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CONTROL CHART FOR LARGEST AND SMALLEST VALUES
By Joun M. HowEgLL

Los Angeles City College

1. Introduction. It may at times be desirable to use a control chart for
largest and smallest values (L & S) in place of the conventional charts for
averages and ranges (X & R). The chart for largest and smallest values has
certain advantages: all information may be combined on one chart, computations
are simple, and specifications may be placed on the chart. In this paper,
constants for the use of this chart are developed and comparison is made with
the average and range charts.

2. Constants for determining limits. Let L and S denote the largest and
smallest values, respectively, in a sample of n pieces, and let L and S denote the
averages of these values for k samples. Then (L + S)/2 and (L — 8)/d; are
unbiased estimates of the population mean and standard deviation, respectively,
in the case of a random sample from a normal population. The value of the
constant d, is given in [1] and repeated in table 1 for convenience. If we denote
(L + 8)/2by M and (L — 8) by R, control limits may be determined in terms of
these statistics.

In conformance with usual control chart practice, we will set the upper control
limit at I + 34: and the lower control limit at S — 345, where §. is an estimate
of the standard deviation of the largest values in samples drawn from a normal
population, and similarly for &s. The results of Tippett [2] and Pearson [3]
for E(R) of samples from a normal population were used to determine expected
values of L and S: E(R) = des. Here, R is the range of samples of size n:
R =L — S. Butsince E[(L + S)/2] = a for a symmetrical distribution, then
E(L) = a + dyo/2 and E(S) = a — dyo/2, where a and ¢ are the mean and
standard deviation of the normal population from which samples are drawn.

The probability element of the largest value [4] is given by:

AlFL)H(L) dL where f@@) = 1/4/2r 0 ¢ “™*™" and F(z) = [_ ’ f@) dy.

Then E(L}) = n '[ LIF(L)" (L) dL. Integrals of this type, differing only

by a constant factor have been evaluated by Hojo [5] and from his results d, was
determined so that o = os = dio. Values for ds for n = 2, 5, 10 are also given
by Tippett [2]. “Three-sigma’ control limits may then be given in the form:
M =+ A;R, where A; = 0.5 + 3ds/d>. The expected value of the upper control
limit will then be: E(UCL) = a + Aso, where A = (d2/2) + 3ds. Values of
these constants for various sample sizes are given in Table I.

In practice, it might be desired, in the case of control charts for individual
measurements or for L and S, to have E(UCL) = a + 30, and the lower control
limit symmetrically placed with respect to the central line. In this case, the
formula for the limits would be: M = 3R/d: or M £ +/nA;R, where 4, =
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3/(dx\/n) is given in [1]. Since the efficiency of M decreases rapidly with
increasing sample size [6], it would probably be better to use X in place of
M for determining the central line for a control chart when the sample size is
greater than five. X is the “average of averages” as defined in [1].

The chart for largest and smallest values would then consist of a chart on
which both the largest and smallest values are plotted, with the central line at M,
and the limits as given above.

3. Comparison of charts for a particular case. A comparison of the L & S
chart with the X chart for a particular case in which the sample size was three is
given in Fig. 1. Measurements were the shear strength of spotweld coupons of

TABLE 1
Constants for largest and smallest value chart
n ds d, A, As Ay n
2 1.128 .825 1.880 2.72 3.03 2
3 1.693 .748 1.023 1.82 3.09 3
4 2.059 .709 .729 1.53 3.15 4
5 2.326 .670 577 1.36 3.17 5
6 2.534 T .648 .483 1.27 3.21 6
7 2.704 .627 .419 1.20 3.23 7
8 2.847 .614 .373 1.15 3.26 8
9 2.970 .600 .337 1.10 3.28 9
10 3.076 .588 .308 1.07 3.30 10

aluminum in pounds. Since the range chart had no points above the ‘“three-
sigma” control limit and showed no other peculiarities, it has been omitted.

4. General comparison of charts. We assume a mean of zero and a standard
deviation of unity as a ‘“‘given standard,” and then compute the probabilities
when the true values are a and ¢. The probability of a point being inside of
“3-sigma’’ control limits on the range chart under these conditions is:
P, = Pr(R < d;D4/s), where D, is given in [1]. The probabilities for the
range used here were found from the Pearson-Hartley tables [3]. The usual
normality assumptions are made.

The probability of a point being inside of “‘3-sigma’’ control limits on the
average chart under the same conditions is:

V/nle ((3/+/7)—a)

~ J/mte (st )
Since Daly [7] has shown that the average and range of samples from a normal

_t212

1
P, o(t) dt where o(t) = \—/2=1r e
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TABLE 1I
n a o P] Pz P1P2 P: N1 N2
3 0 1.0 .994 .997 .991 .991 510 510
1.2 .973 .988 .961 .963 116 122
1.5 .901 .955 .860 .868 31 33
2.0 721 .866 .624 .645 10 11
3 0.5 1.0 .994 .983 977 .980 198 228
1.2 .973 .935 .935 .939 69 74
1.5 .901 .917 .826 .834 25 27
2.0 .721 .830 .598 .694 9 13
3 1.0 1.0 .994 .898 .893 .931 41 65
1.2 .973 .855 .832 .860 25 31
1.5 .901 .802 723 .740 15 17
2.0 .721 .746 .538 .550 8 8
3 2.0 1.0 .994 .323 .321 .590 5 9
1.2 .973 .352 .342 .510 5 7
1.5 .901 .378 .341 414 5 6
2.0 721 .408 .294 .321 4 5
5 0 1.0 .995 .997 .992 .992 570 570
1.2 .969 .988 .957 .957 105 105
1.5 .855 .955 .817 .878 23 36
2.0 .588 .866 .509 .545 7 8
5 0.5 1.0 .995 .970 .965 .980 130 227
1.2 .969 .942 .913 .927 51 62
1.5 .855 .891 762 .791 17 20
2.0 .588 .805 .473 .505 7 7
5 1.0 1.0 .995 776 722 .923 15 58
1.2 .969 .736 713 .828 14 25
1.5 .855 .695 .594 .661 9 12
2.0 .588 .648 .381 .426 5 6
5 2.0 1.0 .995 .071 .071 .512 2 7
1.2 .969 .110 .107 .402 3 6
1.5 .855 .164 .140 .286 3 4
2.0 .588 .230 .135 .185 3 3
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population are independent, the probability that a sample is within control
limits on both charts is the product of the probabilities: P.P.. Thus the
probability that a sample be outside of control limits on either chartis 1 — PP, .

The probability of the largest and smallest values both lying in the interval

(c—a)lo n
from —ctocis: Py = Pr(—c < S, L <¢) = [f o(t) dt] . Values of
¢

this expression with lower limit — « are given in table XXI of [8] for sample of
sizes 3, 5, and 10. For the purpose of comparing the charts, we choose ¢ so that
the probabilities of Type 1 errors areequal, thatis:1 — P1Py = 1 —Pzor P\P; = P;
when the mean is zero and the standard deviation unity. Substituting in this
equation and solving, we find: F(¢) = 0.5 + 0.5 (.9973P,)"'", where F(x) =

f o(t) dt. Forn = 3, ¢ = 2.99 and for n = 5, ¢ = 3.15.

Comparing P,P; with P; when the true values are a and ¢ will then show the
relative power of the X & R charts and the L & S chart for detecting lack of
control.

Finally the charts are compared by finding the number (V; for the X & R
charts and N; for the L & S chart) of samples which will detect lack of control
with a .99 probability under the conditions given above. This is done by
finding the smallest integer which satisfies the following inequalities: (PP <
.01 and P}* < .01. As may be seen from table II, under most conditions, the
L & 8 chart is nearly as good as the X & R charts for detecting lack of control.

—c—a)lo
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1. Summary. The fact that the mean and variance were sufficient statistics
for a univariate normal distribution truncated at a fixed point was known to
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