=

Hence the sequence of critical regions (w ) satisfies condition (iii) for a test
of type A,. This completes the proof of THEOREM 1.

In the above theorem we have found a test which is unbiased in the limit for
all cases except that for which P, = P, = 1. The following theorem derives
the test appropriate to this special case, and it is found that in this instance the
test takes a very simple form.

THEOREM 2. If P, = P; = %, the sequence of critical regions (w ) defined by

73) |ze + 23| > a mwy
|2z + 25| < @ elsewhere
where
+a .
(74) \/% [ e dr=1—-a
—1
(75) e L (=23,

18 associated with a test of the hypothesis Ho(60 = 0) of type A, at level of
significance o.

The proof of this theorem follows the same lines as that of Theorem 1 as far
as inequality (42). On putting P, = P, = } in (42) we get
(76) — dme — 3ms + IM — a5)’ — t(ma + ms — M) > a4
ie.,

(77) (€2 + 25 — ag)” > ar.
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The critical region w, defined in the statement of the theorem is of this
form with a¢ = 0 and @7 = @’

Hence the sequence of critical regions (wy) satisfies conditions () of the
definition of a test of type A,. The sequence of critical regions may also be
shown to satisfy conditions (77) and (#72) for a test of type 4, by following the
lines of the proof of THEOREM 1 and noting that z, + z5 = 2M *(my + ms — M)
tends to be distributed as a unit normal deviate as M — «

On account of the shape of the critical regions in the general case, I shall for
the remainder of this paper call the tests derived in the above theorem the
parabolic tests for the cases considered.

6. Application of the Parabolic Tests. For practical purposes the formulac
derived above are inconvenient to use. I will therefore express them in terms
of the deviations of the observed frequencies in the four cells from the frequen-
cies “expected” when the hypothesis Ho(f = 0) is true, i.e. in terms of the
variables d;, where

(78) di = mi — Mpo; = z(Mpos)} (i=1,234).

The test then becomes “reject the hypothesis Hj at level of significance « if
v + Bu® > A” where

=d1(1—P1—P2)—d2Pz—daP1

79) v = = PP - P - Pa)}
(80) v = Pi(1 — Py)(2P: — 1)(d1 + ds) + P:(1 — P,)(2P, — 1)(dy + d)
[MP, Py(1 — P))(1 — Py){P\(1—P})(2P; — 1)’ + Py(1— P,)(2P, —1)*}}!
(81) 2——17; :n {e_"" j; :m PR dv} du = a
_ MP,Py(1 — P)(1 — Py) !
(82) [Pl(l — P)(1 — 2P))* + P:(1 — P,)(1 — 2P1)2]

except when P, = P, = . In the latter case reject the hypothesis Hy if
dz + ds

(83) 97 >a
where

1 +a s
(84) 7‘27_ -[ edr=1-a

The application of this last case (P; = P, = %) is straightforward. a may be
found from the tables of the Normal Probability Integral. d; and d; may be
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calculated from the data, and we may then see whether the inequality (83) is
satisfied, and so assess our judgment of the hypothesis Ho .

TABLE 1

Stgnificance of Symbols
A and B are connected by the following relation:

1 oo —byu2 * _i 2
— Pl f e dvpdu = a.
2w 0 A—Bu?2

Table Ia Table Ib
a = 0.05 a = 0.01
pos = A — 3.8414588 B p = A — 6.6348966 B
B P.0s B p.o1
0 1.6449 0 2.3263
1.00 0.322 1.00 0.289
1.25 .256 1.25 .231
1.50 .212 1.50 .192
1.75 .181 1.76 .165
2.00 .158 2.00 .144
2.25 .141 2.25 .128
2.50 127 2.50 115
2.75 .116 2.75 .105
3.00 .106 3.00 .096
3.25 .098 3.25 .089
3.50 .091 3.50 .082
3.756 .084 3.75 .077
4.00 .079 4.00 .072
5 .063 5 .058
6 .052 6 .048
7 .045 7 .041
8 .039 8 .036
9 .035 9 .032
10 .031 10 .029
15 .021 15 .020
20 .016 20 .014
30 .010 30 .009
40 .008 40 .007
50 .006 50 .006

The general case is also straightforward, except for the determination of A
from equation (81). To facilitate this I have constructed Tables Ia and Ib.
These tables correspond respectively to significance levels .05, .01, and from
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them the value of A corresponding to a given value of B may be calculated.
The quantity tabled, (p), is the difference between 4 and a multiple' (constant
for a given level of significance and given with the table to which it applies) of
B. To find A, therefore, B is calculated, multiplied by the appropriate con-
stant, and added to the quantity in the table corresponding to B. For large
values of B (40 and over) p is small, and A may be taken equal to the constant
multiple of B.

In particular cases when the values of P; and P, are substituted in the expres-
sion for B (see THEOREM 1 above) and in (79) and (80) above, these equations
appear much less formidable. Thus in the case considered by R. A. Fisher
[3], P, = P, = } and we get

_ /3

B
(85) 8
w=34M12d — dp — ds); v = — 4(6M)}2d; + ds + ds)

and the test becomes “reject the hypothesis Hy at level of significance a when
86) ¢ = {2 — dr — dy)’ — $(2ds + &2 + do)}/ (3GEM)}} 2> A

where

1 r° —fu? © _3o? _
(87) = w{e fA v dv} du = a.
1

Example. Fisher [3] gives an example of the case P, = P, = 1. In the
series of experiments that he quotes the observed results fall in the four cate-
gories respectively as follows:

m = 32; me = 904; mz = 906; my = 1997. M = 3839.

Hence d; = —207.9375; d2 + d; = 370.375. From (86), ¢ = 10863.1. B =
37.94239. From the tables:

at .05 level, A os = 3.8414588 X 37.94239 + 0.0075 = 145.7615
at .01 level, 4. = 6.6348966 X 37.94239 + 0.0065 = 251.750.

Hence we reject the hypothesis that 8 = 0, i.e. that there is no linkage, since
the value of ¢ is well outside even the .01 level of significance.

6. Power function of the Tests. General Case. The parabolic test as de-
scribed above has the desirable property that of all tests (at level of significnace
«) which are unbiased for large values of M this test will detect small variations
in 6 most frequently. However, to get a clearer idea of the properties of this

1 +ko
1 This multiple is equal to k% where v [ e dt = 1 — @, a being the level of
LI

significance.
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test we shall calculate, as accurately as may be practicable, the power function
of the test.

As a preliminary step we obtain a rough idea of the power function by making
use of the concept of a limiting power function as stated by Neyman [6]. This
may be defined as follows:

Let E y denote the sample point corresponding to a sample of size M', and put

(88) P{Ew ew| ¥} = Ba(w]|¥),

where &' = M, w being a fized region. Supposing &' kept fixed, let M’ increase
and let

(89) Bo(w | ¥') = ,,lil_’?., Bar(w | &)

if this limat exists.

Then B.,(w | ¢') is the limiting power function of the test associated with the critical

region w. It will be noted that the limiting power function is a function of ¢’.
In the problem under consideration the parabolic test when the sample size

is M is associated with the critical region wx. Now it should be noted that

in the definition of the limiting power function w remains fixed. Therefore

the limiting power function of the parabolic test for sample size M is

(90) B"(wu | &) = Ml,lglw ﬁu'(’wu I 3).

The significance of the limiting power function is that for any ¢ > 0 and for
any ¢ there is & number M. s such that for all M > M, s we have in our case
(by THEOREM 1 of the Appendix)

(1) | Bau(wa | ) — Bo(wu |¥) | < e

It should be noted, however, that the limiting power curve (the graph of the
limiting power function against § = dM ) may be only a very rough approxi-
mation to the actual power curve. Furthermore (Neyman, [6, p. 83]) we can-
not, in general, use the limiting power function of a test to answer the question:

“How large must we take our sample size M to detect the falsehood of the
hypothesis Hy(§ = 0) when actually 8§ = ¢, with a limiting probability of at
least, say, 0.95?”

For if we form a table as below

M Sy = MO B(wu | 9w
100 . e
1000

it is possible that B, (wx | #(x) may never attain the value 0.95.
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TueoreM 3. The limiting power function of the parabolic test is

1 (™[ t—seppda—rp—ta—rpp—he [° 2
(92) ﬁ”(wM l 3 = — [ Pl 1Py Py 2 [ e—-}v dv} du
21r 0 A—Bu?

in all cases for which 0 < P; < 1 and P, and P, are not both equal to 5.

The proof of this theorem follows immediately from TaEorEM 1 of the Ap-
pendix by applying the transformation (46)-(48) and putting A = P\P,.

The above remarks concerning special precautions to be taken with respect
to the limiting power function suggest the necessity of .studying the actual
power function of the parabolic test by some other method.

With this object in view, a study was made of the distribution of the function
¢ = v + Bu’ for finite values of M and in particular for M = 100 and M = 3839.
¢ is a discontinuous variate and, for any given value of M, has definite limits
of variation arising from the limitations on the values of the variables m; stated
in the inequalities (25), (26) above. These limits of variation of ¢ were found
to be

(93) — $BM)'EM — %) < ¢ < $@GMEMEM - 1)
for the case P, = P, = +. Hence when

M = 100, —12.25 < ¢ < 5486.86,

M = 3839, —75.89 < ¢ < 1310795.75.

Also it was found that
04) &(6]6) = 3{1 4 (1—2P)(1 — 2Py) (M =~ DPiPy (o 1)2}

(]

-1
(D DT AR (= AT
where &(¢ | 6) denotes the expected value of ¢, given the value of the parameter
9. Thus when P, = P, = } we have B = 4/3M and so &(¢ | 0) = V/2M.
Hence when

M = 100, &(¢|0) = 6.12372,
M = 3839, &(¢|0) = 37.94239.

It is thus seen that the distribution of ¢ might be represented by a Type III
curve, since the distribution of ¢ has a finite lower bound and a very long
positive tail. In order to fit a Type III curve, we must know the second moment
of the curve as well as its lower bound and mean. The general expression for
the second moment about zero is too complicated to be printed and so only the
numerical expressions cbtained by giving special values to M are given below.
These are:

@) M = 100
&’ | 6) = 112.41667 + 165.62963(¢' — 1) + 2493.33333(¢" — 1)*

(95) 0o _ 1y ’
+ 1078.00000(¢’ — 1)° + 4356.91667(c’ — 1)*,
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(%) M = 3839
&(¢’ | 0) = 4318.79213 + 6397.29625(c’ — 1) + 3684321.24073(¢’ — 1)’
+ 1636267.33255(¢" — 1) + 261530062.11111(e" — 1)*.

Using the above results Type III curves were fitted to the distribution of ¢,
and approximate values of the power functions B(w x | 6), at level of significance
.05, were calculated. This was obtained by evaluating P{¢ > A, |60} and
assuming the distribution of ¢ to be that given by the fitted curve. Then

(97) Bww | 6) = Pl > A |6},

The values obtained for the limiting and approximate power functions are
given in Tables Ila, IIb. Unfortunately the agreement between the two is
not satisfactory.

Special Case. For the cases Py = P, = 3 (M = 100, M = 400) power
functions were calculated on the assumption that for a given value of 6, the
random variable 2M ¥ (d; + d3) is distributed normally about a mean M He® — 1)
with standard deviation 4/ef(2 — ¢f). This is approximately the case for the
values of M considered. The approximate power functions so calculated are
given in Tables I1Ia, I1Ib.

(96)

7. Parabolic Test and x* Test. It is interesting to note the close connection
between the parabolic test and the x* test as introduced for intuitive reasons
and normally used in testing for linkage. The x* test consists of calculating
the quantity ’

2 _ 1 3 _
o3) X~ MPPI = Py = py (O T P Pom

— Py(1 — P)my — Pi(1 — Py)ms + Py Pyma)?
and rejecting the hypothesis Hy(8 = 0) if | x | > @ where

1
(99) Vil ¢ dt=1-a

In the special case (P1 = P, = %) the parabolic test and the x* test are iden-
tical; while comparing (98) and (79) we see that in the general case

(100) u = x.

Hence in the general case the criterion used in the parabolic test may be
written

(101) ¢ = v+ BX.

(1) Large Samples. For large samples the first term of the expression » 4
By is usually of small importance, since
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v is of form M X (linear function of the d/s), while

By is of form Mt X (quadratic function of the dy's).

For such samples the x* test and parabolic test would appear to be nearly
equivalent.

TABLE II
Limiting and Approzimate Power Functions of Parabolic Test
P, =P, = i‘
- < 0 <1.386
Table Ila Table IIb
M = 100 M = 3839
Power Power
(/] - ]

Limiting [Approximate Limiting |Approximate
-2.00 0.90870 —0.25 { 0.99932 | 0.99853
—1.50 | 0.99880 —0.20 | 0.98502 | 0.97521
—1.40 0.77656 —0.15 | 0.87243 | 0.83620
—1.20 | 0.97915 | 0.69505 —0.10 | 0.54197 | 0.52066
—1.05 | 0.93786 —0.05 | 0.17827 | 0.19223
—-1.00 0.58580 0.00 | 0.05000 | 0.04111
—0.90 | 0.85024 0.05 | 0.17827 | 0.21568
—0.75 | 0.70467 | 0.42755 0.10 | 0.54197 | 0.59517
—0.60 | 0.51532 0.15 | 0.87243 | 0.91641
—0.45 | 0.32258 | 0.21849 0.20 | 0.98502 | 0.99640
—0.30 | 0.16986 | 0.12504 0.25 | 0.99932 | 0.99999

—0.15 | 0.07905 | 0.05689
—0.10 | 0.06280 | 0.04438
—0.05 | 0.05318 | 0.03866
0.00 | 0.05000 | 0.04069
0.05 | 0.05318 | 0.05021
0.10 | 0.06280 | 0.07429

0.15 | 0.07905
0.30 | 0.16986 | 0.26559
0.45 | 0.32258
0.60 | 0.51532 | 0.75854
0.75 | 0.70467 | 0.94245

THEOREM 4. The limiting power function of the x* test is

(102)  Bolw|d) =1 — L —Hu—0(Pyppba—ry—ta—py-h13
w(wy |9) =1 5 e du
T J-a

Ve
(w2 denotes the region defined by the inequality | x | > a).

This theorem may be proved by applying (46)-(48) to Qs(z1, 22, ¥s) in
THEOREM 1 of the Appendix, and noting that 4 = x by (100).



We notice that 8, (wys | #), for a given value of ¢, has the same value for all
values of M, unlike the limiting power function B, (wa | ¥) of the parabolic
test. It is this point which accounts for the seeming paradox that, despite the
manner in which the parabolic test was defined, for all values of ¢ and M

(103)

as may be deduced from (92) and (102). This does not mean that for any
given ¢ and all M sufficiently large the power function of the x” test, B x(wys | 9),

TEST FOR LINKAGE

Bo(wyz | 9) 2 Bu(wu | D)

TABLE III
Approximate Power Function
P, =P, = %
—o < 0 <0.693
Table I11a. Table I11b.
M = 100 M = 400

(] Power [} Power
—0.45 0.96288 —-0.25 0.99424
—0.40 0.92161 —0.20 0.95482
—0.35 0.85072 —-0.15 0.79787
—0.30 0.74351 —-0.10 0.47734
—0.25 0.60197 —0.05 0.16378
—0.20 0.44054 —0.02 0.06810
—-0.15 0.28380 0.00 0.05000
—0.10 0.15727 0.02 0.06885
—0.05 0.07737 0.05 0.17609

0.00 0.05000 0.10 0.55737

0.05 0.08029 0.15 0.90213

0.10 0.18177 0.20 0.99431

0.15 0.36464 0.25 0.99995

0.20 0.60278

0.25 0.82071

0.30 0.94975

0.35 0.99299

is necessarily not less than the power function of the parabolic test, 8 x(wx | #).
For although, given any e > 0, there is a number M, s such that if M > M.,

|Bu(wx’ I") ~ Bo(Wy2 I") l <e

(104)
and
(105)

(106)

| Br(war | ¥) — Bo(wa |#) ]| < €
it may be that for such values of 'M.,s
0 < Bo(wer | 9) — Bo(wa | 9) < 2e
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The above results show, however, how close the agreement between the power
functions of the two tests is for large values 6f M. In fact we have

(107) lim Bo(wu| ) = Bu(wer |9)-

This may be easily proved, since as M increases w» approximates to wyez .

(2) Small Samples. In order to obtain some idea of the relations between
the two tests when M is small (i.e. less than 100), the case Py = P, = 1, M = 32
was considered in some detail.

In this case our tests at 59, level of significance are respectively

x" test, reject if

(108) |2y — 2| > 8315
parabolic test, reject if

(109) (2y — 2)* — $(2y + 2) > 69.576

where

(110) y=d z2=d;+ ds.

All samples for which the verdicts of the two above tests would not agree
were obtained. These were as follows:

(a) Samples for which H, is accepted by x* test, rejected by parabolic test
y=|1 0 -1 -2 Probability of drawing sample of this type
when H, is true is 0.00320.

z=|—-6 -8 -—-10 -—12
(b) Samples for which H, is rejected by parabolic test, accepted by x” test

y=|0 1 2 3 5 6 7 8 8 9 9 Probability of drawing sample
of this type when H, is true is
z=19 11 13 15 1 3 5 6 7 8 9 0.00038.

Thus the probability of the two tests giving different verdicts when H, is in
fact true is only 0.00358.
It will be noted that the above results imply that

(111) Bs2(wsz | 0) — Baz(wyz | 0) = 0.00320 — 0.00038 = 0.00282;

i.e. that the true levels of significance of the two tests are not equal. This is
to be expected, because of the discontinuity of the probability distribution of
sample points, which makes it unlikely that the level of significance of either
test is exactly .05.

Similarly we can obtain values of Bs(wse | 0) — Bs2(w,ye | 6), the differencesin
the powers of the two tests with respect to various alternative hypotheses.
These values were obtained for a few values of 6.
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0 Bsz(wss | 0) — Baz(wyz | 6)
—-0.5 0.01625

00 0.00282

0.5 —0.00006

These figures indicate that the parabolic test detects negative 6’s better than
the x* test, but that the x* test detects positive 8’s better than the parabolic
test, although the advantage in this latter case is minute.

The critical regions associated with the two tests may be represented by
regions in the (y, z) plane. The critical region for the parabolic test will be
defined by

(112) @y —2"'—§2y+2) >
and that for the x* test, w,: , by
(113) @y —2">v

where » = »'.

wye is therefore the ¢omplement of the region lying between the lines L, L,
with equations 2y — z = =%4/%; w x lies outside the parabola K with equation
2y — 2" — §2y + 2) = ».

Since v = »’, K meets L,, L. at points near the respective intersections of
L, , L, with the line 2y 4 z = 0. See Figure 1.

In the diagram the regions V;, V. contain all sample points for which the
x~ test rejects and the parabolic test accepts Hy ; Uy, U, contain all sample
points for which the x” test accepts and the parabolic test rejects H, .

For a given value of 8 it is known that the probability distribution is approxi-
mately such that the quantity

gi=lu- ZeM(e — DI* | {2+ $ME — D)
P AM A M —1) T &M — M — 1)

y+ 2+ &ME — D)
FsM + JsM(e" — 1)

(114)

iy

is distributed as x* with 2 degrees of freedom.

The ellipses of equal density ¢ = constant have centers at points (&M [ — 1),
— iM[e’ — 1]) which must lie on the line 2y + z = 0. When 8 = 0 the center
is at the origin, and the major and minor axes of the ellipse make angles of
approximately 99.5° and 9.5° respectively with the y-axis. For small changes
in 0 the angles of inclination of the major and minor axes of the ellipse to the
coordinate axes are not greatly changed, and we see that as the center of the
ellipse moves along the line 2y + z = 0 we have

(1) 8 increasing: center moves downwards, tending to increase P{E e Uy} —
{E ¢ Vy} while P{E e V,} and P{E e U";} both become small. Thus 8, (w | 6)
tends to increase quicker than B y(w,: | 6).
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(2) 6 decreasing: here we have the opposite effect and 8 (w | 6) tends to
increase slower than 8 (w,: | 6).

These conclusions agree qualitatively with those drawn in the case M = 32.
(N.B. In the case M = 32 no sample points fall into the region U, because no
points in U, satisfy the inequalities (25), (26)).

8. Some Geometrical Considerations. In this section we shall consider the
manner in which the situations dealt with above may be interpreted in terms

4

\

i
7,

Fig. 1

of geometrical concepts. It will be convenient to consider as variables n; =
m;/M. The sample space W(n) is then bounded by the four planes

n; =0 ('i=1:273)’

3
Zn; = 1.

$=1

(115)

In this space, corresponding to any admissible hypothesis Hy specifying a
value of 6, there is a point 7y with coordinates (6", 6", §"*) where

0”1 = Pleeo,
(116) 6" = Py(1 — Pae),
0" = Py(1 — Pye).
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These are the proportions of results expected in the first three cells, if the
hypothesis Hy specifying 8 be true.

Now, if Hy be true, we have
(117) P{ng=mny,my=mng,ng = ng,ny = ng | Hy} = ce ™

where ¢ is constant for a fixed sample size M, and

(S -]

2 3 ’

X0 _ (n; — 0

o R s -
1— 26

n,')2

(118)
i=1

Hence the most frequent position(s) of the sample point E will be some-
where near the point 7, which I shall therefore call the center of density. It
will be noticed that, whatever be the value of 8, the point Ty must lie on the line

(119) n — P1P2 = —[nz - Pl(l - Pz)] = —[ns - Pz(l - Pl)]

This line, a segment of which is the locus of the center of density for our set of
admissible hypotheses, will be called the line of density.

In this space the parabolic test corresponds to a critical region comprising the
exterior of a parabolic cylinder. The equation of the boundary of this critical
region at level of significance .05 was found for the case P, = P, = i, and a
model made of it. Also included in the model were the ellipsoids

(120) xo = K.os
where K g5 is a constant so chosen that
(121) P{xi > K| 6} = .05

corresponding to
(7) the case when H, is true
(72) the cases when

(122) (@) pr=3%;D2 = D3 = o5, Ps = 45 le. 0 = 041
(123) (0) pr=Fg;D2=Ds = v2; 0 = 35 ie.§ = —0.69.

It was found that in the case P, = P, = 1 one axis of all the xj-ellipsoids
was perpendicular to the plane through the line of density and the axis of n;.
The generators of the boundary of the parabolic acceptance region are also
perpendicular to this plane. (By ‘“acceptance region’ is meant the complement
of the critical region. The acceptance region may be written symbolically
Wa.) There were further added to the model the intersections with this plane
of the ellipsoids at probability level .01, corresponding to the three hypotheses
considered above (6 = 0, 0.41, —0.69) and two others, viz.

21

(124) D1 = g5, P2 = Ps = 3% P4 = 3% ie. 60 = 0.92,
(125) PL=d1;P2=Ps = 51, ps = §F  le 8= —139.
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For convenience in making the model to a simple scale (1 unit = 150 cms.) it
was found necessary to take the sample size M as 1312.5. The model is shown
in Figure 2. It will be seen that the acceptance region for the parabolic test
is approximately enclosed between two parallel planes perpendicular to the
plane common to the line of density and the axis of #;. These two planes, in
fact, enclose the acceptance region for the x* test. The vertex of the normal

Fic. 2

parabolic section of the parabolic acceptance region is at a comparatively great
distance ‘‘below’ the plane n, = 0.

As an interesting digression we may use our model to compare qualitatively
the parabolic test with yet a third possible test of H,. This test is to reject
H, at level of significance .05 if

(126) xo > Koo

and may be called the xj test. The xi-ellipsoid shown in the model is the ac-
ceptance region for this test. It will be noticed that when 8 > 0 the ellipsoids



TEST FOR LINKAGE 251

of equal density include somewhat more of the acceptance region of the x5 test
than of the parabolic acceptance region. This means that the xi test would
detect that the hypothesis Ho(8 = 0) is false in these cases, less frequently than
would the parabolic and x* tests. We also notice that the center of density
T leaves the parabolic acceptance region before it leaves the acceptance region
of the x& test as it moves along the line of density from the point where § = 0,
whether the direction of motion of Ty corresponds to 8 increasng or decreasing.
This also indicates that the x; test would act less efficiently than the other
two tests.

9. Appendix. In this appendix are obtained various results which, while
essential to the main argument, would appear as digressions if they were inter-
polated as required. The numbering of equations in this appendix does not
continue from that of the previous sections, but forms a separate group.

Lemma. If fo(m), fi(m), - -, fi(m) be (s + 1) functions of the k variables

my, mg, --- , my which are zero except for a finite number of sets of integral values

of my, -, m ; and if wo be a region in the space of m's such that

1) Jo(m) > ‘Z; aifim) in  wo

2) fo(m) < Zx aifim) in Wo

a, ay, -, ax being arbitrary constants; then if w be any region such that

®) 2 fim) = 2 fi(m) G=1,-.-,9),
w wo

we shall have

@ 2 fom) £ X folm).
w wo

Proor. Let

o
]

%fo(m) - ;fo(’m)
> folm) = X folm)

wo—wwo w—wwgo

®)

where ww, denotes the common part of w and wy .

Hence the region w — wuwy , consisting of those points of w which are not in
wwy , and so not in wy , is contained in W . Similarly the region wy — wwy is
contained in wy . Hence, by inequalities (1),

(6) 8> 2 {Z.: a;jg(m)} - 2 {i: a.-f.-(m)}

wo—wwp (#=1 w—wwg ($=1

and so
8.

Q 2 T{E anim} = T {E asim).

$e=1
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Since the total number of terms in each double summation is finite, we have

® 82 33 (Zhitm) = Tiim)}.

But

9) 2 fim) = X film), G=1,...,3).
Hence

>0, and 2 f(m) < Zfo(m)-

A lemma similar to the lemma above, where the f’s are taken to be integrable.
functions and summation over the regions w, w; is replaced by integration over
these regions, is given by Neyman and Pearson [9]. The proof given above
follows the lines of the proof given in that paper.

THEOREM 1. Suppose that, in a quadrinomial population:

() the cell probabilities are dependent on the number M of trials made, and are

gien by

DL = DPn + on
(10) P2 = Pz — oM
Ps = Pz — on
Ps = Pos + on
where
4 4
(11) Z Poi = Z pi=1
=1 =1
and
(12) ou =M™ = 1)
(%)
(13) & = (mi — Mpy:)/(Mpyy)* (i=1,23,4)

where m; = number of results falling in i-th cell.

(%2) w(z), or briefly w, is a region in the space W of z:, xs, 73 ; and P y(w)
18 the integral probability law of w corresponding to the values py, P2, ps, Ps of
the cell probabilities given tn (2) above when we have M independent trials.

Then

1 — z1,23,2
(14) Py(’“)) g m fff e 12y (z1.20,29) dxy dxy des
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uniformly over W as M — o, where
Qo(m1, 22, ) = Za_; zi(1 + poipos) + 2pos '_ ;_sa :%(puipos)’
(15) — 20 {z(po’ — pepu) — (P + Pepo)
— @3(pos + pupar)} + N g Poi-

This theorem may be proved by the same method as that used by F. N.
David [2] in proving the generalized theorem of Laplace.

I would like to thank Professor Neyman for his invaluable suggestions and
advice in the preparation of this paper.
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