A SYMMETRIC METHOD OF OBTAINING UNBIASED ESTIMATES
AND EXPECTED VALUES

By PauL L. DRESSEL
Michigan State College, East Lansing, Michigan

The problem of finding the relationship between moment functions of a
sample and moment functions of the population from which the sample was
obtained has, of necessity, received much attention. The problem has two
parts: first, to find the expected value of a given sample moment function;
second, to find the estimate of a given population moment function. Thus, if
m; represent the 7th central moment of a sample and u; represent the 7th central
moment of the population, the first part of the problem requires that we find
the mean value of m; for all possible samples of a given size and express it in
term of the u’s. The second part requires that we find a function of the m,’s
such that the mean value, taken for all possible samples of a given size, be a
given u;. For the case 7+ = 4 we have the well known results:
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These results are based on the assumption of an infinite population. In spite
of the inverse relationship existing between estimates and expected value, the
expressions above show no simple relationship. This lack of simplicity of rela-
tionship between estimate and expected value is directly traceable to the fact
that such results are usually obtained for infinite populations. When results
are obtained for finite populations a symmetry is found to exist which reduces
to a single problem the two parts stated above. Since this should be evident
to anyone upon reflection, the main purpose of the present paper may be con-
sidered as that of indicating one method of demonstrating the result stated
above as well as showing relationship of this method to material appearing in
previously published papers.

Consider a finite population consisting of N items 2, - - - z» and samples of n
items taken from that population, the sampling being done without replacement.
We shall utilize the power product notation of P. S. Dwyer [1; p. 13]
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to represent a power product formed for the sample and
N

¢) -cgl= 2 alal...al
T174ig96" ¢ cphty

to represent like power products formed for the population. An arbitrary
moment function of weight r of the sample is indicated by
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and likewise a moment function of the population is indicated by
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where the summation extends over all partitions of r.

It now is convenient to express each of the expressions (8) and (4) in terms
of power products. We shall utilize for this purpose an .expansion theorem
which is the converse of a theorem stated by Dwyer, [1;p. 34] and [2; pp. 37%39],
which can be proved in a similar fashion.

This converse theorem follows:
If any isobaric sum of products of power sums indicated by
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be expanded in terms of power products in a form indicated by
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then the coefficient B, of the power sum [r] is given by
r!
@ B = 2 o Tl et st
and the coefficient B,,...,, of [rirs -+« 4] s
®) Bty = BBy, +++ By,
where the barred product indicates a symbolic multiplication by suffixzing of sub-

scripts.
This is exemplified by
By = B;B; = (A3 + 34a + Aw)(4; + An)
= Az + Asn + 349 + 440 + Anu.

Using this theorem the moment functions (3) and (4) are easily expanded in
terms of power products. In this latter form the expected value of the sample
moment function is easily found by utilizing the fact that

E((Ql n(8> !Ia)) _ [41]-\;(") Qs].
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Now if the expected value of the sample moment function be equated to the
population moment function (both being in power product form) we obtain a
set of equations connecting the coefficients of a sample moment function and a
population moment function. Since either the coefficients of the sample mo-
ment function or those of the population moment function may be assigned
and the others solved for, this set of equations enables one to solve two problems.
First, we may find unbiased estimates—moment functions of the sample such
that their expected value is some preassigned population moment function.
Second, we may find expected values—moment functions of the population such
that they are expected values of some preassigned sample moment function.
From the symmetry of this set of equations, we shall see that any result ob-
tained from the system has, through the symmetry, a dual role.

The foregoing discussion may be clarified by an example. Let Aqf2] + Ayl
be the population moment function. In terms of power products this becomes
(A2 + Ayp)[2] + Auf11]. The sample moment function as(2) + a1 (1)* becomes
in terms of power products (a2 + au)(2) + au(11) and its expected value is

2
n()

%(az + an)[2] + N® an(11].

By equating this to the population moment function abeve we obtain
n(Z) ay = N(Z) All ,
n(az + an) = N(Az + Au),

and the symmetry of the system is apparent.
If

_a® N 1
Pi = N@ n® o

the solutions of the system are
an = mAn, Ay = pean,
a = nds + (1 — n)Au, Az = paz + (g — p2)an .
In a similar manner if we use moment functions of weight 3 we begin with

A3[3] + 3A4x(2][1] + Awml1],

as(3) + 3a2(2)(1) + am(1)’,
and obtain the system of equations

1Pam = NP4,
:nP(an + am) = N®(4a + Aw)
n(as + 3an + am) = N(4s + 342 + Am)
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with solutionc
Am = psou,
(10) Az = pa0a1 + (p2 — ps)aau,
As = mas + 3(p1 — p2)azs + (01 — 3p2 + 2ps)amn .

The solutions for the a’s in terms of the A’s are obtainable from the given results
in an obvious manner.
If we use the Carver functions [3; p. 104]

Pr=p, Py=p Py = p;,
P, =p1— p, Py =p—ps cee

Ps = py — 3p2 + 2ps, Py = ps— 205 + pae--

Py = pr — Tp2 + 12p3 — 6p4,

or in general

=y et ri(t — 1)!
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where the double barred product indicates a symbolic multiplication by addi-
tion of subscripts exemplified by

Py, = P3Py = (pp — 3p2 + 2p3) (01 — p2)
= ps — 4p3 + 5ps — 2ps ;
the results (9) and (10) may be written

Ay = Puan , As = Piag + 3P0 + Psam )
As = Piaz + Paan, Ay = Pyasn + Puou,
‘Aul = P1uam .

Similarly for weight 4 we obtain
Ay = Py + 4Pas + 3Pyas; + 6Psaen + Pioyn,

Ay = Pyasn + 3Puten + Psioun )
A = Pyaz + 2Pnaen + Paun,
Aoy = Pioan + Penoun ,

Aun = Pyonn .
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In general

r!
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and
(13) Avirgesiry = ArAyy -+ Ay,

where as before the barred product indicates a symbolic multiplication by
suffixing of subscripts.

If in
r! - .
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(=T 4t m 4 - = D)
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the moment function of the sample which is thereby represented is the Thiele
seminvariant I, of the sample. If the A’s are solved for by means of the appro-
priate set of equations the expected value of I, is found. Thus we find

ElL] = %j_?_’)‘::xz,
Ell] = %js—‘?(;h,
© Ell] = x}? g} M+ Zi:])\’lg (n — N)(Nn — 6)ks,
Eli3) = x(L‘M A — x«’fm (n — N)(@aN —n — N — D,
Bl = %:Zf“;x + "}VN(:)”;:) (n — N)(Nn — 12)s,
EllsL] = x; (5: ke — %(5’)‘ (n — N)(Nn —n — N — 5)s,

where the k system of seminvariants used here is defined by

Z( 1)( )muzm,

z=0
i+r 2r 2% +1 . .
Kor41 = Z ( 1) (2 + 1‘) m Mr—i Br4itl.

By virtue of the symmetry noted earlier it follows that the estimates of the
Thiele seminvariants and products of these seminvariants of weight < 5 are

(17)
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obtainable from the last results by replacing E by E™ (estimate of), x; by ki
l; by \;, and N by n. In this manner we find that L, the estimate of A, is

4 4) @2 2
18 L= = PN N — @ — .

It is of some interest to note in the results (16) above that in those expected
values or estimates which contain more than one term the factor N — n occurs
in the second term. This, and the form of other coefficients involved in the
* terms, shows that as the sample size approaches the population size the sample
seminvariants approach the population seminvariants. Another characteristic
of such results as those given in (16) is that infinite sampling formulas are easily
obtainable therefrom. Thus if in L4 given in (18) N — «, we find

4 3
n n
L, = n® I+ n® ks
_ nd(n + 1) _ ntn — 1)
T n® ‘ n® %

the first of these forms checking the result given by Dressel [4; p. 45] and the
second form being identical with that given by Fisher [5].

The results exhibited above for finite sampling may lead to a mistaken idea
about the simplicity of the results. Simplicity decreases rapidly as the weight
increases. Thus for weight 6 we find

Ells] = INVj:f :: Ae + 2]@:)";) (n — N)(Nn — 20)[8us — 15pspz + 10u3 — 45u3]
- Nsn(3)
+ N (n — N)INn(n + N) — 12nN + 60]

(19) o -[11ps + 105usps — 50 p3 + 60u3]
— {% (n —N)[Nn(N* +nN +n*) — 14nN(N +n) + 71Nn — 120]
+ 1—](\)7(1\41%3) (n—N)+1—€(—?)(2—;5(n—N)(N+n—5) —]%%g(n—N)}xe.

Again by letting N — « infinite sampling results are obtained. Much of this
last result vanishes in that case.

It has been demonstrated that the « system of seminvariants are invariant
under estimation in the case of infinite sampling [4; p. 53]. It is therefore of
some interest to note that this system also possesses the property for finite
sampling without replacement. The proof of this is quite simple. Denote the
estimate of «; by K; and the fundamental relations are

2 3
n n
K, = n‘ @ er; K2r+1 = n® k‘lr+l-
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These expressions hold for any n and hence for a population of N. Let K3, and
K3, denote functions corresponding to Kz, and Kia but with population
moments replacing sample moments and we have

N? k. N

W Kor, 2r4l = W Korgle

’
K2r =

Since the power product mode of formulation of K,, and Kj,4; insures that
E[K»] = K., E[Ksi1] = Ko

it follows that
2

2
ElK,] = E[ n m] = Ki = Do,

7@

or

?) N2
E [kzr] = :';2—]\7(2‘) Kor o

Similarly

@) Ar3
n" N
E [k2r+1] = n—3 N(3) Kor41

thus establishing the theorem stated above.
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