A GENERALIZED ANALYSIS OF VARIANCE
By FRANKLIN E. SATTERTHWAITE

Unaversity of Iowa and Aetna Life Insurance Company

The analysis of variance is a statistical technique whose fields of application
are only beginning to be explored. A few simple standard designs appear in the
literature and a great deal has been done with them. However, if the applied
statistician limits himself to such standard designs, he soon finds that many of
his problems are receiving inadequate or inappropriate treatment. The writer
has found this particularly true in his own field where most of the raw data are
in the nature of frequencies or averages which lack homogeneity of variance.
Also the nature of the problem usually indicates the use of weighted averages
rather than simple averages and sometimes part of the data are missing.

The purpose of this study is to examine the fundamental principles under-
lying analysis of variance designs and to show how designs may be constructed
and applied to practically any data which can be assumed to be normally
distributed.

1. Test of independence. In the analysis of variance we calculate two or

more statistics of the types,

X' = 2z — m),

= z6.
The z’s are considered to be independent variables from a normal population.
The m.’s and the 6;’s are homogeneous linear functions of the z;’s. Heretofore
the demonstration of the independence of the x”’s used has only been made for
certain special 6;’s and m.’s. To make our analysis general we shall let our 6.’s
be general homogeneous linear functions of the z;’s and we shall define our m,’s
through certain linear homogeneous restrictions.
Let us define Chi-square as

X = Z(xi — my)

where the z;’s are independent normally distributed variables with mean zero
and unit variance. We also define certain linear functions of the z's,'

(1) 0; = a;x;, i=12 s

which we shall assume to have been orthogonalized.” To define the m's we
make use of the linear restrictions

1 A repeated lower case subscript will always indicate summation with respect to that
subseript. All subscripts range from 1 to n unless otherwise specified. The Kronecker
Delta, 8:;, equals one or zero depending on whether ¢ equals or does not equal j.

2 The 6,’s are orthogonal if aitajx = &:;;. Any algebraically independent set may be

34

?‘]gi
Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to éﬁ%%
The Annals of Mathematical Statistics. FIKGIY

®

Www.jstor.org



ANALYSIS OF VARIANCE 35

2) aji(z: — mi) = 0, J=12 -5
or
a;m; = a;x; = 0;.

This system has an (n — s)-infinitude of solutions and we should not expect
all of these to be suitable for our purposes. For reasons which will appear later
we shall choose the single solution,

3) my = apb; = apa;x;, ji=1,---s.

This is the solution which follows if we complete the system (2) with n — s
additional linear restrictions on the m;’s which are homogeneous and which form
an orthogonal set with (2). Thus

a;m; = 60;, j=1,"'8,
a;m; = 0, j=s+1,..--n.
This is consistent with standard analysis of variance designs. For the usual

one way analysis, we have

-~ 1 1 .
(4) Z;mmﬁ=2;,l—,,¢vﬁ J=1 -5

fa=]
which yield a solution according to (3),

1 1

77 i 24T

mys = i=1 s

The additional homogeneous restrictions in this case might have been taken as
Mjy = Mjg = +++ = My, Jj=1 -5

which are orthogonal to (4) and may be easily orthogonalized among themselves.
Substituting the values of the m,’s obtained in (3) into Chi-square, we obtain,

X' = (x — m)(x: — my)
= (6 — @;i0ix)Tx(8i1 — AmiGm))T1, jym=1---s
= (0ki — Cmk@mi — @@t + 8im@irQm1)ThT1

= (6 — @jx@;1)THT; -

replaced by an equivalent orthogonal set. Thus, if 8, is not orthogonal to 6;, it may be
replaced by 6} = 6, + k6, where k is determined by

aj(az; + kay;) =0

or k = —aas/ait;.
The condition Za}; = Za}; = 1 can always be met by simple division.
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The sum of the squares of the 6,’s is
=6} = 6,9, i=12 s
= Q81 T2 .
Therefore we have the relation,
(3) X + 26} = dumz = Zzi .

The ridnk, R;, of each 6} is obviously equal to unity since it is the square of a
linear form. The rank, R, , of x* is at least equal to n — s since the rank of the
right hand side of (5) isn. Also, R can not be greater than n — s since,

a0 — Gaa) = a1 — 8;04, ,j=1,---5,
=0

gives s independent relations between the rows of its coefficient matrix. —There-
fore we have the relation,

(6) Ro+ R+ -+ R, =n.
The two conditions, (5) and (6), are sufficient’ conditions for x* and the 67’s

each to be independent of the others and each to be distributed as is Chi-square
with the number of degrees of freedom equal to its rank.

2. Adjustment of data. The above development is not general enough for
many practical problems. We do not always have given data, y;, which are
normally distributed about a mean zero with unit (or homogeneous) variance.
Of course if the means, #;, and variances, o; , are known, we may make the
transformation,

00 =L M

o3
and apply our theory in a straight forward manner. We shall now check the
effect on our analysis if the 72’s and o¢/s are determined, in part at least, from
our data, the y,’s.

Let us assume that the z/’s of (7) are normally and independently distributed
variables about .a mean zero and with unit variance. Let us also define certain
linear orthogonal functions of the first r of the 6,’s by

o = b6 = brjanzi k=12 ---q,
(8) _
=bkiait'(y. 7;'4') j=12 -1

43

We next form the characteristic function of the joint distribution of x?, of
=167, 0f 02,1, --- 62, and of ¢, - ¢,. Thisis

3See A. T. Craig, “On the independence of certain estimates of variance,” Annals of
Math. Stat., Vol. 9(1938), pp. 46-55.
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@(t’ Uy Urg1, *** 5 Ve, Wr, * - wq)

=K f f exp [itx® + 167 + 12%,10;0]
+ iZiw;¢; — 327 2}l dxy - - - day.

The conditions (5) and (6) are sufficient* for there to exist an orthogonal trans-
formation of the x;’s which will convert

9; to 6, =18

X' to Zlaf,

Zrz; to =6},

dV = Idz; to IIdo;.

The characteristic function then takes the form,

® = K{HI f exp [—%(1 — 2tu) (0,- - %)jdﬁ;}

{T1f exp [wi/2(1 — 24u)]}
{H:+1 f exp [—3(1 — 24v)67] dﬂi}

{HI‘+1 f exp [—3(1 — 2it)6}] dﬂ,},

where
Z(wibs,)’ = Zwi,

since the bx;’s are orthogonal.

At the beginning of this section we stated that we wished in some way to use
our data, the y.’s, to estimate the m;’s and the ¢/s. A suitable method is to
restrict the ¢ functions, (8), to zero.

Our problem thus reduces to finding the distribution of the ‘“‘array’ in our
joint distribution for which

P =¢p = - =¢q=0,
Except for perhaps a constant factor, the characteristic function of the distri-

bution of such an array is obtained from ® by integrating out the wy’s.® Thus,
on performing the integrations, we have,

¢ See A. T. Craig, ibid.

5 This is easily seen since if one passes from the characteristic function to the joint
distribution, equates the ¢:’s to zero, and then passes back to the characteristic function,
all the integrations except the above appear in pairs of the form

_1_. etz f etz di dx,
27

which leave & unchanged.
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@'(t, Uy Vpgp1y **° v.) — K{(l - 2,£u)—(r—q)12} {H:+1 (1 _ 2ivi);1lz}
{(1 —_ 21:t)_("-')l/2}.
= ®y(u) {II;.41 B;(v;) }8a(D),

which shows that =] 0? , 0%, - 67, and x° are each independent of the others
and that each is distributed according to the Chi-square distribution with
r—g¢,1,---1 and n — s degrees of freedom respectively.

3. Numerical application. The developments of the preceding sections have
been abbreviated to cover technical points alone. We shall now take a definite
practical problem and see how we may work out its solution with the aid of the
above techniques.

In Table I are given the losses, the exposures (in car years) and the indicated
pure premiums from the Massachusetts Statutory Liability automobile insur-
ance experience for four towns and for three different classes of cars. (To
illustrate the effect of missing items, the data for town D, class W, and for
town C, class Y, have been omitted.) Our problem is to determine if there is a
significant variation in the indicated pure premium between the different towns
and between the different classes of cars.

Our first problem is to set up a normally distributed variable about a mean
zero and with homogeneous variance. The true mean, 7, , of the distribution
of the indicated pure premiums, P;, is unknown. Under the hypothesis that
the different towns and classes of cars are homogeneous with each other, we
may assume that the 7.’s are all equal. We may estimate their value by using
the combined indicated P for the whole territory, which is $32.44. By a pre-
liminary argument, which need not concern us here, we show that the variance,
oi , of an indicated pure premium is inversely proportional to the exposure, E; ,
on which it is based but the constant of proportionality is unknown. If we
now make the assumption that the indicated pure premiums are normally
distributed, we may convert them to the form

P, — 3244

which will be normally distributed about a mean zero with homogeneous vari-
ance. We have calculated these statistics and entered them in the table.
Because the expected value of P;, $32.44, was estimated from our data, the z,’s
are subject to the single homogeneous linear restriction,

x; =

0 = 2(L: — PE:)
P,—P
©® =

= ZE:”:C; .
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The next step is to express the indicated pure premiums for each town and
for each class of car as 6,’s as defined in equation (1). For town A we have an
indicated pure premium of $33.21 when all classes of cars are combined. This
breaks down as follows:

33.21 = ZE.,P;/3E;, 1=1,4,8,
[ZE(z:/E}" + 32.44)]/ZE;
= Z(EY*/ZE:)z: + 32.44.

Dividing this by the square root of the sum of the squares of the coefficients,
we obtain,

6 = (ZE)"*(33.21 — 32.44), i=1,4,8,
= Z(E"/(ZE)")z.,

which is of the form of (1). We have entered the coefficients of 8; (except for
the common denominator, (ZE;)"?, whose square is entered on line (1’)) under
Restriction (1) in the table. Similarly, we have entered the values for the other
towns under Restrictions (2), (3), and (4). The values for the classes of cars
are entered under (5), (6), and (7).

The next step is to orthogonalize the 8,’s. The first four have no common
elements so they are orthogonal by inspection. To make 65 orthogonal to 6
we must add to 6,

(10)

ke = —Zaisan/ za?l

times 6, . This and similar coefficients for making 65 orthogonal to 6: , 6; , and 6,
are entered on line (2). We may now replace 6; by the equivalent 6 by the
formula

(11) iy = Qis + k@i + knaio + kst + Ksaia .

Similar &’s for 6 are entered on line (3’) and 6 is replaced by 6 . 6; should be
ignored since it is algebraically dependent on the other 6/'s:

0, =061+ 0, + 03+ 6, — 6; — 65 .

Note that on line (4”) we have entered Za;; for checking the calculation (11).
We next calculate the 67’s according to the formula,

0 = [Zaiz|’/Zai; .

Note that for this particular design all the 6,’s except 6s» and 6 are numerically
equal to the corresponding z;’s (enclosed in parentheses).

Returning to equation (9), we see that it is equivalent to either of the following
restrictions on the 6/’s:

Y30, + EY*6, + EY?6s + EY%60 = 0

1
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or

é“@s + E%lzoo + E;m 01 = 0.

Therefore we may conclude that
i/az = (61 + 63 + 63 + 67)/0z = 96,469/0;

is distributed as is Chi-square with three degrees of freedom. Also we may
conclude that

S3/os = (6 + 65 + 63)/02 = 79,349/02,

is distributed as is Chi-square with two degrees of freedom. Note that we have
not proved, and indeed it is not so, that S and S; are independent.

We have yet to obtain our interaction sum of squares. Equation (5) is of
assistance, here giving,

Si/oz = [Zzi — (03 + 63 + 03 + 67 + 6% + 62)]/02
_ 395,360 — 173,051 _ 222,309
= = 20,

2
Oi Oz

This is distributed as is Chi-square with 10 — 6 = 4 degrees of freedom. Also
it is independent of S} and of S .
Lastly we form the variance ratios

_ 96.469/3
b= 222309/4 0.58,
_79,349/2
P2 = 29930072 = 071

which are not significant.

We therefore conclude that as far as the present data and analysis show, we
have no reason to believe that these three classes of cars and these four towns
are not all subject to the same true premium rate.



