ERROR CONTROL IN MATRIX CALCULATION

F. E. SATTERTHWAITE
Aetna Life Insurance Company

1. Introduction. The solutions of large sets of simultaneous equations and the
inversion of matrices are often complicated by the fact that errors, such as those
introduced by rounding, become magnified in the course of the calculations to
such an extent that the results are useless. In this paper we shall show that if
the norm of the matrix A — I is less than 0.35, operations involving the inversion
A or the multiplication by A~ will be in a state of error control for ‘“Doolittle”
methods of calculation. Thus such calculations may be carried through with
assurance that the errors in the results will be limited to two or three significant
figures. We also point out that as soon as an approximation to A™ is available,
most problems may be restated to bring them within the requirements for error
control. Therefore the solution can be immediately completed to the desired
degree of accuracy in one step instead of requiring multiple steps as do the
iterative methods.

2. The inversion of special matrices. Consider the problem of inverting the
matrix (I 4 F) where I is the identity matrix and (I + F) is a non-singular sauare
matrix. Let

2.1) G=(I+F)
Then

(2.2) I+FGQ=1I
or

(2.3) G=1-FG.

In ordinary algebra this would not be a practical formula for the calculation of G.
However in matrix algebra the situation may be different. Examine the ex-
panded form of G:
(2.4) 9ii = 8ij — Zfagr.
The summation is over all values of k from 1 to n. Next examine the affect of
imposing certain restrictions on F. For example, let fi; = 0if j > ¢. This is
equivalent to making the summation in (2.4) over the range 1 to ¢ — 1. The
first row of (2.4) then becomes

gi; = 8ij
and no ¢’s appear on the right. For the second row

g2i = &2 — fugn.
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The only ¢’s on the right are those on the first row which have already been
calculated. For the third row

gsi = 83 — fugr; — fngej.

The only ¢’s on the right are in the first and second rows and have already been
calculated. Similarly for the fourth and later rows.

Thus it is seen that if F is a “pre-diagonal” matrix, (2.3) is a very simple and
practical formula for the numerical calculation of the inverse of (I + F). Also
if F is a post-diagonal matrix, (2.3) may be used by working up from the bottom
row.

Similarly, if a matrix H is to be multiplied by the inverse of (I 4 F), let

(2.5) G=J+F)H
and the working equation becomes
(2.6) G =H - FG.

The inversion of a diagonal matrix is accomplished by inverting each of its
diagonal elements. That is if

Q.0 F = || 88|
then
(2.8) F75o= | oy |,

3. The inversion of general matrices. The general inversion problem will be
solved if a general matrix can be factored into matrices of the special types
treated in the last section. For the moment assume that such a factorization is
possible and let the factors of the general matrix, 4, be

(3-1) A= (Rl + I)Sl(I + Tl)

where R; is a prediagonal matrix, S; a diagonal matrix, and T a postdiagonal
matrix. Then

(3.2) A =8 + RiSi + SiTy + RiSiTy .

A slight change in form now appears desirable so let

3.3) A= RS+ DSUI + 87'T)
=R+ 8+ T+ RS'SS'T

(3.4) =R+ S+ T+ RS'T.

For convenience let

(3.5) B=R+S4+T
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and remember that R, S, and T have no non-zero elements in common. There-
fore the non-zero elements of R, S, and T are equal to the corresponding elements
of B. Rearranging (3.4) gives

(3.6) B =4 —RST

and the elements of B are determined by

(37) b,'j = Q;; — 2z 7'ik—tkj.
Skk

Since rix = 0 for k£ > <, there is no point in making the summation beyond
k=1 — 1. Alsosince t;; = 0for k > j, there is no point in making the summa-
tion beyond j — 1. Therefore the summation in (3.7) is to be considered to be
over the range 1 to the smaller of ¢ — 1 and j — 1. The 7’s, s’s and ¢'s on the
right of (3.7) can now be replaced by the corresponding b’s:

(3.8) .
ik

Since the first row (column) of b’s equal the first row (column) of a’s, the second
row (column) of b’s is a function of only those b’s in the first row and the first
column, ete., any calculation routine which works down from the top and from
the left to the right will lead to a ready determination of all the b’s by (3.8).

Thus we see that the assumed factorization (3.3) of A is always possible (unless
some of the diagonal elements, by, , of B are zero) and moreover the elements of
the factors are readily calculated by the simple equations, (3.8).

Therefore, to invert the general non-singular square matrix A, calculate the
elements of an intermediate matrix B = R + S + T by equations (3.5) and (3.7).
Then from (3.3) we have

(3.9) AV =T+ 8P ST + RSTHT
which can be readily calculated by the methods of (2.3) and (2.6).

4. The Doolittle method. The Doolittle method of matrix calculation can
now be expressed in terms of the matrices R, S, and 7 studied above. To
illustrate we shall use the set of equations:

(4.1) auts + @t + aprs = cuyr + cuy: + cuys = di,
%1 + 2% + Gz = cuYr + CuYe + Cuys = ds,
an1 + Gxt: + Qv = caYi + CaYz + cays = ds .
This set of equations will be represented in the form of a three element matrix,

(4.1.2) |AX : CY : D||.
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The essential feature of the Doolittle method of solution is that we replace (4.1)
by an equivalent set of equations for which the prediagonal coefficients of the
X’s are all zero and the diagonal coefficients are all unity. Therefore consider

the set formed as follows:
(4.2) || AsX : CsY : Dy || = S{||]AX :CY : D || — R|| AsY : CsY : D, [}
Then

4.3) As = SH{A — RAs}

or

(4.4) (S+R)A;= A

or

(4.5) 43 = (S+ R (RS™ 4 DSUI + §7'T) by (3.3)
= I+ 8'D).

Since S'T is a postdiagonal matrix, || AsX : C3Y : Ds || are the required inter-
mediate equations for a Doolittle type of solution.
The final solution is now easily obtained. Consider

(48) ||AX :CY :Dy|| = || AsX : C5Y : D5 || — (87'T) || AuX : C4Y : D, ||.
We have
4.7) Ay = Az — (8'T)A,
or
(4.8) I+ S'T)As = As
=I+8'T by (4.5).

Therefore A4 is in fact the identity matrix and (4.6) can be rewritten

49) ||X:CY :Dy|| = || AsX : CY : Ds|| — (S'T) || X : CuY : Dy ||

6. The non-symmetric case. In actual practice, the work has to be so
arranged that the elements of the matrices R, S, and (S7'T') are set out so as to
be readily available for use as multipliers in forming the intermediate and final
sets of equations. Table I gives such a practical layout for the non-symmetric
case.

The elements of (S7'T) are set out as the postdiagonal elements of 43 so that
they do not need further attention. To determine the elements of R and S,
we form a set of pre-intermediate equations:

(5.1) ”BX: et ..“:“AX; . ..“_RllAsX_X; et “.
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Then
B =A — R[4; — I]
=A—R(I+ 8'T) -1 by (4.5),
=4 — RS'T
(5.2) =R+S8S+T. by (3.5) and (3.6).

Therefore we see that the prediagonal coefficients of the 2’s in (5.1) are the
elements of R and that the diagonal coefficients are the elements of S. The rest
of the coefficients in this set of equations are not needed in the calculations and
have been indicated by dots in Table I.

6. The symmetric case. If the A matrix is symmetric, advantage can be
taken of the fact that the B matrix is also symmetric. Therefore

6.1) S+T=8+FR

and the elements of S and R’ can be written down just before the division by s;;
in the calculation of the A3 matrix:

(6.2) As= I+ S7'T) = S(S+ T) by (4.5)
=SS + R").

The layout of the work is given in Table II.

If the 4y matrix is symmetric, the prediagonal elements of Cy can be entered
by symmetry. Therefore it is not only unnecessary to calculate the prediagonal
elements of C,, but we can also omit the prediagonal elements of C;. Note
that in this case C; must be caleulated from the right to the left as well as from
the bottom up. .

The most important case where it is known in advance that C, is symmetric is
the determination of the inverse of a symmetric matrix. Then C = I and C,
= A7'. Also the postdiagonal elements of Cs are all zero so that the only
elements of C3; which have to be calculated are the diagonal elements. These
are the reciprocals of the s;/’s.

A case where C4 is symmetric though C ¢ I will appear in a subsequent paper.

7. Norms. In order to state the conditions for error control in a matrix
calculation, a concept of the norm or the absolute value of a matrix is necessary.
In this paper the norm will be defined as the square root of the sum of the squares
of the elements of the matrix. That is

(7.1) NF) = VZ2(fs)
The two basic inequalities satisfied by the norm are
(7.2) NF + & < NF) + NG
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and
(7.3) N(FG) < N (F)N (@.

All other properties of the norm are derived from these.
For future reference we list the following norm relations:

(7.4) NI(F)I + @)] = N(F + FG)
< N(F) + N(F)N(G)
S NP+ N@L
If N(F) < 1 we have

(7.5) NI+FP7'—-N=NI-F+F— ... -1
< N(F) + INEF + INEY + -
N(F)
< — N@F)~
If N(G — I) < 1, (7.5) becomes

When N(F — I) < 1
(7.7) N(F'@) < N[I + (F' — DI[G]
<1+ NF'—- DIN@G)

N(@)
< T=NF =D by (7.6)

8. Error matrix and error norm. We shall also need a formal statement as to
what we mean by error and we need a measure of the errors.

By an error matrix we mean the matrix whose elements consist of the differ-
ences between the value of the matrix elements as actually calculated and the
true value of the matrix elements which would have been obtained if all calcula-
tions had been made exactly without any rounding or other approximations.
The fundamental relation for the error matrix, E[f(G)], of a function, f(G), of G
is

8.1) E[f(®)} = flG + E@)] — f(@).

If each element of a matrix is calculated to ¢ decimal places and the matrix
has p rows and p columns, the maximum rounding error introduced in any
element is .5 X 107 The norm of the error introduced by rounding is less than

8.2) NE; = +/p?[.5 X 10—
=.5X107% X p.



380 F. E. SATTERTHWAITE

For triangular matrices

(8.3) NE, = 5 X 107%/p(p + 1)/2.
For one column matrices
(8.4) NE; = .5 X 107°/p.

For future reference the following formulas for error norms are listed:

(8.5) NE(F + @) < NE(F) + NE(G).
(8.6) NE(FG) < NE(F)NIG + E(G)] + NE(G)N(F)

< NE(F)N(G) + NE(G)N(F) + NE(F)NE(G).
(8.7) NE[F(I + @)] < NE(F)[1 + N[G + E(@)] + NE(GN(F)

< NE(F) + NE(F)N (@) + NE@G)N(F)

+ NE(F)NE(@G).

INF-I)+ NEF) <1,
(88) NE(F ™) = NE[I+ (F—- D"

_ 1 _ 1
‘N[I+[F+E(F) =] I+<F~I)]
= N{I+ [F+ EF) - D)1 + (F = D} ME®)
NE(F)
S T=NF T E@) - I = NF = D)
< NE(F)
=1 —-NF-1I — NEF)][1 - NF -1)]
I N@F — I) + NEF) < 1,
-1y G+ E@ _ e
®9 NEFG) = N[I FF+EF -0 IT+@F = I)]
_ N[ E@II + (F — D) — [E@]6) ]
T+F +EOH -IT+F - D)

< NE@ + (NE@®)/lL = N = DI (N (@)
1= NIF + B =1 by (71

by (7.7),

9. Certain maxima. The R, S, and T matrices have no non-zero elements
in common so that

9.1) NB-I)=NR+S8S—-1+T)
= VINE)P + [N — DI + [N(D)P

Similarly
(9.2) NE(B) = V/[NER)P + [NES) + [NE(T)P.
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The developments of the following formulas for certain maxima are not given
here since they involve only well known calculus principles. It is understood
that these inequalities hold whenever the quantities involved exist. Usually the
maxima are given subject to the condition N(T) = N(R) as well as. for the
unrestricted case where N(T') may be zero.

(9.3) max 22 I_Y (?g (Z') 5=1- V1=[NB = DR

N(R) _ N@B -1 , 3
(9.4) max - — YS-D-TopnE-oEE  f VD=0
(9.5) NB—D if N(T) = N(R).

T V2VI-[NB - P
(96) max [N(R)NE(T) + N(T)NE(R)] = vIN(B — DF = NS — D
X VINEB)E — [NEQ)P.

Any substitution satisfying the relation

NE(R) _ N(T)

07) NE(T) = N®

will cause (9.6) to attain its maximum.

9.8) max[NE(R) + kNE(S)] = v/} + ® NE(B) if NE(R) = NE(T),

(9.8.2) =+/1+ K NEB) if NE(T) = 0.
k+ NR) _ N(B — DI
(9.9) max NS =T k+ K

where K is the root of
(9.10) [1+ KK+ 2[k{N(B — D}'IK + {INB — )] — [N(B — DI*} = 0.

10. Errors in thé Doolittle method. In all that follows, we shall assume that
N(A — I) is small enough so that the “divisions”” are permissible. First let us
examine in the multipliers B =R+ S+ T. By (3.6)

(10.1) B—I=(A—-1I —RST.

Therefore

N(R)N(T)
1-NS—-1)

(10.2) SNA-D+1—-+1=-[NB=D by (9.3)

NB-I)SNA-I + by (7.3) and (7.7),
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Remembering that A has no error and letting NE,; be the rounding error norm
introduced in writing down the elements, we have
NER)N(T) — NE(T)N(R) + NE(R)NE(T)

1 — NS+ ENS) —I] '

NE(S)N(T)N(R)
(I1=NS+E®) —1j{1l = NS = D)} by (8.9) and (8.6).

We are interested only in the range of values where the errors are small. There
fore we shall ignore second order errors. Except for such errors,

(103) NE(B) < NE, +

-+

(104) NE®B) < NE + 1_%)_1) NER) + 1___%—?_1) NE(T)
4+ NOONE)  yp).

[1—=NES-—-DP

The last term will be largest when N(T) = N(R). Therefore the sum of the
second and third will be largest when NE(R) = NE(T) by (9.7).

(105) NE(B) < NE: + 2 1—__"]‘\’,((_?_—1_) NE(R) + [I_JA\;___%):T)]Z NE(S).
By (9.8) we now obtain
(10.6) NE(B) < NE, + K~A/2 + K* NE(B)
< NB
=1— K2+ K2
where
N(R) N(B — 1) by (9.5).

K= max s 1 = Va1 = NGB = DP

Actually in practice we introduce the rounding error in (S7'T) instead of in T
as assumed above. Our assumption is conservative since the division by S
magnifies any error in T.

Next consider the errors in the C; (or D;) matrix. From (4.2)

(10.7) C; = SH(C — RC5)
= S'C — S'RC;s
=T+ S'R)'S'C by (2.5) and (2.6),

= [8U + STR)]C
(10.8) = (S + R)"'C.
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Therefore

N(O)
(10.9) NO) € r—wE 15 =T by (7.7),
(10.10) < N(C)

“1—-—NR)—NES-1)
From (10.7), remembering that C has no error, and letting the rounding error be
NE;,
NE(R)N(Cs) + NE(C3)N(R + E(R)]
1 — NS + ES) — I]

NE(S)IN(C) + N(R)N(C5)]
(1= NS+ E®S) = I}{l = NS = D)} by (7.7) and (7.3),

(10.11) NE(Cs) < NE; +

+

NE(R) + NE(S)
= ®m-NEs-DYOT (NE:} {1 — NIS + E(S) — I)}

1 — NIE + E(R)] — NIS + E(S) — I

since
N(C) 4+ N{R)N(C5)
(10.12) = N© =D
N(C) N(R)

NI — N(S — 1)]
(1 —N@S — DIl — NR) — NS — D)

and since transferring the terms in NE(C;) to the left requires that we divide
through by

<

(1013) 1 — NIR + E(R)] _1—NI[R+ ER)] — NIS+ E(S) — I]
) 1—-N[S+ EWS) + 1] 1 — N[S + E(S) — I] '
Again we can ignore second order errors. Taking maxima by (9.8.2) gives
VENEON) |
10.14 NE(Cs) < — =
(1019 @ = ANB -1
and

NEC) . VENE®B)  INEJ/INQ)]
NC ~“1—+2NB-I 1-—+/2NB-1I)
Thus we see that the proportionate error in C; is made up of two parts: the first

due to the rounding errors in the multipliers as given by the first term and the
second due to the proportionate rounding error introduced in calculating Cj;.

(10.15)



384 F. E. SATTERTHWAITE

Finally we have the errors in the C; (or D,) matrix. Since

(10.16) C, = 4“0
we have

N(O)
(10.17) NC) S v —ja =T
By (4.6)
(10.18) Ci= C; — (8'1C,.

If we let NE, be the rounding error introduced in this step

NE(T)N(Cy) + NE(C)NIT + E(T)]
1— N[S+ EWS) — 1]

NE(S)N(T)N(Cy)
{1 = NS+ E®) — Il}{1 — N — D)}

{NE(Cy) + NE}{1 — NIS + E(S) — I]}

(10.19) NE(C) < NE(Cs) + NE, +

+

N(T)NE(S) N(C)
< + [NE(T) T IoNG - I):“:l —N@ = 1)]
1 — NI[T + E(T)] — NIS + E(S) — I]

by (10.17) and relations similar to (10.13). We now ignore second order errors
and take maxima by (9.4) and (9.8.2):

NE(Cy) 4 (NEy) n V1 + K: NE(B)
NE(C) . NC) " N©C) ' 1T-NA-1)

(1020) NOC) — 1—~+2NB-1I
1 V2
[[1 —NA-DIV1-[NB-D] + 1—4/2 N(B—-I)]z] NEB)
n [NE;]/[N(C)] NE,
< 1-vV2NB-I) " NO)
- 1—+2NB -1
where
- N(T) _ NB -1I)
(10.21) K = max NS -0 Vi NGB =Drp by (9.4),
and
(10.22) V1+ K2 =1/A/1—-[NB - D]

If A is symmetric, NE(B — I) remains unchanged but NE(C4) can be some-
what strengthened through the use of (9.5) and (9.8) instead of (9.4) and (9.8.a).
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The result is
NE(Cy) [ 1
NC) ~ Ll - N4 -DW2v1-[NB-DP

V/3/2 NE(B)
+ 1—+/3/2NB — 1)]’] [1 - v/3/2 NB — 1)]

(10.23)

+ 1 NE;
(1 —v3/2NB - DI’ NO)
1 NE,

T 1 -V3RNB - NGO

If C is approximately equal to I, a better formula is obtained by substituting
(I + Cy) for C. The final formulas then are identical to (10.20) and (10.23) with
the substitution of 1 4+ N(Cy) for N(C). Similarly if C = I so that C, = A7,
N(C) = 1 should be substituted in (10.20) and (10.23).

If A is symmetric and if C = I so that Cy = A7, the prediagonal elements of
Cj are filled in by symmetry as in Table II instead of being calculated directly.
This complicates the analysis of error relations. The following inequality gives
the error limit for the diagonal and postdiagonal elements of (4™"). We have
indicated these elements by F.

VBEI=N@ =1 ¥ NGB = DR
E(F A E(B
NEE) S NG = DIl = ~aNG = 1] VB

(10.24)

NE;
T VaNB =D

where K is the root of (9.10) whenk =1 — N(A — I) and NEs = 0.5 X 107? X
Vp(p + 1)/2 by (8.3).

11. Results. Given the matrix A, we subtract one from each element on the
principal diagonal to obtain the matrix (A — I). By the norm of (4 — I) we
mean the square root of the sum of the squares of the elements of (4 — I). We
shall now show that a Doolittle process such as outlined in Table I is in a state of
error control if the norm of (A — I) is less than 0.35:

1.NA4 -1)£035

2. NB — I) < 0.4642 by (10.2).

3. NE(B) <1.09p by (10.6) and (8.2)
if the maximum rounding error in any element is 0.5 and A has p rows. Thus no
element of the multiplying matrices R, S, or T can have an error of greater than
this amount.

4. NE(Cs) £ (44 X p X 100)N(C) 4+ (6 X p X 107") by (10.20) and (8.2)
where ¢ decimal places are carried on the left and r on the right. Thus if the
decimal point in C is shifted so that N(C) < 1, the error in any element of C; can
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not amount to more than three significant figures if the same number of decimal
places are carried on both the left and on the right (four significant figures for 21
to 200 rows). ,

5. NE(A™") < three significant figures by substituting N(C) = 1 since C = I.

As we let N(A — I) become larger than 0.35, the maximum errors indicated
by our formulas rapidly become very large. In fact they become infinite if
N — 1) = 0414.

Since for more than four equations the above formulas show errors in the
second decimal place no matter how small N(4 — I) is, it is suggested that as a
general practice:

1. The problem be arranged so that N(4 — I) < 0.35.

2. The decimal points in C be shifted so N(C) < 1.

3. Three extra decimal places be carried in the calculations.

12. Preliminary adjustments. The requirement that N(A — I) should be
less than 0.35 is not normally met in practical problems. If, however, an
approximation to A~ is available, the problem can almost always be rearranged

to satisfy this condition.
Thus if we are solving the equations such as given in Table I,

(12.1) AX = CY = D,

we are perfectly free to multiply through by any non-singular matrix F without
disturbing the solution:

(12.2) (FAYX = (FO)Y = (FD).

Now if F is a sufficiently close approximation to A", FA will be almost equal to I.
Therefore N(FA — I) will be less than 0.35 and a Doolittle solution of (12.2) will

be in a state of error control. )
Similarly for the inversion of 4, we can apply the Doolittle process to the pair

of matrices

F4 : F
just as easily as to the pair
AT
since
(FA“||FA :F|| = A'F"||FA: F|
= [|ATFTR)A  AT(F'F) ||
= |47 4|
=||I:47"].

Thus by taking F as a sufficiently close approximation to A7, we can bring an
inversion calculation into a state of error control.
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The computor should be cautioned that the multiplication by F must be exact
and that no rounding is allowable in this step. Our formulas assumed that we
started with matrices free of error.

13. Further work. The principles used in this paper can be applied to the
task of developing calculation routines which will be in a state of error control
regardless of the size of N(A — I). Enough work has been done to see that such
routines do exist and do not involve prohibitive labor. The author expects that
the most efficient routine will be to use these more elaborate methods to obtain
an F such that N(FA — I) < 0.35 and then to use the normal Doolittle methods
as outlined in section 12.
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