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1. Summary. Let n successive independent observations be made on the
same chance variable whose distribution function f(z, §) depends on a single
parameter . The number 7 is a chance variable which depends upon the out-
comes of successive observations; it is precisely defined in the text below. Let
0*(xy ,- - - , T,) be an estimate of § whose bias is b(f). Subject to certain regu-
larity conditions stated below, it is proved that

a(6%) > (1 + g-g)z[E’nE ("_%"s_f)z]_l.

When f(z, 6) is the binomial distribution and 6* is unbiased the lower bound
given here specializes to one first announced by Girshick [3], obtained under no
doubt different conditions of regularity. When the chance variable » is a con-
stant the lower bound given above is the same as that obtained in [2], page 480,
under different conditions of regularity.'

Let the parameter 6 consist of [ components 6, , - - -, 6; for which there are
given the respective unbiased estimates 05 (2, R ) RER RN 07 (X1, -+ 5 Tn).
Let || A:j|| be the non-singular covariance matrix of the latter, and || A* || its
inverse. The concentration ellipsoid in the space of (&, -- - , k) is defined as

Z)\ﬁ‘(k‘ - 0;)(’6, - 0,‘) = l + 2.

(This valuable concept is due to Cramér). If a unit mass be uniformly dis-
tributed over the concentration ellipsoid, the matrix of its products of inertia
will coincide with the covariance matrix || A;;||. In [4] Cramér proves that no
matter what the unbiased estimates 65 , - - - , 67 , (provided that certain regu-
larity conditions are fulfilled), when » is constant their concentration ellipsoid
always contains within itself the ellipsoid

;i:#si(ks — 0)(k; — 6;) =1+ 2

where

o d log fo logf)

1 To whom this result is to be ascribed is not clear from the context in which Professor
Cramér describes it (in [2]). After the present paper was completed the author learned of
the papers by Rao [8] and Aitken and Silverstone [9], both of which deal with this question.
The author is indebted to Prof. M. S. Bartlett for drawing his attention to these papers.
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216 J. WOLFOWITZ

Consider now the sequential procedure of this paper. Let 6, ---, 6} be,
as before, unbiased estimates of 6, ---, 6;, respectively, recalling, however,
that the number n of observations is a chance variable. It is proved that the
concentration ellipsoid of 67 , - - - , 6] always contains within itself the ellipsoid

2 wii(ks — 6) (ky—0;)= 1+ 2
LY

where

' 3 log 9 logf>
pii = E"E< 3; 06; )

When n is a constant this becomes Cramér’s result (under different conditions
of regularity).

In section 7 is presented a number of results related to the equation
EZ, = EnEX, which is due to Wald [6] and is fundamental. for sequential
analysis.

2. Introduction. Let X be a chance variable whose distribution function
f(z, 6) depends on the parameter §. It is assumed that X either has a probability
density function (which we then denote by f(z, 6)) or that it can take only
an at most denumerable number of discrete values (in the latter case
f(z, ) = P{X = =z}, where the latter symbol denotes the probability of the
relation in braces). Letw = 1, ,, - - - be an infinite sequence of observations
on X, and let @ be the space of “points” w. Let there be given an infinite
sequence of Borel measurable functions ¢:(x1), ga(21 , 22), *+ ,05@1, +++ , 27, - - -
defined for all » in @, such that each takes only the values zero and one. It is
well known that the function f(z, 6) defines a measure (probability) on a Borel
field in @. We assume that everywhere in Q, except possibly on a set whose prob-
ability is zero for all § under consideration, at least one of the functions ¢y , ¢ , - - -
takes the value one. Let n(w) be the smallest integer at which this occurs.
Thus n(w) is a chance variable.

In statistical applications the chance variable n(w) may be interpreted as a
rule for terminating a sequence of observations on the chance variable X, the
probability of termination being one, and the decision to terminate depending
only upon the observations obtained. A sequential test is an example of this
procedure. The converse is, however, not true, because the process described
above does not require that any statistical decision should be reached when the
process of drawing observations is terminated.

An “estimate’’ of 6 is a function 6*(x; , - - - , z,) of the observations z; , - -+ , 2,
(those obtained prior to the ‘“termination” of the process of drawing observa-
tions). In the sequel we shall limit ourselves to estimates whose second moments
are finite. The estimate is ‘“‘unbiased” if E6*, the expected value of 6* is 6.
When this is not so E6* — 0 is called the bias, b(6), of 8*. In general the bias
is a function of 6. It is obvious that the function 6* may be undefined on a set
of points (z;, --- , z,) whose probability is zero for all 8 under consideration.
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In the present paper we shall be concerned with an upper bound on the effi-
ciency of a sequential estimate, or, more precisely, with a lower bound on its
variance. This lower bound is intimately related to certain results on the effi-
ciency of the maximum likelihood estimate from a sample of fixed size. This is
not surprising since fixed-size sampling is a special instance of sequential sam-
pling. The results obtained in this paper are also obviously and intimately
related to those due to Cramér [4] and those described by him in [2], pp. 477-488.
Naturally the conditions of regularity (restrictions on f(z, 6), 6%, etc.) under
which the results are proved are different. For example, no restrictions on the
sequential sampling procedure need appear in the statement of a theorem which
deals only with samples of fixed size.

The argument below proceeds as if f(x, §) were a probability density function.
The results apply equally well to the case where f(x, 6) is the probability function
of a discrete chance variable provided:

1). Integration is replaced by summation wherever this is obviously required.

2). The phrase “almost all points’ in a Euclidean space of any finite dimen-
sionality is understood

a). as all points in the space with the possible exception of a set of Lebesgue
measure zero, when f(z, 6) is a probability density function

b). as all points in the space with the possible exception of points one of whose
coordinates is a member of the set Z, when f(z, 6) is the probability function of a
discrete chance variable. The set Z consists of all points z such that f(z, §) = 0
identically for all § under consideration.

3. Conditions of regularity. In this section we shall formulate the restrictions
which we impose on f, the estimates, and the sequential process. They are
intended to be such as will be satisfied in most cases of statistical interest. No
doubt they can be weakened, but the author has decided against attempting to
do so here. The list may seem long for two reasons. Seldom in the literature
are the assumptions which, for example, lead to validation of differentiation
under the integral sign etc., formulated explicitly. The presence of a sequential
procedure means that additional restrictions must be imposed.

In this section we assume that 6 is a single parameter. The case where 8 has
more than one component is treated later.

(3.1). The parameter 0 lies in an open interval D of the real line. D may consist
of the entire line or of an entire half-linc.

(3.2). The derivativeg—‘;'exists for all 6 in D and almost all x. We define

a—lgg(—};(—x’—@ as zero whenever f(x, §) = 0; thus 9 log f 1s defined for all 6 wn D and
2
almost all x. We postulate that E ﬂo_%&_&_) = 0 and that E (l?—%——(&i))

be not zero for all 6 in D.
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(33). E (Z 0 log f (21, 0) | )

T=l

exusts for all 0 in D.
(34). LetR;, (j = 1,2, - -+ ), be the set of points (x1, -+ - , x;) in the j-dimen-
stonal Euclidean space such that

¢I’(x1'7"'7xt')=0 7'.=1’2""’j—1
ﬁoj(xl""’xi) =1

For any integral j there exists a non-negative L-measurable function T j(x,, -+ , x;)
such that

a). 0*(zy, *- , ;) ——Hf(x.,o) < Ti(@yy -« , ;)
for all 6in D and almost all (z,, --- ,z;) in R;
b). ./;iT,-(xl,---,xi)dxl---dx,-
18 finite.
(3.5). Let
0) = fx,”*(’”"”' ) 1, 0) dai, G=12-)

We postulate the uniform convergence of the series
’ dt;(6)
X0

,()

(the exzstence of is a consequence of Assumption (3.4)) for all 6 in D.

4. The case of one parameter. In this section we assume that f(z, 6) depends
on a single parameter 8. In sections 5 and 6 we shall discuss the case when 6
is a vector with more than one component.

WehaveEaloga—{;(x’o) =0

by (3.2). Define the chance variable

a log f(x;, 0)
Yo = §L 30

By an argument almost identical with that of [1], Theorem 1, or of Theorem 7.1
below, we have

(4.1) EY, = 0.
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From Theorem 7.2 below we obtain

4.2) o*(Y,) = EnE <‘1%@>2.
Let 6* (21, -- -, x.) be an estimate of 6 such that
Eo* = 6 + b(60).
Then
(4.3) g g 0* (1, -+, ) gj(xi, 6) dx; = 6 + b(6).

Differentiation of both members of (4.3) with respect to § (Assumptions (3.4)
and (3.5)) gives

db
* — —
(4.4) E¢*Y, =1+ %

From (4.1) it follows that (4.4) gives the covariance between 6* and Y, . Hence
from (4.2)

(4.5) A0%) > (1 + %)2 [EnE ("_I%af;ﬁ”’_")ﬂ_l.

When the bias b(6) is constant, for example when b(6) = 0 in case 6* is an
unbiased estimate, we have from (4.5)

271
(4.6) S(6%) > [EnE ("E%@) ] .

The equality sign in (4.6) will hold if 6* may be written as Z’(6)Y, + Z"(6),
where Z’ and Z"’ are functions of 6. However, 6* itself should not be a function
of # if our argument is to remain valid. The subject is connected with the
question of the existence of a sufficient estimate.

Let f(z, 6) be defined as follows:

f(z, 0) = 6°(1 — 6)'%, (xr=00r1;0 <6 <1).
Then
dlog f(z,0) _z (1 —a) dlog f\* _ 1
a0 e 1-—0’ E( ao)‘o(l—a)'

Suppose 6* is unbiased. Then ¢*(6*) > 6(1 — 6)(En)™", a result first given by
Girshick [3] under unspecified regularity conditions.

Let the functions ¢; , ¢2, - -+ be such that n(w) is a constant. We are then
dealing with samples of fixed size. The result (4.5) is then given in [2], p. 480,
under different conditions of regularity.

5. Regularity conditions for the case when 6 has more than one component.
We suppose that 6 = (61,---, 6) and that simultaneous estimates
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0@y, -+ , &), -+, 00 (T, -, Za) of the components of § are under discussion.
In the sequel we shall limit ourselves to the case when these estimates are all
unbiased.

We postulate the following regularity conditions which are sufficient to validate
section 6:

(5.1). The covariance matrix of the estimates o7, - , 07 is non-singular for all
0 n D (this time D is an open interval of the l-dimensional parameter space).

(5.2). The conditions of section 3 are satisfied for each 0; and 67 (i = 1, --- , I).

6. The ellipsoid of concentration when 6 has more than one component. Let
0 = (01, et ,91).

We shall first describe briefly the result of Cramér [4] which refers to samples
of fixed size n > I. Let 05(z1, -+, %) be an unbiased estimate of
6;, (¢ = 1,---,10). Let|[\j]|| be the non-singular covariance matrix of the
67 , and let || \” || be its inverse. The “ellipsoid of concentration” in the space
of points (k; , - - - , k;) is defined as

4

(6.1) 20 Nk — 0)(k; — 6) = 1+ 2.
fi=1

If a unit mass be distributed uniformly over this ellipsoid it will have the point
(61, ---, 6;) as.its center of gravity and A;; as its product of inertia about the
corresponding axes. Cramér proves that, subject to certain regularity condi-
tions, there is a fixed ellipsoid

1

(6.2) > wii(hs — 6)(k; — 6;) = 1+ 2

3,7=1

where

_ d log f 3 log-f
Hi = "E< 36; 96 )
which is always contained entirely within the concentration ellipsoid of any set
of unbiased estimates. The two ellipsoids coincide only under certain condi-
tions, among which is that the 6% be jointly sufficient estimates of the 6; .
Let us now consider the sequential procedure of this paper and postulate the
regularity conditions of section 5. Let

K = [ k||
be & matrix with real elements such that | K | = 1 and let
K™ = || K|
be its inverse. Let
0, o7 121
ol =-1, Me*f=4p-j, lell=

01 o;k 'pl
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be column matrices. Suppose

(6.3) ¢l =K 6]
Then
(6.4) el = K|yl
Define

W

e ll =1 - || = KI|l6*]].

v

From section 4 we have
2

65 i (VBIE OV (g

1

dlogf
VA
held constant. Consider thelast (I — 1) rows of K as fixed and (ks , k12, - - - , kny)
as free to vary subject only to the restriction that | K| = 1. The left member
of (6.5) is then a fixed quantity, while the right member is a function of the first
row of K. The inequality (6.5) must remain valid for all admissible
(Fuy -++, ku). Hence (6.5) will remain valid if the right member of (6.5) is
replaced by its maximum with respect to (ku, --- , k). We shall obtain this
maximum and find that (6.5) then implies a result about the minimal ellipsoid
of concentration.
The problem is therefore to minimize o*(1). Now

is obtained is performed with ¢, - - , ¢,

where the differentiation by which

(66) 02(¢f) = Z )\.:jkuklj.
Ul
The family of ellipsoids in the space of (ki , - -, “Icu)
(6.7) 2 Nikukyy = ¢,
¥}

where ¢ is a running parameter, has all centers located at the origin. Let
(Ktyy -, Forg)

be the sought-for maximizing values of (ky, -+, k). From the definitions of
K and K" we have
(68) . 2 kﬂ kli =1

where (K", k¥, ---, k%) are constants. It follows that the minimum value
co of > (1) is such that the ellipsoid

(69) ;: A,‘fkl,‘kl,' = Co

is tangent to the hyperplane (6.8) at the point (kfy, - - - , ki;). Now the tan-
gent plane to (6.9) at this point is given by

(6.10) Z, NiKliky = co.
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From (6.8) and (6.10) we obtain

(6.11) ok™ = 20 kg, G=1,---,D.
Hence
(6.12) e 2 N7K" = K, G=1,-,0
from which
(6.13) e 2 NEE = 1.
o
We have
dlogf a0 log
E7 E LTS
(6.14) ,
(3 logf) = 3 g dlogfalogf

2 0 a0 ; -
From (6.5), (6.13), (6.14), and the definition of ¢, we conclude that
(6.15) 2 ik > 20 N !

i Wi
where
ro_ d log f 8 log f

(6.16) Mij = EnE (——65;—-— —é? .
We may restate (6.15) as follows: The concentration ellipsoid
6.17) 2N — 0y — 0) = 1+ 2

]
of the unbiased estimates 67 , - - - , 6] always contains within itself the ellipsoid
(6.18) 2 willes — 0;)Ck; — 6;) = 1+ 2

LY}

where the u;; are defined by (6.16).

The question of the coincidence of the two ellipsoids is connected with the
question of the existence of sufficient estimates. It may be difficult to state
any general results about the concentration ellipsoid of biased estimates without
postulating some relationships among the biases and/or their derivatives.

7. On Wald’s equation and related results in sequential analysis. In sec-
tion 4 we referred to a proof by Blackwell [1] of an equation due to Wald [5]
which is fundamental in the Wald theory of sequential tests of statistical hypothe-
ses. Here we shall give a perhaps simpler proof of this equation, and then prove
several new and related results of general interest for sequential analysis.

The results of Theorems 7.2 and 7.3 below can be obtained by differentiation
of Wald’s fundamental identity of sequential analysis ([6], [7]). However, the
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conditions under which we obtain these results are less stringent than any so far
found sufficient to establish the identity and the validity of differentiating it.
Theorem 7.4 and its corollaries refer to sequential processes where the chance
variables may have different distributions or even be dependent. In the future
we hope to return to the question of finding all central moments of Z,, the
problem of generalizing the fundamental identity, and related questions.

For Theorems 7.1, 7.2, and 7.3 we shall assume a chance variable X whose
cumulative distribution function F(z) is subject only to whatever restrictions
may be explicitly imposed on it in each theorem. We assume the existence of a
general sequential process such as is described above, which is subject only to
such restrictions as may be explicitly formulated in each theorem. The sequen-
tial process of course defines the chance variable n. Let 2y, x,, --- be suc-
cessive independent observations on X. We define Z, = zl: z;. If E(X) and
o(X) exist we shall denote them by w and ¢° , respectively.

Turorem 7.1 (Wald [5], Blackwell [1]). Suppose w and En exist. Then

(7.1) E(Z, — nw) = 0.

The following theorem, which is a sort of partial converse of Theorem 7.1, is
proved concomitantly with Theorem 7.1:

TareoreMm 7.1.1. If EZ, exists, and if either P{X > 0} = 0or P{X < 0} =0,
then w and En both exist, and

EZ, = wEn.

Actually the same proof suffices for a somewhat stronger form of Theo-

rem 7.1.1:
Taeorem 7.1.2. If EZ, exists, and if

EXiln=4 >0 (or < 0)

for all positive integral j such that P {n = j} # 0, and all v < j, then w and En
both exist, and

EZ, = wEn .

n 2
TaEoREM 7.2. IfE (E |2 — w| ) exists, then o and En both exist, and
=1

(7.2) " E(Z, — nw)® = ¢’En .
We have
E(Z, — mo) = E <§ (s — w)> - g fR , Z::l (@ — w)) ‘I:]I:dF(xg)
(7.3) -

-2 3 [ @ w T are.

je=l t=j YR
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Also
(7.4) ; (#; — w) :Ij:I1 dF (xm) = P{n > jlE(x; — w) = 0.
Hence

(7.5) 2 5:: @ = w) Edp(xm) = 0.

From this (7.1) follows.
Suppose now that the conditions of Theorem 7.2 are fulfilled. We have

E(Z, — o) = 32 fR ,~ (Z‘, (@i — w))zﬁdﬁ’(xm)

=1 =1

.6) -3 [ G-y H dF (z,)

j=1 i=7

w0 j—1 oo m=1g

+22 22 | @ — w—w mI=Il AF (z,,).

i=2 8=l i=j YR,
Let s < j be any two positive integers. Then
(77) Z & (xs - w)(x, - w) I_I1 dF(.L'm) = 0.
=7 i m=

Hence

w0 j—1 o m=1

73) 252 [ - we - w [larE) =o.

i=2 s=l i=j

In a similar manner we obtain

m=1

(79) > [ @ —w ILarG) = oPin > 4.

From (7.6), (7.8), and (7.9) it therefore follows that

0 o0

(7.10)  E(Z, — nw)® = ,ﬁE P{n > j} = o* 2, jP{n = j} = o’En

i=1 j=1

which is the desired result.
It remains to prove the validity of rearranging the series in (7.3) and (7.6).

First, we have

(7.11) 2[Ie‘|x,~—w|”ﬁ:‘dﬁ‘(wm)=P{n2j}E'lX—w|.
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Hence it follows that

© o

S5 - wi L are = £ pinz 181X - ]

(7.12) .
=E|X—w[’zljp{n=j} =E|X — w| En.

This justifies the rearrangement of terms in the series in (7.3). Second, the
series (7.6) is dominated by the series

>3 f (@ — w)* 11 dF(a)
(7.13) "

0 j—1 oo

+25 5 5 [ o -l -l 1] dFG

7=2 8=l =7 YR
all of whose terms are positive. The series (7.13) converges because
n 2
(7.14) E(Zln—wo < 4.
=1
Hence the rearrangement of the series (7.6) is valid.

In the sequel we require certain sets R;(j = 1, 2, - - - ) which we shall define
now. Let R}, 7 < 7, be the totality of all points (z;, - - - , ;) such that

(7.15) (@1, - ,x) eR; .
Let R’ be the j-dimensional Euclidean space. Then
(7.16) Ri =F — 2&,

We shall now prove:
n 3 n

TuEOREM 7.3. Suppose that E[E |z — w I] and E’nl:z |2s — w[]
i=1 t=1

exist®  Then

(7.17) E(Z, — nw)® = wsEn + 3°En(Z, — nw)
where

= EX — w)’
exists.

n 3
2 The author has succeeded in proving that the existence of E[Z | i —w| ] implies

1=1
the existence of E l:n Z | 2 — w I:I The proof will be published subsequently in con-
i=1
nection with other results.
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Proor: We have

E(Z, — nw)® =

f,,, [Z—} (@ — w)] II AF (2m)

-/I;,z
-/I;,' 2 sm=1
i—1

L Em—m%—wnwm>

=2 8=

M 1
Mm

(z: — w>“II AdF (Tn)

<,
-

3—1

3 > (z — w)(a — w)”IiI dF (x,)

+
Ms

Mgh.

(7.18)

~,

]

8
_

™s

+ 3

3

1==

j 1—1s8—1

+o63[ TS @ - wen - we - wIare).

Rj =3 8=2 te=1

Considering the first term in the right member of (7.18), it follows that

”L[Zm—w]nwm>

(7.19) = gg s (x: — 'w)**;g-[1 dF (x,)
= S uPln > i

te=l

= D tws P{n = 5} = wy En.
i=1
All the rearrangements of terms in the operations involved in the proof of Theo-
rem 7.3 are legitimate because the various series are absolutely convergent.
As for the second term in the right member of.(7.18), we have
i =1

Z Z(xt — w)(x; — 'w)zH dF ()

R; i=2 s=1
3 o

(7.20) = E '§1 J_E. (xs — w) (2 — w)”"gl dF (z,,)
°° 2 i—1
=23 [ - ol e
8e=l t=8+1 YR/ 5 m=1

L)Y m—wgwmx

8=1 i=38 YR'¢

We now operate on En(Z, — nw), and obtain

En(Z, — nw) = Ej; JE(x, — w) II dF (x,,)

(7.21) P |
= g;jj;‘i(xj - w)ng(xm)-
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We observe that
> [ i - w I aF e
(7.22) -i% [ @ - w Il are

=]

'-1+1 ....]; (x; — w) H dF (z,,).

To evaluate the left member of (7.22), we proceed as follows: Itis easy to see that
(7.23) > | @—w Il dF(x.) = O.
“=j YR =1

Moreover, when s > j,

s—1

a2 B[ G-wllaren) = [ @-w il are).

=38 =1

Hence

az) L[ i@ -w Il =3 [ @-w ]l re.

8]

Therefore
(7.26) En(Z, — nw) = f @ — w) H dF (z2).

It remains now to consider the third term of the right member of (7.18).
We have
j_ i—1
> 35 - w e~ w Il ara.
=2 YR +=2 8=l
(7.27)

D> Z‘ (x. — w)? (z; — w) mIldF(x,,.).

8=1 t=8+1 j=1

Now, suppose that in the expression
i
(7.28) V= [ @ —we -1 e
Rj M=

where j > 7 > s, we integrate with respect to all x,, for which m > . Then
it is not difficult to see that

(7.29) E Vi = 0
J=1
for all s and 7 such that 1 < s < 7. Hence from (7 27)
j =1
(7.30) 5[ EE @ -0t - w]ldre) = o.
=2 YRj fm=2 8=l
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In a similar way it is shown that the fourth term of the right member of (7.18)
is zero.

The desired result (7.17) is a direct consequence of (7.18), (7.19), (7.20),
(7.26), and (7.30).

Consider now an infinite sequence of chance variables z;, x., ---, which
need not have the same distribution and which may be dependent (in which
case they must satisfy the obvious consistency relationships). We take suc-
cessive observations on these chance variables and define a sequential process
as above, which is subject only to such restrictions as we shall explicitly state.
Let Z, maintain its previous definition.

THEOREM 7.4. Suppose that
(731) Vi = E(X, l n Z 'L)

exists for all positive integral 1 for which P {n > i} # 0. In those cases write
(7.32) vi = E(| Xi — vi| | n > 0).

Suppose also that the series

0

(7.33) 2 61+ --- + ¥)P{n = i}

1=l

converges. Then

(7.34) E[Z,. - Z; v,,] = 0.

It is regrettable but unavoidable that the mean values »; and »1 entering into
(7.33) and (7.34) be conditional. The fundamental reason is that the sequential
process may drastically modify the distribution of dependent chance variables,
50 that their distribution for our purposes can only be considered in conjunction
with the sequential process itself. Consider the following example:

P(Xy= -1} =% P{Xxi=1 =}
P{X:= —2| Xi= —1} = }

P{X,= —1|X; = —1} = 3
P{X,=1]|X =1} = }
P{X.=2|Xi=1} = &

We have E(X.) = 0. Suppose we define the following sequential process:
IfX; = —1,n = 1,and if X; = 1,n = 2. Itis then clear that for our purposes
X, can take no negative values and the fact that E(X;) = 0 is of no use to us.
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If, however, the chance variables X;, X, --- are independent, this difficulty
disappears, and we have the following.
CoroLLARY 1 To THEOREM 7.4. If the chance variables X, X, - - - are inde-

pendent, we have Theorem 7.4 with v; = E(X,), and v; = E | X; — »;] .

If further all the X; have the same distribution, we see that Theorem 7.1 is
a special case of Theorem 7.4, since the convergence of the series (7.33) is then
a consequence of the existence of w and En. From this argument we see, how-
ever, that it is not necessary that all the X; have the same distribution, and we
may write the following generalization of Theorem 7.1:

CoroLLARY 2 To THEOREM 7.4. Let the X; be independent with, in general,
different distributions. Suppose, however, that all v; are equal, and all v; are equal,
except perhaps for those ¢ such that P {n > i} = 0. Suppose further that En exists.
Then (7.1) holds.

Among possible fields of application of Theorem 7.4 are sequential tests of
composite statistical hypotheses, and the random walk of a particle governed
by probability distributions which are functions of time and the position of the
particle. The extension of this theorem to vector chance variables is straight-
forward. The extension to higher moments may present difficulties. We hope
to return to some of these questions in the future.

Proor or THEOREM 7.4. This is very elementary. We have

E(Zn — iw) = Zf [E(x, - Vs):l aF (@, -+, x;)

i=1 =1

0 00

(7.35) =22, L @ ) AP, ).

i=1 i=7

0

= 2 Pin 2 JEX, = v n>j) =
i=
The rearrangement of the series is valid because

S5 lm =l dre, 5 = Sipin 2 4)

=1 1i=7

(7.36)
= ;(V{ + oo +9)P{n = j}

which converges by (7.33).
REFERENCES

{1] Davip BrackwELL, “On an equation of Wald,”” Annals of Math. Stat., Vol. 17 (1946),
pp. 84-87.

[2] H. CramER, Mathematical Methods of Statistics, Princeton Univ. Press, 1946.

[38] M. A. GirsHiCK, FREDERICK MOSTELLER, AND L. J. SAVAGE, *‘Unbiased estimates for
certain binomial sampling problems,” Annals of Math. Stat., Vol. 17 (1946),
pp- 13-23.



230 J. WOLFOWITZ

[4] H. CraMER, “A contribution to the theory of statistical estimation,” Skandinavisk
Alktuarietidskrift, Vol. 20 (1946), pp. 85-94.

[5] A. WaLp, ““Sequential tests of statistical hypotheses,”” Annals of Math. Stat., Vol. 16
(1945), pp. 117-186.

[6] A. WaLp, ““On cumulative sums of random variables,”” Annals of Math. Stat., Vol. 15
(1944), pp. 283-296.

[7]1 A. WawLp, “Differentiation under the expectation sign of the fundamental identity in
sequential analysis,” Annals of Math. Stat., Vol. 17 (1946).

[8] C. R. Rao, “Information and the accuracy attainable in the estimation of statistical
parameters,” Bull. Calcutta Math. Soc., Vol. 37, No. 3 (Sept., 1945), pp. 81-91.

[9] A. C. AiTkEN aND H. SILVERSTONE ‘‘On the estimation of statistical parameters,”
Proc. Roy. Soc. Edinburgh, Vol. 61 (1941), pp. 56-62.



