RELATIVE ACCURACY OF SYSTEMATIC AND STRATIFIED RANDOM
SAMPLES FOR A CERTAIN CLASS OF POPULATIONS'

By W. G. CocHRAN
Towa State College

1. Summary. A type of population frequently encountered in extensive
samplings is one in which the variance within a group of elements increases
steadily as the size of the group increases. This class of populations may be
represented by a model in which the elements are serially correlated, the correla-
tion between two elements being a positive and monotone decreasing function
of the distance apart of the elements. For populations of this type, the relative
efficiencies are compared for a systematic sample of every kth element, a stratified
random sample with one element per stratum and a random sample.

The stratified random sample is always at least as accurate on the average
as the random sample and its relative efficiency is a monotone increasing function
of the size of the sample. No general result is valid for the relative efficiency of
the systematic sample. In fact, there are populations in the class in which the
systematic sample is more accurate than the stratified sample for one sampling
rate, but is less accurate than the random sample for another sampling rate.
If, however, the correlogram is in addition concave upwards, the systematic
sample is on the average more accurate than the stratified sample for any size
of sample.

Some numerical results are given for the cases in which the correlogram is (i)
linear (ii) exponential.

2. Introduction. We consider a finite population consisting of the elements
Ty, %s, - , Tak, where n and k are integers. A systematic sample is drawn by
choosing an element at random from the elements x; , - - - , 2& , and then selecting
every kth consecutive element. That is, if ; is the element first chosen, the
systematic sample comprises the elements i, Zijx, -+, Tixn-vx . This type
of sample has found considerable use in practice, because it is often easier to
select and to administer than a random or stratified random sample and because
it has an intuitive appeal through spreading the sample evenly over the popula-
tion. Much remains to be learned, however, about the accuracy of this system-
atic sample relative to that of comparable random or restricted random samples.

Probably the most relevant comparison is that between the systematic sample

and the stratified random sample having one element per stratum. In the latter
case, the population is divided into the n strata {z, -, @&}, {Te4a, -+,
T}, -+ - , and one element is chosen independently at random from each of the
strata. This type of sample is similar in many respects to the systematic
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sample. Both divide the population into the same = strata of k elements each,
with one element chosen from each stratum. Moreover, neither sample provides
the data for an unbiased estimate of the sampling variance of the sample mean,
at least in the sense that the estimate is unbiased whatever the form of the
population of elements z; .

The first thorough investigation of the properties of systematic samples was
made by W. G. and L. H. Madow [1]. In particular, these authors compared
the accuracies of a systematic sample and a stratified random sample of the types
described above for several types of finite population. Where the elements in
the population lie on the line x; = ¢, they showed that the stratified random
sample, with one element per stratum, is more accurate than the systematic
sample. If the population has a periodic distribution, the stratified random
sample is superior when k is an integral multiple of the period, but the system-
atic sample is superior when k is an odd multiple of the half-period. The authors
also considered the more complex case where the population contains both a trend
function and a periodic function.

The object of this paper is to make similar comparisons for another type of
population which appears to be fairly frequently encountered in extensive
samplings. The population is one in which the variance among the elements in
any group of contiguous elements increases steadily as the size of the group
increases. This type of population has long been regarded as applicable in field
experimental work, where the variance among plots within a block is found
usually to increase with the size of block. Summarizing data from 40 uniformity
trials, Fairfield Smith [2] verified this notion and derived an empirical relation-
ship from which the rate of increase may be estimated. The same type of popu-
lation is also considered in several recent papers on extensive sample surveys.
Thus, in a discussion of methods for sampling farm populations, Jessen (3]
postulated a law in which the variance among farms within a grid is a monotone
increasing function of the size of the grid and used the law for estimating the
optimum number of farms which should be included in a sampling-unit.
Mahalanobis [4] independently developed the same law as Fairfield Smith in a
comprehensive investigation of large-scale sample surveys. Hansen and Hurwitz
[5] referred to the increase in variance within a cluster with growing size of cluster
as typical of many actual populations. Numerous other references could be
given.

3., Specification of the population. Various mathematical models may be
constructed to represent the situation in which the variance within any group
increases with increasing size of group. For instance, we might consider that
the elements x; are drawn from different populations, the population changing in
some regular manner with 7. Alternatively, the z; may be assumed to belong
to the same population, but to be serially correlated. For simplicity, we assume
further that the serial correlation between x; and ;.. is some quantity p. which
depends only on u. Then if p, is positive and is a monotone decreasing function
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of u, it may be expected from intuition (and will be proved later) that the
variance within the group of elements x; , 2;41, - - - , Zi4x is a monotone i Increasing
function of k. This model seems appropriate for our purpose since many writers
refer explicitly to positive correlations between the z’s as the basis for the
phenomenon of increasing variance.

The specification above will be qualified in one respect. To assume that the
p’s are strictly monotone for an actual finite population of only moderate size
does not seem realistic. While the correlogram may exhibit a definite downward
trend, yet individual fluctuations about the trend prevent the correlogram from
being strictly monotone. It is more reasonable to regard the finite population
as being itself a sample from an infinite population in which the p’s are monotone.
This attitude is, I believe, in accord with that of the authors referred to above,
who, as I interpret their writings, regard the variance law as holding in an ideal-
ized population. Thus, comparisons between the systematic and stratified ran-
dom samples will be made not for a single finite population, but for the average of
finite populations drawn from an infinite population with monotone decreasing p.
Results for an individual finite population will differ from the average results
because the 7’s which appear in the population fluctuate about their expectations
p. As the finite population becomes larger, its results will tend to coincide with
the average results.

Accordingly, the elements z; ,7 = 1,2, - - - , nk, are assumed to be drawn from
a population in which

E@@) = p, E@; — )’ = o, E(i — p)@igu — ) = pud’
where p, > p, > 0, whenever u < v.

4. Some useful preliminary formulas. If % is the mean of a specified finite
population, the following algebraic identity, frequently useful in the analysis of
variance, is easily established.

(1) (k) ; R P YDA

=1l 7>¢

Since'there are (kn)(kn — 1)/2 possible pairs of values (z:, z;), this gives

< kn — kn — 1
@ X - =D - gy = E D) — - )2
where E is taken over the finite population. Now expand the quadratic and
average over all finite populations. In the (kn)(kn — 1)/2 combinations, there
are (kn — 1) in which j exceeds 7 by 1, (kn — 2) in which j exceeds ¢ by 2, and
so on. Hence

kn kn—1
3 E; (x; — 2)" = (kn — 1) { m 2> (kn — u)Pu}-

u=1

To obtain the corresponding expectation for the sum of squares within a single
stratum of k consecutive elements, we need only replace (kn) by kin (3). Since
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the result is the same for all n strata, we obtain
k—1

(4) E (S. 8. within strata) = n(k — a {1 -2 > (k — w) pul'.
k(k=1) &= f

Formula (3) also gives the expected sum of squares within a specified system-
atic sample if we replace (kn) by n and u by (ku), since there are n elements in
the sample and since the correlations between successive elements are px , pax. , - -
instead of py, pz, --- . The result is the same for each of the k systematic
samples. Hence

s . 2 S 2

(5) E (S.8. within systematic samples) = k(n — 1) ¢ Il Z=TD

. 'S(n—u)msu}.

u=l1

5. Average variance for a random sample. The symbols o? , o, , o5, will be
used to denote the average variances of the means of the random, stratified ran-
dom and systematic samples, respectively, about the mean of the finite popula-
tion, this average being taken over all finite populations drawn from the infinite
population specified in the previous section. Comparisons with the random
sample, though not our main purpose, will be included where they are of interest.

For a single finite population, it has been shown by several writers that the
variance of the mean of a random sample is

1 (kn—n) 1 & _\2
g Lz i

where % is the mean of the finite population.
From (3), we obtain

) ol = :; (1 - ’12) {1 - (_kn_)(fc_zn—l)kg: (kn — ) pu}.

6. Average variance for a stratified random sample. If I, is the mean of a
typical stratified random sample, the sampling variance of Z.: is by definition

(8) E(&,. — %)%
Consider first the average over a single finite population. Let &1, &, -+-, T

be the means of the n strata, respectively, and let z1;, z2;, - -+ , Z»; be the ele-
ments selected from the respective strata. Then (8) may be written

)] }%E{(xli — &) + (@ — &) + -+ + (@ — W)}

n n
since Z Z:; = NIy and > & = ni.
el ]
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Take the average over all k" samples from the finite population. All cross-
product terms vanish, since, for example, z1; appears equally often with x; , 22,
-+« , Zg . This gives

(10) LSS (e — 20

kn"' =1 j=1

for the variance for a single finite population. The sum of squares involved is,
of course, simply the sum of squares within strata. Hence, by (4)

(11) ol = ‘_’_2(1 ]10) {1 k(k =T uz_fl (U — u)pu}.

‘'
7. Average variance for the systematic sample. If Z,, is the mean of a typical
sample, the variance for a single finite population is

(12) E(fy — &) = k_lﬁ (N3 (Fy — 7))

where the sum is taken over the k systematic samples. Since the sum of squares
among samples is equal to the total sum of squares in the population minus the
sum of squares within samples, (12) equals

1 <& w1 . .
(13) o ; (xz: — %) o (S. S. within systematic samples).

To obtain the average over all finite populations we substitute from (3) and
(5) for the first and second terms respectively. The result is

19 o =& =D, fl __2 (kn—um}

kn (kn) (kn — 1) =1
(n—1) » =
bt g 1— y (n u) Pru (.
n U=l
This reduces to
2 kn—1
e _o( _1\f_ 2 o —
(18) on = n(l k> U o & G e

Py ni (n —u) Pku}o

1t should be noted that the formulas and notatlons above are different from
those used by the Madows, who define p and ¢ with reference to a single finite
population and discuss the sample variances for a single finite population.

8. Relative accuracies of random and stratified random samples. First, some
general comments. From (7), (11) and (15) the relative efficiencies of the three
types of sample are seen to depend only on the linear functions of the p’s which
appear in o? , o5, , and o3, . It is easy to verify that in each case the sum of the
coefficients of the p’s is unity. For the random sample, the linear function in-
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volves every serial correlation up to lag (kn — 1) with coefficients which decrease
linearly as the lag increases and are independent of the size of sample, depending
only on N = (kn), the number of elements in the finite population. For the
stratified random sample, only serial correlations with lags up to (k — 1) appear,
k being the number of elements in the stratum. As presented in (15), the
formula for the systematic sample is separated into two linear functions. The
first is the same function as appears in the formula for the random sample except
that all coefficients are (kn — 1)/(k — 1) times as large. The second, which
carries a positive sign, involves correlations where the lag is a multiple of k.

Thus far the formulae require no restrictions on the p’s. In considering the
case where the p’s are positive and monotone decreasing, the following lemma is
helpful.

LemMa. Ifp;, (1 = 1, ---,m), are positive and monotone decreasing, thal is,

> pisn > 0and if (an + o + -+ + am) is zero, the necessary and suffictent
conditions that

(16) L = oaipr + apa + -+ + ampm > 0,  for all admissible sets of p’s,
(17) area1+a2+~-+a.~20,i=1,2,---,(m-—1).

For let p; = piy1 + 8:, where by hypothesis §; > 0. Then if we substitute
successively for p1, p2, -+, pm—1 in terms of 8, 82, -+ , dm—1 , We find

(18) L = apdy + (o1 + on)de + (a1 + o2 + ag)ds + ---
+ (al 4+ a2+ -+ am-l)sm-l ’

the final term in p,, vanishing because (a1 + - -+ + am) is zero. Since all §; > 0,
the sufficiency of (17) is obvious. Also, if for any ¢ the coefficient of 5; is negative,
we can make L negative by choosing that 8; as positive and all other &’s as zero.
This establishes necessity.

COROLLARY. If p; are strongly monotone, i.e., g; > pin1, and if at least one of
the a; is different from zero, conditions (17) are sufficient to establish that L exceeds
zero. Forin (18) all the 8’s are greater than zero and by (17) none of the &’s has
a negative coefficient. Further, the coefficient of at least one of the &’s must
exceed zero, otherwise all the o’s would be zero. Hence L > 0.

We now show that if the p, are monotone decreasing,

2
(19) Lk) = Z (k — u)pu

is a monotone decreasing function of k. This is the linear function which appears
in the variance of the stratified sa,mple.
k—1

(20) L(k) — L(Ic+1)— Z(k U)pu — "t l)kz(k-i-l—u)pu

u=1
2
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Since the sums of the coefficients of the p, are unity in L(k) and L(k + 1),
the sum is zero in (21). Hence the lemma may be applied. But it is obvious
that the sum of the first ¢ coefficients in (21) exceeds zero, since the coefficients
are all positive for < (k + 1)/2 and all negative for u > (k + 1)/2. Hence

(22) Lk) — Lk +1) >0.

Further, by the corollary, if the o, are strongly monotone, L(k) is strongly mono-
tone. Since all p., are positive, this result is sufficient to prove that

2 k—1 2 nk—1
Consequently, for any size of sample the average variance of the stratified sample
cannot exceed that of the random sample. Further, the relative efficiency of the
stratified sample to the random sample is monotone increasing with decreasing
size of stratum, i.e. with increasing size of sample. There is, of course, nothing
unexpected in these results. Equation (22) also establishes the result mentioned
in the third section, that with monotone decreasing p, the average variance with-
in strata increases steadily as the size of stratum increases. Forif n(k — 1) de-
grees of fregdom are assigned to the sum of squares within strata, formula 4)
above shows that the average variance within strata is

2 k-1
(24) 7 {1 - m ; & — u)p,.} = {1 — L(k)}.

9. Comparison of the systematic and random samples. Upon investigation,
it is soon evident that no general results can be established about the efficiency
of the systematic sample relative to the random samples, unless further restric-
tions are made on the form of the population. In order to apply the lemma, we
find the sums of the first 7 coefficients of the linear functions of p which appear
in the variance formulae (7), (11) and (15). By elementary methods these sums
are found to be

_i@nk — 3 — 1)
2= nk(nk — 1)

12k —1—1) . _
(25) Z"—_E('k——_l)__’ 1<iL(k—1)
1 , 1>k

)> _i(2nk—i—1)_rk(2n—r—1)
T T nk(k — 1) nk — 1)

where r is the integer such that (r + 1)k > ¢ > rk.
From the lemma, in order to establish o2, < o, it would be necessary to show
that 2., > .. for any i. Now if 7 is less than k, so that r is zero, clearly
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(26) D> 2> 2., =12,k 1).

except when 7 is 1, in which case all three are equal.
But if 7 is an integral multiple of k, say rk, we find

T (n —nk - _r
(27) 2 == [1 +m], =1 = po

n
so that

(28) th > Zt > z:m .

Consequently the conditions of the lemma are not satisfied with regard to the
systematic sample and no general theorem exists for all populations with mono-
tone decreasing p. The result (26) and the corollary show that for any popula-
tion in this class which has p, = 0, w > (k — 1), the systematic sample is more
efficient than the stratified random sample. On the other hand, (28) shows that
in a population with the first k of the p’s equal and the rest zero, the systematic
sample has a higher variance than a random sample. If these two results are
collated for a population with the first j of the p’s equal and the rest zero, we see
that the systematic sample with stratum size j is less accurate than the compar-
able random sample, while the systematic sample with stratum size (j + 1) is
more accurate than the comparable stratified random sample. Although such
a population may not occur in practice, the result suggests that the graph of the
variance of the mean against the size of sample is unlikely to exhibit the same
regularity for the systematic as for the random samples.

10. Populations in which the correlogram is concave upwards. Further
investigation shows that the deciding factors in determining the relative accura-
cies of the systematic and random samples are the second differences of the p,
rather than the first differences. The following result will be proved.

TrEOREM: For all infinite populations in which

Pi > Pi+l ZO,":= 17 2)"'7("7"'_ 1)7

and
6? = pic1 + pit1 — 205 2 0,0 = 2,3, ---, (kn — 2),
then
o< du< o

for any size of sample. Further, o5y < o3¢, unless 8 = 0,7 = 2,3, -+, (kn — 2).

This result can be proved by expressing the linear functions of the p, in terms
of second differences and establishing a new lemma applicable to second differ-
ences. An alternative approach is simpler and perhaps more instructive.

Since the p., are monotone decreasing, ¢2; < o; by the results in section 8. In
(13) above, the variance of the mean of a systematic sample for a specified finite
population was expressed as
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kn
kl_n Z; (w: — %) — kin (Total S.S. within systematic samples)
(29) -

1 kn . i
- z; (& — &) — 71» (Average S.8. within a systematic sample).

A corresponding equation holds for stratified random samples. For if z;$

Taj, + -+ , Xo; are the elements of any stratified random sample with mean Z,.
n ”n
(30) Z; (xii - i)z = El (xtj - ixt)z + n(f:.g - 3-3)2.

Now take the average over all k" samples, This gives
kn
(31) Ilcg (z; — %) = (Average S.S. within samples) + nE(Z. — &)°.

Since the term on the extreme right is n times the variance of the stratified
random sample, a result analogous to (29) follows at once.

Consequently, oy < o, if the average sum of squares within a systematic
sample is greater than or equal to that within a stratified random sample. Now
by (2), with n in place of (kn), each of these averages is equal to

(32) (n - D By — 2

where z;, i; are the elements in the sample from the sth and the Ith strata
respectively, the average being taken over all possible pairs of strata.

We consider a fixed pair of strata and let | — ¢ = u. For the systematic
sample, corresponding elements in the ith and Ith strata are always (ku) elements
apart. Hence,

(33) By (x5 — 3" = 2°(1 = pra).

For the stratified random sample, there are k* possible pairs of elements from
the two strata. One pair is (bu — k + 1) elements apart, two pairs are
(ku — k + 2) elements apart, and so on, the numbers of pairs rising linearly to
k and then decreasing linearly to one for the final pair which are (ku + k — 1)
elements apart. This gives

. 2 1 (k—1) .
(34) E (x5 — 115" = 20 {1 - Iz ‘__%_” (& — l'v I )le+¢}-
Hence, to complete the proof that oy < o:, it is sufficient to show that
(k=1
(35) S (k= iD)omei — Ko 20
S (1)

foru =1,2, +++, (n — 1), that is, for any pair of strata. This may be written

(k=1)

(36) 3 (k — ) (omurs + Pru—s — 2pm) = 0.

=1
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But if 8f« = pru—s + prus1 — 2k is the second central difference it is easy to

show that

(=D .
@7 Phuti + pru—i — 200 = ’___z(; 5 G — |31)okusi > O,
since by hypothesis 65 > 0,j = 2, 3,---, (kn — 2). This proves that the
variance between the elements of the systematic sample is greater than or equal
to that between the elements of the stratified random sample for any fixed pair
of strata. The result for the overall average follows. Hence a3, < o7;.
Further, unless o7 = 0, for all 7, clearly o7, < o2, except for samples of one.

The essential point in the proof may be put as follows. The elements in the
1th and lth strata are on the average (ku) elements apart for both the systematic
and the stratified random sample. When two elements in the latter sample are
(kuw + 7) elements apart, they are less correlated than on the average, since
prusi < pru, and thus provide more independent information. The vari-
ance between the elements exceeds the systematic sample variance by
26°(pku — pruts). However, such cases are counterbalanced by an equal num-
ber of cases in which the elements differ by (ku — 7) and the variance is below
the systematic sample variance by 2¢*(pu—i — pru). Because of the concavity
of p. , the losses on the average balance or outweigh the gains.

For the population discussed in section 9, in which p, = p,u = 1,2, ---, J,
pu = 0, u > j, we have 8} < 0, 6741 > 0, and &, = 0 otherwise. This reversal
of the sign of the second difference is the explanation for the anomalous behavior
of the systematic samples with stratum sizes j and (5 + 1).

The theorem above does not prove that the relative accuracy of the systematic
to the stratified random sample is a monotone function of n, nor even that o,
decreases steadily as n increases. Actually, there are populations in the class for
which neither result holds, as will be illustrated in the next section.

So far as practical applications are concerned, the restriction that the p., should
be concave upwards may not be severe. For instance, this condition is satisfied
when the correlogram is linear, i.e. p, = (I — w)/l, this being one type of correlo-
gram which Wold [6] has considered applicable to economic data. Concavity
also holds for the function p, = ¢ which Osborne [7] has suggested for forestry
and land-use surveys and for the relation p, = tanh (u™*°) which Fisher and
Mackenzie [8] used for expressing the correlation between the weekly rain at
two weather stations as a function of their distance apart. In fact, if p, is
conceived of as positive and continuous for all u, a concave upwards function
suggests itself naturally.

11. Linear correlograms. 1t may be of interest to present some results ob-
tained when the correlogram is (i) linear, (ii) exponential, since both types have
been suggested as possible models for populations occurring in practice.

In the linear case,
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(38)  pu=L —uw)/L,u<L; p.=0,4>L.

If L > (nk — 1), the correlogram is a straight line throughout the whole range
of the finite population. Since all second differences are zero in this case, we may
expect o3y = o2 < o>. If L < (nk — 1), all second differences vanish except
6% , which is positive. Hence we may expect o2, < o7¢ < a-.

The results for these cases are found by elementary summations from the basic
formulae (7), (11) and (15). Details of the summations will not be presented.
For L > (nk — 1), we find

(39) af,=af.=‘§(1_1>(’°+1); .,3=‘f(1_})(nk+1)

k 3L n k 3L

The ratio o7/a3, is (nk + 1)/(k + 1), which is approximately equal to n, the size
of sample, unless the percentage sampled is large. Thus very large gains in
efficiency over random sampling are obtained.

If L < (nk — 1), the formulae are less simple. Consider first £ > L; that is,
cases where the percentage sampled is less than 100/L. If N = nk,

s _df, 1\[SNN-L)+ (I’ - 1)

(“0) T a (1 ic){ SN(N — 1) }
2 _ o 1\ [3k(k — L) + (I’ — 1)

@ =g (- D) ) k2l
2 o 1\ [3N(k — L) + (I* — 1)

(42) W= (1 - 12){ NG = D) } k2 L.

It is clear on inspection that o}, < o7 ; moreover, it is easy to show that the
efficiency of systematic relative to stratified random sampling increases steadily
as the size of sample increases.

When the size of sample is increased further so that k¥ < L, formula (40)
remains unchanged, while o3, is now given by the same foermula as in (39). The
formula for o2, is more complex. If g is the integral part of the quotient when L
is divided by k and r is the remainder, so that L = (gk + r), the formula may be
written

2
1
Ufy=:—1(l—ic‘)

) {qk(k2 — 1) +3k(n — )k — 1) + r(* — 1)} p <L

3NL(k — 1) ’ =

It is noteworthy that the last two terms in the numerator inside the curly

bracket vanish whenever L is exactly divisible by k. Further, the second term is

of order nk = N and, when present, exerts a much greater weight than the first

term. Thus o3, takes a sudden dip whenever L is a multiple of k. In fact, for
L = gk, (42') reduces to

2 N\ (k+1
(43) aﬁ,=‘:-l(1—l;>(3“]; ). L = gk,

(42')
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so that the variance goes to zero if N is sufficiently large. By comparison with
formula (39) for o2; we see that when L = gk the relative efficiency of systematic
to stratified random sampling is N/L, which increases beyond bound if N is
sufficiently large. In intermediate cases, when the remainder r does not vanish,
the leading term in the relative efficiency for N large is (k* — 1)/3r(k — 7).
This varies somewhat irregularly, depending on the relation between L and k,

To illustrate, numerical values are given below when L = 10 and the finite
population is large enough so that terms in 1/n are negligible.

The quantities v,:, v., are the corresponding variances apart from a factor
¢’/N. The stratified sample variance decreases steadily with increasing per-
centage sampled. On the other hand the systematic sample variance goes to
zero and the relative efficiency to infinity when k is 2, 5 or 10. Moreover, in the
intermediate cases k = 3, 4, 6, 7, 8, 9, the variance and the relative efficiency
show no consistent relation to the percentage sampled. For samples of less than
10 per cent, including the cases outside the limits of the table, the relative
efficiency decreases steadily from 4 at k = 11 to 1 when £ is large.

TABLE 1

Variances except for a factor a2/ N and relative efficiency for systematic and stratified
random samples for a linear correlogram

k 2| 3| 4| 5| 6| 7| 8| 9|10[11| 2

% Sampled |50 | 33 | 26 |20 | 17 | 14 | 12 | 11 |10 9| b

Vst .10, .27| .50( .80| 1.17| 1.60| 2.10| 2.67|3.30(4.00|11.65
Vay 0 .20{ .40, O] .80 1.20{ 1.20{ .80 0j1.00{10.00
Vat/Vay oo | 1.33] 1.25( « | 1.46{ 1.33| 1.75 3.33| «» (4.00{ 1.16

12. Exponential correlograms. For the exponential p, = ¢~** the results are
much more regular. Each of the linear functions of the p’s consists of a finite
number of terms of an expansion of the form (1 — z)™>. If

2 {(N ~ 1) — N + e-‘”‘m}
NN =) (@ — 12

which is the sum for o} , we find

@) t=2(1-1) - n)

(44) fN, N =

(46)  o% =;(1 —-){1 — f(k,N)}

_of,_1 N =1 k(n — }
@n oy = 7—1(1 E){l = )f(N \) + = )f(n KkX)
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It may be shown that the variance of the systematic sample deereases steadily
and its efficiency relative to stratified sampling increases steadily as the sample
becomes larger.

In order to obtain some idea of the magnitude of the gain in efficiency, consider
the case where k¥ and n are large. For this case the relative efficiency, which
actually is a function of k, n and A, turns out to depend almost entirely on the
single quantity (k\); or, equally, on the correlation ¢™ between the items in
successive strata in the systematic sample. If ¢ = (k\), we obtain ¢} = o*/n,

2 —¢
2 Ly 2 2 2
(48) Ost 7_7, {1 2’ + t—2 '_tz—} ]
2
. 2 7 2 2
(49) T = {1 7 + (—Z‘__-l)}

The relative efficiency is given in Table 2 for a selection of values of ¢, the
correlation between the items in successive strata.

The relative efficiency has a limiting value 2 when p tends to 1 and decreases
slowly towards 1 as p falls to zero. The gains in efficiency are quite substantial
if p exceeds 0.1.

TABLE 2
Relative efficiency of systematic and stratified random samples for an exponential
correlogram
P .9 .8 7 .6 .5 4 .3 .2 .1
as/ony 1.96 | 1.90 { 1.84 | 1.78 | 1.71 | 1.64 | 1.55 | 1.46 | 1.33

It was pointed out in section 1 that no unbiased estimate of error is available
from a single sample for either the systematic or the stratified random sample.
This does not mean that no estimate of error can be attempted. However, any
estimate must depend on certain assumptions about the form of the population
which is being sampled and is likely to be vitiated insofar as these assumptions
are false. If, for instance, the correlogram were assumed to be exponential,
formula (47), or (49) in the particular case with =, k large, would appear to be
the appropriate basis for the estimation of error from a single systematic sample.
Consider the simpler case in which (49) is valid. The correlation between
successive items in the systematic sample provides an estimate of ¢~* and hence
of t. Also, if terms in 1/n are negligible, the mean square within the systematic
sample is found to be an unbiased estimate of o’. By substitution in (49) a
consistent estimate of the variance of a single systematic sample would be secured,
provided that the exponential assumption were correct. The gains in efficiency
over stratified and random sampling could also be estimated.
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