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0 k
(36) P(t;6,0;0, ¢') = g Zk exp (—k(k 4+ DOY™ @, @)Y (@, )

is absolutely and uniformly convergent on S°. We will show that this P is
the required (unique) Brownian motion on S°.
The proof may be given in three steps. i) We see by (3.2) and (3.6), that

f f@PQ, y, x) dx satisfies (2.15) if

0 k 0 k

flx) ~ Zz mZL &PV (), ,; mZk exp (—k(k + DOkl + 1) &Y™ (z)
are both absolutely and uniformly convergent. By the completeness of { V™ (x)},
such f(z) are dense in Ly(S).
ii) Because of (3.3) we see that (3.6) satisfies the spacial homogeneity (1.4).
iii) (1.3) is obvious by the orthonormality of {¥{™(z)} and the constancy
on 8* of Y{®(z). Next, for the solution f(t, ) of (2.15)-(2.16), let f(z) =
f(0, ) be non-negative on S°, then g.(t, ) = exp(— e t)f(t, z), (¢ > 0), satisfies

Wb - yoD) — kD, €> 0,

9:00,2) = f(z) 2 0 (on S%).

Thus g(t, z) = 0 on S°, since g(t, ) cannot have a negative minimum on the
product space [t , t;] X S°, for any &z > # > 0. For at such minimizing point
we must have -

9. _ 9 _ e _ g 0 g 0
) b = *

E R - 7Y a6r = 92

Therefore, since € > 0, f; > t; > 0 were arbitrary, we conclude that f({, ) =
0 on 8*for ¢t > 0if f(x) = 0 on S*. This proves (1.2). The same argument
simultaneously shows us that the solution P of, (2.15)-(2.16) and (1.2)—(1.3) is
unique.
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ON THE STRONG STABILITY OF A SEQUENCE OF EVENTS

By AryeEn DVORETZKY
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1. Summary. M. Loéve [3] has found conditions under which a sequence of
events which may be interdependent in an arbitrary manner is strongly stable.
In this note it is established that considerably weaker conditions imply the
strong stability.

2. Introduction. Let
(1) AI;A2:"':A7H' *

Y
Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to 22

o 22

The Annals of Mathematical Statistics. KOS ®

WWww.jstor.org



STRONG STABILITY OF A SEQUENCE 297

be a sequence of events, which may depend on each other in any way whatsoever,
defined on the same set of trials.

Let R, be the repetition function of (1), i.e. R, is the number of those among the
first n events: Ay, 4., -+, 4, which were realized, and put f, = R,/n. The
random variable f, is called the frequency function of (1).

Denoting by E{x} = Z the expected value of z it is evident that

= > 1
B. = E{R.} = 2 Pr(4),  J. = Elfa} = _ E(R.).

Following Lodve [3, p. 252] we say that (1) is strongly stable if the sequence
@n = fa — Ju(n = 1,2, ---) is strongly stable in the usual Kolmogoroff sense
[1, p. 58], i.e. if

(2) lim Pr (sup [¢,| > €) =0
n=+>c0 y>n
for every ¢ > 0.
Putting’
1< 2
Bn = 7—% ; Pr (As’), Yn = n(n_—f) 15;4%51» Pr (ApAv)

and introducing the abbreviation®
0n = Yn — B‘i )

Loéve’s result [3, pp. 257-9] is the following:
If nd, vs bounded then (1) is strongly stable.
This, even when specialized to sequences of independent events, includes the

Bernoulli and Poisson cases.
Here the following stronger result will be established.
THEOREM. If 2 d./n is convergent then (1) is strangly stable.
In particular, if for some e > 0 the sequence n°3, is bounded then (1) is strongly

stable.

3. Alemma. The new tool here used is the following simple result on series of

positive terms.
Lemma. Leta, > O0forn =1,2, --- and

(128
3) >
be convergent. Then there exists a sequence n; of tntegers satisfying
4) 0 < nip — ns = o(ng) (i — =),

and such that the series 27— a,; is convergent.

1 A,A, denotes the event: both A, and 4, .
2 Our B , v» and 8, correspond to Loéve’s pi(n), p:(n) and d2 respectively.
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Proor. Since (3) is convergent it is well known® that there exists a sequence
of numbers I,(n = 1, 2, - - ) satisfying

(5) ln+1 Z ln ’ lim ln = o0
having the property that
) 2L <
n=1 n

We define inductively a sequence of integers m(z) through
Q ) =1 ) =) + 1+ 2],
the square brackets denoting the integral part. Clearly
8) 0<m(@+1) — m@) = o(m()).

Now for every 7 we choose n; so that

m@) <n; <m@ 4+ 1) and a, = min ay.
m(£)Sy <m(i+1)

These n; satisfy the requirements of the lemma.
Indeed, (4) holds in virtue of (8) while applying (5) and (7) we obtain

m (3+1)—1 a
&= 2, L= 2 (m( + 1) = m(@))ne

ye=m(§)

@n; m(z)

A+ D S mGE DM

Since 2 s; converges by (6) it follows from the preceding inequality and (8) that
2 a.; < o as required.

CoroLLAry. The conclusion of the lemma remains valid if the condition a, > 0
1s dropped provided (3) is absolutely convergent.

4. Proof of the theorem. An easy calculation [3, p. 253] gives
6 - Un

n Y
"

'73» = E{(fn —fn)Z} =0, +
Since both 8, and v, are between zero and one we have
1

—l<a‘3.—an<—.
n n

Therefore it follows from the assumption of the theorem that = (¢%/n) is con-
vergent. Hence by the lemma there exists a sequence of integers n; satisfying
(4) and such that = o5, converges.

3 Take e.g. In = (2,5 v~'a,)~} (cf. [2, p. 299]).
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Applying Tchebytcheff’s inequality to ¢n, = f., — f., and adding for » > ¢
we have for every ¢ > 0

©) Pr (SUP | @ns | > €) < Z Oa, -

F-i
If n; < n < niyy then

R, R,
Ifn-fncl sl —

ng

< Neg1 — n;.
ng

Denoting the last term of this inequality by e; and putting & = max,»; ¢ , we
have from (9)

Pr (sup leal > e+ 2&) < = Za',.,. ‘
As & — 0 and the right hand term is the remainder of a convergent series, (2)
follows and the theorem is proved.

6. Remarks. 1. The lemma used here can also be applied to the study of
the order of magnitude of ¢, in the almost certain sense.

2. If the terms of (3) are decreasing then the existence of a convergent sub-
series of 2 a, satisfying (4) implies 27~ @;s < . But this is equivalent to the
convergence of the series with monotone terms (3) (cf. e.g. [2, p. 130]). Hence
in this case the convergence of (3) is necessary as well as sufficient for the validity
of the lemma. It may be possible to use this remark in order to establish in
some special cases, where the interdependence of the variables decreases steadily
in a suitable sense, necessary and sufficient conditions for strong stability.

3. The sequence of 8, is of course, of very specialized structure. Thus, since
the stability of (1) is equivalent [3, p. 255] to 8, — 0 and is implied by strong
stability, it follows that 8, — O whenever = (5,/n) is convergent.

Added in proof: Since this paper was submitted I heard from Professor M.
Logve that he has independently obtained the theorem of section 2 by another
method.
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