A DIRECT METHOD FOR PRODUCING RANDOM DIGITS IN ANY
NUMBER SYSTEM

By H. Burke HortoN AND R. TynES Smrta III

Interstate Commerce Commission

1. Summary. A compounding technique first used to produce random binary
digits is generalized and extended to other number systems. Formulae for the
rate of convergence of probabilities to the desired values are derived. The
method is extended to the production of random digits with fixed but unequal
probabilities. Numerical results are presented in summary form together with
results of tests applied to a set of random digits produced by the method.

2. Introduction. In a note [1] by one of the authors a method of producing
random digits was presented. The method was based upon a process, designated
“compound randomization,” used to produce random binary digits, which can be
converted to random digits in other number systems by simple methods. De-
spite the ease of converting a random binary series to another system, it is of
interest to examine the problem of direct production of random digits in any
number system. In the course of producing random binary digits with machine
tabulating equipment, and while designing an electronic device to produce ran-
dom binary digits, it was noted that the multiplication process described in the
earlier paper was the equivalent of addition modulo 2 of a series of binary digits.
This observation laid the basis for generalizing to other number systems."

3. Initial conditions and notation. Let us assume that there is available a
source of digits, 0, 1,2, - -+ (n — 1), in a number system of base n, where n is a
positive integer, n > 1. Let p, represent the probability of obtaining the rth
digit in the sth trial. Assume that initial conditions can be controlled so that
the trials are independent’ and

3.1) Drs = €

where 0 < € £ 1/n is a fixed positive number. (It may be noted at this point
that conventional “single-stage’” methods of producing random numbers are
based upon the assumption that p,, = ¢ = 1/n.) Let =, represent the prob-
ability of obtaining the rth digit by addition modulo n of the digits obtained in
s individual trials. ‘In order to express , in terms of p,. , consider two sets of
matrices whose elements are defined as follows:

1 In acting as referee for [1] Dr. George W. Brown suggested generalizing to other number

systems by addition modulo #.
2 J. E. Walsh [2] has considered, in terms of conditional probabilities, the effect of inter-

correlation on compound randomization in the binary system.
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Po,s Pn-1,s Pn—2,8* """ P1.s “
P1,s Po,s Pr-i,sc - P2,s
(3.2) A = D2,s D1, Pos - P3.s ||

0,8 MTn-l,s Tn—2,8°° """ T1,8
1,8 0,8 Tp—1,8" " "* 2,8
3.3) Qs = || T2,s Mis Mo """ 3,8 i‘
........................ !
Tn—1,8 Tn—2,8 Tn—3,8° """ o,s

Note that a, and «, are Markoff matrices with two additional restrictions: (1)
there are no zero elements, and (2) column (as well as row) sums are unity. Each
n X n matrix is made up of ~ly 7 distinct elements, namely, the n different
probabilities associated -~i.a the sth trial for a, , or the n different probabilities
associated with the sm  f s trials for o .

4, Relation of 7, to p,s Assuming independent trials, we have the following
relationships:

o = 0y,
ay = Oz 0q = Qg * Gy
(41) o3 = Q3 g = Q3 * Q2 * Q1

.......................

.......................

A = A Qp—1 = Has.

Thus, since any row (or any column) of a; is a permutation of the = , by (4.1)
the . are expressed in terms of the individual probabilities, p,, .

6. Convergence of w,, to 1/n. (5.01) THEOREM.? Limg—o 7 = 1/n.

Proor. Let p, denote the range of the elements of o, . Each element of
a;, is a weighted mean of the n distinct elements of a,—; . The n distinct elements
of as are used as weights in the averaging process. Now the range of a set of
weighted means (weights > 0) of a set of values must be less than the range of
the values themselves, unless both ranges are zero. Therefore, since the weights,
prs > 0 by condition (3.1),

(5.02) ps < ps—1 , for p,_1 # 0, or in the special case p,—; = 0, p, = 0.
n—1

Also, since Z s = 1,

r=0

3 While this article was awaiting publication, J. Wolfowitz independently proved theorem
(5.01).
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(5'03) 1/"’ — Ps = Tre = l/n + Ps .

In order to show that lim, . p. = 0, and to derive formulae for the rate of con-
vergence of ., to the limiting value, 1/n, let w; represent the ordered p,, for any
given s: w; = the smallest p,,, - -+ w, = the largest of the p,,. In a similar
manner let z; represent the ordered ,,.;. The following inequalities for the
maximum and minimum ., can be set down immediately:

(5.04) Max oy = Wa'Tn + Waet Loy + <o+ + Wi 215
r

(5.05) min 7, = Wa 21 + Waor'22 + -+ + W1Tn.
r

And since p, = max m,, — min .,
r r

(5.06) py S Wa(2n — 21) + Wne1(@na — T2) + -+« + We(z2 = Tna) + Wr(T1 — Za)-
For n even, let m = n/2 + 1, then by regrouping terms,

ps = ('wn - 'wl)(xn - ) + (wn—-l - wz)(znq - xz) + .-
(5.07)
+ (wm - wm—l)(xm - xm—l)-

Noting that pp1 = (@n — 21) = @n1 — @2) = *** = (Tm — Tm-1), the following
substitutions can be made:

(5.08) s < (Wn — W1)Psm1 F+ Waa — We)pet + *** + (W — Winet)Po1 -

For compactness, this may be written,

(5.09) ps = [2"3 w; — mi wi] ¢ Poi-

i=m g==1

Similarly for n odd, let m = (n + 1)/2; proceeding in the same manner as above,
the median term vanishes, yielding as a final result,

(5.10) ps = l: Zn: w; —"Z_‘;w.-] . Po—ie

T=m-+1
For simplicity denote the expression in brackets by 4, ; then
(5.11) Ps é 8. 2 Pgely

where for n even, 8, represents the sum of the largest n/2 of the p,, minus the
sum of the smallest n/2 of the p,. , and for n odd &, represents the sum of the
largest (n — 1)/2 of the p,, minus the sum of the smallest (n — 1)/2 of the p. .
Continuing the process developed above, we find that

(5.12) Ps é 50 ¢ Og1 ° Ps—2 3

(5.13) Ps = 8p Ogy * Bgp s 20 02 p1.
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Since & = p1, the following simple inequality holds:

k
(5.14) o = 1o,
8=1
Now 6, £ 1 — ne, by condition (3.1) and the definition of 5,. Therefore,
k
(5.15) ,}im pr < lim J] 5, < lim (1 — ne)* =0,
- 00 k—o0 g=1 k=0

and (5.01) is proven. In the special case of constant probabilities from trial to
trial, 8, = & , a constant,and (5.14) becomes

(5.16) o < (%)

Since the mean =, is 1/7, we have the following useful inequalities:
k k

(5.17) 1/n —JI 6 < mu < 1/n + I] o,
8=] gwa]

in the case of varying probabilities, and
(5.18) 1/n — () *S 7 = 1/n + (%),

in the case of constant probabilities. If 8, is not known in each trial, an upper
bound, 3 , may be estimated on the basis of knowledge (including statistical
tests) of the digit generating process. Then the following inequality will hold:

(5.19) 1/n — (&) < 7n < 1/n + (3)",

where & = (1 — ne).
It is worthy of note that inequalities (5.14) and (5.15) become equalities if n =

2 (binary system), thus,

k k k
(5.14b) pk=g6,=£ll|p,—q,|==‘I_Ill2p.~ll;
(5.15b) =) =|p—ql =201/

These results were obtained by different methods in [1].

6. Discussion of results. Certain facts are implicit in the foregoing analysis,
but are worthy of mention in passing. The compounding process may consist
of addition modulo 7 of digits taken from a number of digit-producing machines.
If any machine, A, is perfect, i.e., p,» = 1/n for all r, each element of the probabil-
ity matrix a will be equal to 1/n, and p» = 0. Consequently, each element of
@, 8 = h, will be equal to 1/n by (5.17) and the special case of (5.02). Thus
any combination which contains a perfect machine is perfect. This is equivalent
to a restatement of Von Mises’ [3] requirement that the sum of a random set
and any other set must itself be a random set. Furthermore, by (5.02) the re-
sults taken from any machine, no matter how nearly perfect, can be improved
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by combining with the results of another machine, no matter how biased the
latter may be. In the limiting case, p,, = 1 (or 0), the probabilities of the vari-
ous digits are merely interchanged.

7. Production of random numbers with fixed but unequal probabilities. The
principles presented above can be adapted to the production of random numbers
with unequal probabilities as follows: Assume that a set of random digits, 0, 1,
2, .-+ (n — 1), is required in a number system of base n, with probabilities go,
@1, 2, Qua, 2. 1=0q; = 1, where each g is a proper rational fraction which
may be written as the quotient of two positive integers, ¢; = ;ﬁ Choose m
as the basis of a new number system, where m is the least common multiple of

the v;,
(7.1) g = B =

UH ‘m

A set of random digits, 0, 1, 2, - - - (m — 1), in a number system of base m may
be generated by the process described above, or a set of such digits may be con-~
structed by entering an existing table of random digits, base n, and interpreting
mug

appropriate numerical quantities, base n, as digit symbols, base m. Since —

is an integer, groups of digits, muo, muy , - - - Mun_1, in the m system may be

coded as digits, 0, 1, 2, - -+ (n — 1), in the n system. An upper bound for the

n'z,u; px , Where p; is the range of m in the m system.
i

Thus, by increasing k, the bias of ¢; can be made smaller than any preassigned
quantity.

maximum bias of ¢; will be

8. Convergence under more general conditions. Convergence of =, to 1/n
occurs under a variety of conditions less restrictive than (3.1).
(8.1) TaeEoREM. In the case of independent trials, a mecessary and sufficient

condition that im m,, = 1/n s that :o'} = ¢, where € is a fized positive number,
s—o0 1t

arbitrarily small, and t is a fized positive inleger, arbitrarily large. It is obvious
that (8.1) is a necessary condition for convergence. To prove that it is a suffi-
cient condition, consider the following:

(8.2) Lemma. If {I;”} = 7, where 7 is a fired positive number, arbitrarily small,

18

then lim 7, = 1/n.

Proor: Take a fixed integer, k, h = n — 1. Now any digit, r, can be obtained
in at least one way; i.e., as the sum of r ones and (b — r) zeros. Therefore,

(8.3) mm = 7, Wherer = 17"



PRODUCING RANDOM DIGITS 87

We now regard h trials as a single trial of a complex machine. Let u represent
the number of such complex trials. Let =, represent the probability of ob-
taining the rth digit as the result of addition modulo 7 of w complex trials. Then,
(8.4) lim 1r,'.., = lim Tr,(uh) = l/n,
by (5.01). Now s = uh + 4,0 < j < h, (j an integer), or uh = uh 4+ j <
(w + 1)h. The j simple trials cannot increase the maximum bias, by (5.02):
consequently,

(8.5) lim Ty (uh + j) = lim Tr,(uh+3) = l/n.

u—>0 (uh + §)—c0
Since there is a one-to-one correspondence between the elements of {s} and
{uh + j},
(8.6) lim 7,, = 1/n.
8—%00
By a natural extension of the lemma, we may regard ¢ trials as a single com-
plex trial. Theorem (8.1) thus assumes the form of (8.2).

9. Numerical results in various number systems.. More efficient convergence
formulae can be devised to meet special conditions. Those presented in (5)
have the advantages of simplicity and generality. To test the efficiency of
(5.15) several numerical examples, based upon unusual hypothetical probabilities,
were worked by matrix multiplication as in (4.1). In these problems p,. = pr,
a constant, from trial to trial. A tabular comparison of the ranges, computed
by (4.1), and the upper bounds, determined by (5.15), is presented in Table 1
for &k = 10.

10. Preparation and tests of a set of random digits. Since an unlimited num-
ber of valid tests for randomness may be devised, it is obvious that any finite
set of digits cannot meet all such tests. As a matter of fact a truly random proc-
ess should yield sets which fail to meet some proportion of the tests, the fraction
being determined by the level of significance adopted in testing. No finite set
of digits can be considered random; the tests for randomness are really applied
to determine the character of the generating process. However, the concept of
“locally random” sets as developed by Kendall and Smith [4] is useful, and some
of their tests are used below as evidence that a set of numbers produced by com-
pound randomization is likely to be locally random.

A non-random set of 10,000 ‘decimal digits having the relative frequencies
indicated in the starred line of Table 1 was punched in cards and tabulated.
Totals were taken for each ten cards and the amount in the unit’s position of the
counter was cut in a summary card, thereby producing a set of 1,000 digits.
The frequencies of digits in the derived set are compared with those of the gen-
erating set in Table 2. The frequencies of the derived set are in accord with the
hypothesis of equal probabilities.



TABLE 1

Comparison of computed range and formula for mazimum bias, k = 10
Hypothetical numerical examples, constant probabilities from trial to trial

Num-
ber

Probability in an individual trial

base

(=] 5 > W w W (4

o
<

9

10
10
10
10
10*

12

g gl

g B

N
S

5
S

g £

.030].

.050|.
.010].
.110
.150
.014

.010

.070

.110(.
.150].
1714

2
=
(=)

.120

.020

.050
.180
.060

050
.040
110
.150!.
184

.160;

P

.020].

Plv

.330

.130
.160
.140

.050
.050
.110

150

.023

.050

Ps

.100
170
.090
.090

.120
.060
.110
.050
.095

.020

P10 (80)10 3o
ps b s Dy | Pt | De
— | —| = | —| = — |.0060466176| .0060466176 |.600
— | —| = | —1|—|— |.0000018357| .0000059049 |.300
— | — | —| —| =] — |.6616765365| .6648326360 |.960
— | — | —=|—1]—=1— |.0000000001| .0000000001 |.100
— | — | =] —=1]—=1—|.0000032768 .0001048576 |.400
— | = =] —=1]—=1— |.0007878177| .0156833688 |.660
— | =] =1 —=1—1—|.0000168472| .0060466176 |.600
000 — | — | — | — | — |.0001778804| 0025329516 |.550
.150/.110] — | — | — | — |.0000000965| .0000627821 |.380
.190/.050[.210] — | — | — |.0000052328| .0005259913 |.470
.080!.020[.180/.100] — | — |.0000132662| .0009765625 |.500
.070].080|.090|.550| — | — |.0012522218] 0282475249 |.700
.110{.110/.110/.010| — | — |.0000000001| .0000000001 |.100
.050!.050(.050/.050, — | — |.0000009244| .0009765625 |.500
.047/.205(.089].008] — | — |.0000501840| .0111739516 |.638
.00,.040].080] 110|060 . 190, 0000002256 0009765625 |.500

* This badly biased set of probabilities was used to produce the set of random decimal
digits tested in the next section.

TABLE 2
Digit i ol1]z2|3|4]5]6 | 78|09
Generating set............. .014].171|.164|.184/.023(.095|.047!.205|.089|.008
Derived set............... .088|.112(.086/.105|.113|.102|.101|.098|.097|.098
Frequency test (derived set) x2 = 7.0 P = 63
TABLE 3
> + 1)th digit
ith digit @+ Db dig
0 1 2 3 4 5 6 7 8 9
0 11 8 7 7 5 7 12 12 | 11 8
1 10 13 15 9 11 14 11 8 10 11
2 11 10 7 10 10 7 6 9 7 9
3 9 10 3 14 12 17 9 8 [11 |12
4 6 12 10 10 19 6 16 14 13 7
5 9 17 11 14 10 6 5 15 6 9
6 6 14 9 9 14 10 15 8 6 | 10
7 13 10 9 9 8 11 7 12 7 12
8 7 8 8 12 9 11 14 8 |10 |10
9 6 10 7 11 15 13 6 4 |16 |10

x* = 96.8 P = .90
88
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In the serial test adjacent pairs of digits are tabulated. The distribution of
these pairs in the derived set appears in Table 3. This test indicates that ad-
jacent digits are independent.

TABLE 4
Gap test
Length of gap
Digit 0-1 2-4 57 | 8emd | | op
Frequencies

0 Observed........ 16 18 11 42 1.25 | .75
Expected........ 16.53 | 19.10 | 13.92 | 37.45

1 Observed........ 27 27 21 36 5.44 | .15
Expected........ 21.09 | 24.37 | 17.76 | 47.78

2 Observed........ 16 17 10 42 1.90 | .60
Expected........ 16.15 | 18.66 | 13.60 | 36.59

3 Observed........ 19 26 18 41 .90 | .92
Expected........ 19.76 | 22.83 | 16.64 | 44.77

4 Observed........ 31 17 20 44 7.39 | .06
Expected........ 21.28 | 24.59 | 17.92 | 48.21

5 Observed........ 15 21 15 50 2.04 | .57
Expected........ 19.19 | 22.17 | 16.16 | 43.48

6 Observed........ 27 25 12 36 5.95 | .12
Expected........ 19.00 | 21.95 | 16.00 | 43.05

7 Observed........ 20 19 16 42 .40 | .93
Expected........ 18.43 | 21.29 | 15.52 | 41.76

8 Observed........ 14 19 21 42 3.27 | .35
Expected........ 18.24 | 21.07 | 15.36 | 41.32

9 Observed........ 18 18 21 40 “2.53 | .48
Expected... .... 18.43 | 21.29 | 15.52 | 41.76

The gap test is based upon the distribution of lengths of intervals between
given digits. A comparison of the number of gaps of specified lengths and the
expected number in each case is presented in Table 4. The results of this test
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are also in accord with the assumption of local randomness. Noting the badly
biased probabilities of the initial set of digits, the results of these tests demon-
strate the effectiveness of the compound randomization process.

The use of tabulating equipment for producing random decimal digits by addi-
tion modulo 10 is relatively fast and simple. The authors have just completed
production of a set of 105,000 digits in less than two days’ tabulating time.
75,000 cards, representing approximately 3 months’ receipts of a current carload
waybill study, were used to generate the digits, 14 non-correlated columns being
added simultaneously. A chain of length 10 was used, although the nature of
the initial data was such that a shorter length would probably have given satis-
factory results. The derived set is now recorded on 1500 cards, 70 digits per
card. Preliminary tests for local randomness confirm the random nature of the
generating process. Upon completion of the tests this set will be reproduced in
tabular form.
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