ASYMPTOTIC STUDENTIZATION IN TESTING OF HYPOTHESES

By HErmMAN CHERNOFF!

Cowles Commission for Research in Economics

1. Summary. A method suggested by Wald for finding critical regions of
almost constant size and various modifications are considered. Under reasonable
conditions the sth step of this method gives a critical region of size « + R,(6)
where 6 is the unknown value of the nuisance parameter, R.(6) = ON*"*) and N
is the sample size. The first step of this method gives the region which is
obtained by assuming that an estimate § of the nuisance parameter is actually
equal to 6.

2. Introduction. The problem of nuisance parameters often arises in the
testing of hypotheses in the following form: It is desired to construct a test of a
hypothesis H so that the probability of rejecting H if it is true is equal to a.
However the probability distribution of the data is not uniquely determined
by H. Indeed, if the hypothesis is true then the observations have a distribution
depending on a nuisance parameter § whose value is not known. Generally a
critical region will have a size which depends on the value of 6. Neyman has
done considerable work on the problem of finding similar regions, i.e., regions
whose size is independent of 6.

Wald has suggested the following method of finding critical regions whose
size is almost independent of 6. Suppose that ¢ is a statistic such that if 6
were known then the critical region ¢ < ¢1(6) would be a good critical region
for testing the hypothesis H. Suppose also that 8 is an estimate of 8 and that
g(t, | 0) represents the joint distribution of ¢, § under H when 6 is the value
of the nuisance parameter. Then consider the regions

t < ci(d) where Prit < ca(d)} = a independent of 6;
t < eald) + @ ¢ Prit —ca(d) < c(8)} = « independent of 6;
t<al@ + - + ) “ Prit — ci(d) -+ —cea(d) < c:(0)} =

independent of .

Under the assumption that 6 is close to @ it is reasonable to expect that
Pr{t < ci(6)} would be close to «. It might also be expected that
Pr{t < c1(8) + c2(d)} would be even closer to a.

This method has been shown to have good properties when considered from
the asymptotic point of view. Suppose that ¢, § are two sequences of statistics

1 This paper is based on a dissertation written under the supervision of Professor Abra-
ham Wald and submitted as partial fulfilment of the requirements for Ph.D. in the Gradu-
ate Division of Applied Mathematics of Brown University.
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ASYMPTOTIC STUDENTIZATION 269

(depending on N, the size of the sample or an analogous variable) with distribu-
tion represented by g(¢, 8 | 6) where N is understood to be present. Then it has
been shown that under reasonable conditions, with modifications for the sake of
calculation,

|Prit < a@) + -+ + c(d)} —a| = O0DN*".

The statement of the theorem presenting this result will be given in section 4.
It has also been shown that if roughly speaking # is distributed almost sym-
metrically about 6, the above result may be obtained in half the steps, i.e.,

| Prit < (@) + -+ + (@)} — | = ON).

It is true that under relatively weak conditions and for fixed N it is possible for
any e > 0to obtain a function A(8) such that | Pr{t < h(d)} — e | < e However
such a critical region can have very poor properties from the point of view of the
alternative hypotheses especially if h(f) is a very wildly oscillating function.
On the other hand this objection does not apply to Wald’s method for large N
because

)| < M r=20,1,:..,s;
Icér)(o)ISMN—lﬂ T=O,1,“‘,8'—1;
|(6) | < MNP =01,

and hence ¢;(8) + -+ + () is almost constant over ‘“that small range in
which 8 will probably fall.”

In the above it has been implied that 6 is a one dimensional variable. However
the results are easily extended to the case where 8 is a k-dimensional variable.

The direct application of the method is often quite difficult because of the
calculations involved. Modifications can be applied which simplify the cal-
culations. Such modification usually consist of changing the ¢.() by a small
amount provided the remainder is simple and “well behaved.” A case where
considerable simplifications can be made is that where gi(¢ | 4, 6), the conditional
distribution of ¢, can be expanded in a Taylor Expansion,

91(t ] 6,6) = g1(c:(6) |6,6) + (t — 01(0)) 8g1 + 6 - 891

1 8 ; P ‘ ’ 4
_|_’ cee S ;J @t — a(0)’( — 0 oo ot | 8,9),

where the partial derivatives “behave.” This case will be described in detail in
section 3, and an example previously treated by Welch (see [1]) will be discussed
in section 4.

Another case where simplifications often arise is the asymptotic case, that is
the case where g(t, 4| ) has an asymptotic expansion. The asymptotic case
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may also be regarded as an extension of the following partition principle which
is very useful. 1f g(4 8] 6) = gu(t, 1 6) -+ h(t, ] 6) and | [111dab < pen—
and if ¢(f) is such that

@ o(0) I
u déf dt golt, 6| 6) — @ < MN~*"

then | Pr{t < ¢(f)} — a| < MN™"”. Thus our theorems apply to g(t, 6]0)
if ¢ = go + h where go has sufficient differentiability properties.

3. The Taylor expansion treatment. Let g(t,6|6) = gi(¢ |8, 6)g2(6 | 6) where
g1 is the conditional density of ¢ given 8 and g,(d | 6) is the marginal density of 8.

gi(t| 0) = [ dbg(t, 8| 6) is the marginal density of ¢. In what follows we shall

use M as a generic bound. Thus the statement f(¢, 8) < M (6;, 6.), 6, < 6 < 6z,
means that there is a constant M depending on (6;, 6;) and independent of
L 0,Nsothatf(t, 0) < M(01, 02) 660 6,.

First we obtain ¢;(6) so that Pr{t < ¢(0)} = a.
Then we have

TuEOREM 1. If for every finite interval (6: , 6:),

@) €@01w+m

267 <G1(t,0) <G2(t)7 IAI < A'(01,027N): p=071’ S,

6, <6,0+4<6,
where f Golt) dt < M(6:, 05), Gy and G, may depend on N, 6, and 0,
. 07+ g4(t | 6)
(i) 36291

bounded in absolute value by M(Cy, Cz, 61, ) for p + ¢ < s, 66 < 0 < 6,
€<t Cq;

1 .
(111)0 <M(01,02,01,02) <g3(tl0) fOT 015 0S Bz,ClstSC'z,

8 continuous in t, 6 and

(iv)0 < a <1,

then Pr{t < c1(8)} = o defines cy(6) uniquely and so that | ¢,'”(8) | < M (6, 6s)
Jorp=0,1,---,86,<60<6,.

Proor. Since gs(t | 6) is positive, ¢;(6) is uniquely defined by condition (i).
From this and conditions (i) and (ii) it follows that c;(6) exists and is given by

c1(8)
® [ a2 ¢10) + dOu6o 0.
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We may continue in this fashion differentiating formally p < s times to get

a®  ap o ) it
@ [ aZ8l0 | e - ppoep o ec® 9

+ c,{p)(o)g3(cl(0) Io) = O, jl,j?, M 7jk) il) Tty ik)i +j < p.
From the continuity and positiveness it follows that ¢® )(6) is continuous. Since

f Go(t) dt < M(6,, 6) it follows that there is a constant M (6, 6,) so that

—M(01.,0) ©
f Golt) dt < a, f Gt dt <1 — .
o0 M(01.,02)

Thus
le(8) | < M(6y, 62).

From (1) and condition (i) it follows easily that | ci(8) | < M (6, 6;). Similarly
we obtain | ®(6) | < M(6,, 6,) for 6, < 0 < 6.

While the conditions (i) to (iv) suffice to insure the results of the theorem
they are not necessary. It is often possible to obtain these properties of c(6)
in particular examples where gs(t, 6) does vanish at points so long as gs(c1(6), 6)
behaves well.

DEFINITION 1. ¢n,(8) is an admissible function of order m(m < s, s fized in
advance) if om() = c1(d) + -+ + cn(8) where Pr{t < ¢1(6)} = a and

B) PO | < M@, 6N p=0,1,--,s+1—-5,06<0<Z0.
Now let

@) Hy(6) = N E(d — 6)° = N*® [ (6 — 0)°gs(d| 6) 46 and
ap+q

(5) qu(ﬂ) = m—tq gl(t ] és ) lt—q(n.é-o .

We have

TaEOREM 2. If
@) Prit<a®)) =0 0<a<l, ad |0 < MO, ),
0, <0< 0:,p =0)1)°°' XN

@) & =06l) =0Q1) s a function of N such that

f" délé—ol"g2(é[0)SM(01,02)N—"2,01S0592,k=0,1,“°,3;
16—-6| 23

i .
(i) |55 9116, 6) | < M(@6:,6), p+q=s,
[t —c(8) | <p|6—0]<Z3,



272 HERMAN CHERNOFF

where
a ,?_If,"sx; et () — a(®) |+ N92*, 9 >0, 6 <0< 6;

) [HPO) | < M@, 0)  for  p=01-,5—kk=1--,s

66< 0= 6;
V) 16RO <SM®G,6) for 1=01-,s—p—g
p+eg<s-—1;
(vi)  @m(0) is an admissible function of order m < s,
then
(6) Prit < on(@)) = a + rm@N2 4+ oot & 10 (ON"
where

!r;tg)(o)ISM(olyoﬁ) for p=0717"',8_j, jssy 0159302-

Proor. Expand ¢i(¢| 6, 6) in a Taylor Expansion about ¢ = c:(6), § = 6,
with remainder terms of order s in ¢ — ¢;(6), § — 8, and expand ¢;(8) about
f = 6 where the remainder term is of order s + 1 — 4. Thenfor |6 — 6| < 3,
we have

'Pm(é) .
M [ a@ld,0d =P - 0, c(0), Gyl + RN,

100)

where P is a polynomial and | R | < M (6,, )2 (6 — 6) N "for|6— 0] < é.
=0

Integrating over |§ — 6| < &, we use conditions (ii), (iv) and (v) and the
theorem follows. By a similar argument we have

TueoreM 3. If
(i)  the conditions of Theorem 2 hold for each (61, 62) so that

-0 <P <0< <P ®
and
(i) gi(ca(0) |6, 0) > (1/M(61, 6,)) > 0, 66<0=<6,
then the sequence
@(6) = a(d);
e(f) = er(d) — 7’1.1(9)N_”2;

A Ao ”'m—l,m—l(é)
¢m(0) = ¢m—1(0) gl(Cl(é) Ié: é)

®)

N-—(m—l)/2

’ m <8,

is a sequence of admissible functions such that
(a) Prit < on(d)} = & + R(ON™™2, m < s,
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where | R(6) | < M (61, 6;) for B < 61 < 0 < 62 < B2

These theorems permit us to obtain and to calculate critical regions whose
isize is asymptotically close to a.
In Theorem 2, condition (ii) was much stronger than necessary. It may be
relaxed if we define

H.(6) = f| e N 25,0 6)(6 — 6)* d,

where
Pr{| 6 — 0| >3} < M6, 6)N"" =05 =O0Q).

However this may complicate the calculations.
The symmetric case arises when the first moment almost vanishes, i.e.

(10) |HP@0)| < MG, )N, p=0,1,---,s—1, 6 <6< 6.
In this case we have instead of the sequence given in Theorem 3, the sequence
e10) = a@;

1 3/2
er(6) = () — rl'z(é)Zchgg 1r1.9,3 féé))N_l .
Fm12m2 )N + 1 t,2mt Q) NPT
g1(c1() 14, 6)
which is a sequence of admissible functions such that
Prit < on(@)} = a + Tman(@N" + <o+ + 7m (BN

| r®0) | < M6, 6) 6<0<6 p=01-",s—n

(11)

bl

¢7n(é) = ¢m—1(é) -

4. An example. The following example previously treated by Welch from a
different point of view will furnish an illustration of the applicability of the
theorems to the case where 8 is a k dimensional parameter. It will also serve
as an example of an extended type of symmetry. That is, it has theproperty
that | H{P4(6) | < M (61, 6:)N ~12 " and hence, in the sequence (11), the rm 2m41(6)
terms effectively vanish thereby 31mphfy1ng the calculations considerably.

We suppose that tis a normally distributed variable with mean x and varlance

= Mo: + -+ -+ Aor where the A; are known positive constants, the o} are
unknown parameters each of which is independently estimated by s? where
N.s2/o? has the x° distribution with N; degrees of freedom. It is desired to test
the hypothesis that 4 = 0 so that the probability of rejecting the hypothesis
if it is true should equal . Under the hypothesis the joint density distribution
of t, s, -+ st, is given by
—t2 /202

(12) ,g(tys%’"';8720/0'%""’0'720) Hg(stl‘rt;:v);
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where the moments of s; — o = 6; — 6; are given by the coefficients of u*/k!
in the expansion about u = 0 of e_“”g(l — (2uol/N,) Vi,
Hy(s}) = 0;
Hy(o}) = 20% ;
Hy(o) = 40iN3"";
Hy(s}) = (%% + 2N7)dt.
We define ¢;(8) by Pr{t < ¢1(8)} = « where
8= (1,0, ,08) and 0= (s,s5, - ,si),
ci(0) = co.
Now ay(6) — a@ = Pr{ci(8) < t < ¢1(6)} may be computed within terms of order
N7? by expanding

. 1
al®) asc+o ZZ‘;M(S? - 0?) —C Z 8—‘11;,7\;'}\:'(33 - 0’3)(3? - ‘T?)

1 —e1/2e 1
~ Vo R et VA = o) (=a/o)),

whence

a(6) —‘a’m‘fj; “'[odsf dskHy(Ssitan) {\/2 a.,.}{c1 Z)\(S. o
- S = o] - o = 2 (- o6 - o))}

—-cflz 3
o {cl + cl} (3 ANT + 0(E N7,

A/ 2r02 | 8ot
Thus
3
a@) = 2 LA N
and
a(f) = Prit < as + 2 + a 20 NSiNT') = a + 0N,
where

= Z )\,-s“f o
Further approximations become somewhat complex and should be carried out
in a systematic fashion.

6. Remarks. The range of application in practical statistical problems of the
theorems of section 2 may be somewhat more limited than that of the original
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method proposed by Wald. Concerning the original method, the following
theorems have been established.
TreorEM 4. If

A Pr{t<cad)} = a0 <a <1, where|cPO)| < MO, 6),6 <0< 06,
p=0,1,"‘,8;

i+ A
() 2L AT o it~ La<i<C

6:<0,0+A<L6,|A|< A, where G, 6) depends on Cy,C:, 6, 6, N,

and ts integrable in 6 over (— o, ©);

i+
(iif) Ia'—;]t%—&?-'—i)lSL(@,G),i+J’Ss—1,CISt$Cg,015030-2,

where | L3, 6)10 — 01 db < M(@:, &, Ci, CON™", ks = 0, 1,

(iv) 0<A(C,C:,061,6) <A(t) < g(t|6) < B(t) < B(C1,C,, 6,,6)<x,
66<60<86,C<tC(

[ Boya < meo,, 00;

(v) g 8]6) >0,
then a sequence ¢ (8), c2(8), ¢ (8), - - - , ca (8), exists where c.(6) is uniquely defined in
(61, 6) by Prit — ¢i (@) — -+ —cna(8) < cn(6)} = o, and
P (8)] < M (6, )N " PPp=0,1,---,s—m+1,6<0<6
and cy(6) is any function so that
leh®8) — cP@) | < MN ™ for 6, < 6 < 6:,p =0, 1, -+, s — m,
and
len®@) | < M0y, N " P" —0 << @0,p=0,1,+-,5s —m+ 1
Finally for ¢,*(6) arbitrary within the above conditions,
|Prit — cf(@) — -+ —ci(®) S0} —a| < M@, 0JN™" for 6,<0< 6

The conditions on the derivatives with respect to A are natural because
the intuitive approach to the method seems to hinge on the assumption that
g(t, 6 + A |6 + A) changes gradually with respect to A “independent” of the
value of N. This would not be true of g(t, 8 | 8 4+ A) for large N.

The ¢f(6) where introduced in Theorem 4 because in practical examples it is
usually found too difficult to compute ci(6) efficiently. On the other hand
there are many alternative ways of obtaining functions with the properties
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of the ¢; (6). The cx(6), cs(8) etc. mentioned in Theorems 1, 2, 3 play the role
of the c; (8) in Theorem 4 with the exception of the condition on ¢f(6) for outside
(61, 62). The exception is due to the fact that the Theorems 1, 2, 3 correspond
to the “infinite case.” Theorem 4 is applicable to those cases where one is
willing to assume that 6 lies in (61, 6;). It often happens that there is no such
reason or that the conditions of the theorem hold only for every closed proper
subinterval of (8;, ) but not for 8; < 6 < B; itself. In these cases we may
apply
TaEOREM 5. If
(1)  all of the conditions of Theorem 4 apply to every findle proper closed subinterval
(61, 0:_:) of (81, B2) where (B1, B2) may be an infinite interval;
() Pr{|8—6]>80)} < M6, )N for f < 6 < 6 < 62 < Br, where
8(V) = 0(1) unless By or By is finite, tn which case 6(N) = o(1), then a
sequence cx (0), c2(6), c5 (8), -- -, cr(B), exists, where ¢ (6) is uniquely defined in
(B, 82) by Pri{t — cr*() — c2*(6) — -+ — cma(d) < cn(6)} = a, s0 that for every
(01 ) 02))
|en®(O) | < M6, 8N "Rif 1 <61 < 6 < 6 < o,
p=0,1,+,s—m-+1
and for cu(6) arbitrary within the above conditions
[Prit <ei(@) + - +en()) — a| < M6, )N ™"
if B<650L6:<pB,m<Is

Essentially this theorem can be proved by reference to the proof of Theorem 4
applied to the function
g*@¢, 0]6) = g(t,8]6) for |[§—6]<3;
= 0 |6 —0]>e.

Some of the conditions in Theorems 4 and 5 are stronger than necessary. For
example ¢ > 0 may be replaced by a weaker condition where g is positive in a
region about ¢ = ¢;(6). On the other hand the condition Pr{| § — 6 | > 6} <
MN"*" in Theorem 5 is necessary to the argument used in the proof. It is easy
to construct trivial examples where the results of this theorem apply although
this condition is not satisfied. However an example has also been constructed
where all the conditions of Theorem 5 hold except for this condition and the
method of Wald fails to give the results.

These theorems are very easily extended to the k-dimensional parameter case
by replacing the conditions on the derivatives with respect to A by the same
order mixed derivatives with respect to Ay, Ag, -+, Ay of

gl O+ Ary b+ Aoy ooy B+ A | 004 Ar, coe, B 4 AR

The symmetric case arises when the distribution of 4 is almost symmetric
about 6. Alore exactly we have
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TeEOREM 6. If
() Al the conditions of Theorem 4 hold and L(8, 6) has the additional property that

[ 6 — 0PL(6, 6) db < M6, )N, 6 <6< 6,

and

agi-l-.f . agi—l—f .
Do 6810 — 2 — 80| <16,018 - o],

C; <t Cy 6 <6< 6y, i+j<s—1

then it is possible to construct a sequence ci (8), c2(6), - -+ , cr (8), as in Theorem 4
so that

(if)

| eP(0) | < M6y, BN,
p=01-,s—2m+26<0<6;
| cx®(9) — c$P(0) | < M(6y, )N ™™,
p=01---,8—2m+1,6<0<L6;
< M(6y, 0N,
p=0,1+,8=2m+2 —w0 <8< o;

| cn® (8)

and
|Pr{t < cf(é) + e+ C;(é)} ‘—a| < M6, 02)]\7_'/2,

013030,,1':[8—'2_1]

Theorem 5 can also be extended to the symmetric case.

It is often possible in the theory of statistics to obtain an asymptotic expansion
of the distribution of ¢, §. The treatment of such cases is often very simple
because of the prominent role played by the normal distribution in such
asymptotic expansions. Suppose that

gt, 6106) = VNv(t, ¢ | 0),
where ¢ = \/N(6 — 6);y = density distribution of (¢, ¥);
Yt 10 =7, ¥ [0 + N, ¢]0) + -+ + Ny, 9] 6)
+ o, ¥ | ON",

Y0,71y *** Ve are independent of N;

[[1olapat < M@, 0, a<o<a;

[[1vlapa<me, 0, a<o<a.
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Correspondingly we have
9(t, 016) = golt, 61 6) + N P(t, 8] 6) + -+o + N7
Gea(t, 0] 6) + 7(t, 6] N2,

where

Qi(f, é! 0) = ‘\/:\7 'Yi’(t) \bl 0)$ ) T(t, 0‘} 6) = '\/Np(t: 12 I 0)‘

© c1(0)
Then if we define ¢,(6) by f db [ digo =

¢1(0) 4+ ++em—1(6)+om (0)

cn(®) by f_ K digo

1 (@4 Fem_1(d)
® c1(0)++eotepm_1(0)
e [ dé f dt[go + g;N‘”Z' + eee gm_lN—(m~1)/2]‘
or by
©
en(®) [ dip(ci(®), 010

o 01(6)+-f:+cm_l(é)
e j: e [ dtlgo + ng_m 4 oo gm_lN—((m—x)lz)]’

we obtain
IPrit <ci(B) + -+ + c:(d)} — | < M(61, 6)N"*",

if g obeys the conditions of Theorem 4 except that we need only s — 7 + 1
derivatives for gi(t, 6| 6). The above definitions of ¢m(6) correspond to the
ca(6) in Theorem 4. Analogues of Theorems 5 and 6 also apply to the asymptotic

case.
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