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THE POINT BISERIAL COEFFICIENT OF CORRELATION

By JosepH LV
New York State Department of Civil Service

The product moment coefficient of correlation between a continuous variate y
and a variate x which takes the values 1 and 0 only, is known in psychological
statistics as the point biserial coefficient of correlation. Lety;, ¢ =1, --- , n,
be observations on y; y1:,¢ = 1, -+ - , n1, be y values which are paired with the
valuez = 1; 40,2 = 1, - -+ , mp, be values paired with x = 0; g, 71, and %, be
the corresponding means; and n = n; + no. Then the point biserial coefficient
of correlation may be written
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The distribution of r is readily obtained when the y;, 2 = 1, --- ,n, are
distributed as
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o® is the variance of the y; about the common mean «, and p is the parameter
which represents the correlation between the y; and the z; . It is easy to verify
that the statistic in (1) is a maximum likelihood estimate of p.

It will be convenient to express the two population means in (2) as u; and g

so that
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Now write
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where r is obtained from (1).
Using (5) we may write ¢ as
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Therefore ¢ has non-central ¢ distribution [1] with
M1 = Mo p
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The methods and tables given in [1] may be used to calculate tests of significance
and confidence limits for p.

When p = 0, ¢t has Student’s distribution, and the statistic ¢ = +/n — 2r/
4/1 — r2 may be used to test the hypothesis, p = 0, by means of the ¢ tables
with n — 2 degrees of freedom. The non-central ¢ distribution then determines
the power function of this test.

Table IV of [1] can be used to calculate confidence limits for p. If the con-
fidence interval is to be based on equal tails of the distribution choose a confidence
coefficient 1 — 2¢. Then compute §(f, & , €) and 6(f, &, 1 — ¢), wheref = n — 2,
and & = vVn — 2r/A/1 —

A lower limit for p is given by
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and an upper limit by
a(f’ to, 1 - 5)
[n + 52(fy b, 1 - 6)]‘.
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