NOTES

This section is devoted to brief research and expository articles on methology and
other short items.
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BROWNIAN MOTION ON THE SURFACE OF THE 3-SPHERE

By KOsAKU YosIDA

Mathematical Institute, Nagoya University

1. Introduction. Let S be a n-dimensional compact riemann space with the
metric ds* = g;;(z) dz’ da’ such that the totality G of the isometric transformations
of S onto S constitutes a Lie group transitive on S. Consider a temporally
homogeneous Markoff process by which P(¢, z, y), ¢ > 0, is the transition prob-
ability that a point x is transferred to y after the elapse of {-unit time. We
assume that P(t, z, y) is a Baire function in (¢, z, ¥) and continuous in ¢, then P
satisfies Smoluchouski’s equation

(L1) Pt +5,2,9) = [P,z PG, %) de s > 0),
8
dz being the G-invariant measure 1/g(z)dz’ da’ - - - da”, g(z) = det(g:;(z)), and
(1.2) P, z,y) =20
(1.3) f P,z y) dy =
8
The spatial homogeneity of the transition process may be defined by
(1.4) P, Tz, Ty) = P(t, =, y) for T e G.

The “continuity’ of the transition process may be defined, following after A.
Kolmogoroff and W. Feller,' as follows. Let L;(S) be the function space of
integrable (with respect to dz) functions f(x) on S, then, for those f(z) which are
dense in Ly;(S),
P - gs0), Gz 0%
(1.5)
169 = [J0PCy, Dy, >0, [0 = i@,

where, with non-negative b”(x)

(16) (AN (z) = \/ & W — V(@) o' (@)f ()

1
7) b7 (@)f(x
e e (VI V@I,
1 A. Kolmogoroff, “Zur Theorie der stetigen zufilligen Prozesse,” Math. Annalen, Vol.
108 (1933); W. Feller, “Zur Theorie der stochastischen Prozesse,” Math. Annalen, Vol. 113
(1937).
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The temporally and spatially homogeneous “continuous” Markoff process
may, if it exists, be called a Brownian motion on the homogeneous space S.
The purpose of the present note is to show that, under some derivability hypoth-
esis concerning a’(z) and b*(z), there exists one and (essentially) only one Brown-
ian motion on the surface of the 3-sphere S°.

I here express my hearty thanks to Dr. Kiyosi It6 who proposed to me the
problem and discussed and much improved the manuscript.

2. The defining equation for the Brownian motion. The spatial homogenelty
(1.4) is equivalent to the fact that A is commutative with every operator T de-
fined by

(2.1) (T)(x) = f(Tz), T eG,
because we have

[ 1Py, T2) dy = [ 5T0PE Ty, T2) aTy = [ THPC 3, 2) dy.
8

The condition (2.1) is equivalent to

(2.2) XA = AX for any infinitesimal operator X = £ (x) 5%;

induced on S by the infinitesimal operator of the Lie group G. Thus, assuming
the derivability of a’(z) and b¥(x) of necessary orders, we obtain from (2.2) the
conditions:

. .
(2.3) E(a:) (\/g(x) GC;xEx) =0,

i @ 4y 760 -z,:()@(\/@ﬂw),

1
(2.4) '\/9_67_)_
(Hi@z) = G(z) + 35 (\/ 9(z) b7 (2)),

.

25) i) E@ 1 i) £ "”) - o) LW

Now for the surface of the 3-sphere S°,
ds® = dé® + sin’0-dy’,  g(b, ¢) = sin’6,
and the infinitesimal operators
o J cos f cos ¢ 9
X.=sinemt —5na o’
_ d _cosfsing 9
Xy = 00805~ —5ng ap’
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=29

z do

respectively correspond to the rotations about the z-, - and z-axis.
From (2.5) we see that, by taking X = X,,

(2.6) b“(8, ¢) is independent of ¢.
By taking X = X, in (2.4) we see that H" is independent of ». Hence, by (2.6),
.7) a*(8, ¢) is independent of .
Thus, by taking £ = 1, X = X, we obtain from (2.4),

2 _ 22 : — d ot
sT—H(O) cos ¢ b(ﬂ)SIIlga——-Slnga(—i-o(snlo ())
and thus
20\ 22 d 1 1 _
28) 20 =0, 0+ 5 (o 70) -
Hence, by taking k = 2, X = X, or X = X,, we obtain from (2.4)

— HY6) cos ¢ 11 /. COS 8 cos @ 28D 2 (9) 8 6cose _
—s T 26" (0) ——— + 2b (0) i b(0) e 0,

H'(6) sin ¢ _ opll cos qo 22,1 COS 8 sin ¢
sin3 0 2°(6) +070) sin 0 =0

From these two equations we obtain

(29) b2(8) = 0, H (0> 217 S cos ¢ 0 4 v S8 cosa —o

By takingz =2,k =1, X = X,, we obtain from (2.5), (2 9)
22 . 1 cos 6 cos ¢ —

and hence

sin?6 "’
Similarly by taking ¢ =.1, k¥ = 1, X = X, we obtain from (2.5)
11
b™(6) cos ¢ + b2(6) cos ¢ = sin ¢ dbd—e(o)
and hence by (2.9), (2.10)

(2.11) b(6) = constant C,  b*(p) = ¢

sin26°

Thus we obtain from (2.4)



BROWNIAN MOTION 295

H'0) = —a'(0) sin 0 4 2C cos 9,  H(0) = — sin 6-a’(9)
and thus, by (2.8),
(2.12) a’(6) = 0.
Substituting (2.11) in (2.9) we obtain

C cos 6

(2.13) a'(9) = i

Therefore since b'(8) and b™(8) are non-negative, A is (essentially) equal to
the Laplace operator

(2.14) T L :—;.
Thus we may obtain P(, z, y) by integrating the equation
(2.15) é[(jg_f»_@ = A-f(t;6,0), (¢t Z0),
and by putting

216) 156, 0) = 1, 2) = [ 16)PE v, 2) dy.

3. Integration of the equation (2.16)-(2.16). Consider the Laplacian (real)
spherical harmonics

(3.1) i (0, ¢) = Y™ (x), (=k=m<k;k=0,1,--+).

They constitute an orthonormal function system complete for continuous
functions on S°, and we have

(3.2) A Y0, 0) = —k(k + 1)Y™ (6, ).
Since, as is well-known,

k
3.3) Yi(T ') = Z w$N DY (2)

by an irreducible orthogonal representation (u$a(T')) of the rotation group G,
we have

k
(3.4) max | Yk'"’(x)l @k + Hmin 3 | V@[,
z n=—k

by applying the Schwarz inequality and the transitivity of the group G on
S’. The right hand member satisfies, by the orthonormality

3.5) (2% + 1)*/(area of S°).
Therefore the double series (for ¢ > 0)



296 ARYEH DVORETZKY

] k

(3.6) P(@t;0,¢;0,¢") = ,,Z Zk exp (—k(k 4+ DOY™ @, @)Y (@, )

=) m=—

is absolutely and uniformly convergent on S°. We will show that this P is
the required (unique) Brownian motion on S°.
The proof may be given in three steps. i) We see by (3.2) and (3.6), that

[s f@PQ, y, x) dx satisfies (2.15) if

@) ~ 2 i CTR@, % Zk;k exp (=k(k + DOk(k + 1) & V(" (@)

are both absolutely and uniformly convergent. By the completeness of { V™ (x)},
such f(z) are dense in Ly(S).
ii) Because of (3.3) we see that (3.6) satisfies the spacial homogeneity (1.4).
iii) (1.3) is obvious by the orthonormality of {(Y{™(x)} and the constancy
on 8* of Y{®(z). Next, for the solution f(t, ) of (2.15)-(2.16), let f(z) =
£(0, ) be non-negative on S°, then g.(t, ) = exp(— e t)f(¢, z), (¢ > 0), satisfies

Wha) - yom) —alhn,  €> 0,

9.0, z) = f(z) 2 0 (on §°).
Thus g(t, z) = 0 on S°, since g.(t, ) cannot have a negative minimum on the
product space [t , t;] X S°, for any &z > #; > 0. For at such minimizing point
we must have -
& Je
s

9. _ dge _ 9.

e e, =y,

at ? a0 do

Therefore, since ¢ > 0, f; > #; > 0 were arbitrary, we conclude that f(, ) =
0 on S*for ¢t > 0if f(x) = 0 on S*. This proves (1.2). The same argument
simultaneously shows us that the solution P of (2.15)—(2.16) and (1.2)—(1.3) is
unique.

= 0.

& Je
e =

e

ON THE STRONG STABILITY OF A SEQUENCE OF EVENTS

By AryeEn DVORETZKY
Hebrew University, Jerusalem, and Institute for Advanced Study

1. Summary. M. Loéve [3] has found conditions under which a sequence of
events which may be interdependent in an arbitrary manner is strongly stable.
In this note it is established that considerably weaker conditions imply the
strong stability.

2. Introduction. Let
(1) AI,A2,"‘;An" .



