THE JOINT DISTRIBUTION OF SERIAL CORRELATION
COEFFICIENTS
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1. Summary. An expression for the joint distribution of serial correlation

coefficients, circularly defined, has been derived. It has been shown that this.

distribution possesses properties similar to those already encountered in the
distribution of a single serial correlation coefficient, i.e. it is definedby different.
function forms for various subregions. The distribution thus found is of little
use for computational purposes. Consequently, approximate forms have been
investigated and the suitability of the ordinary partial correlation coefficient
for large-sample testing has been inferred.

2. Introduction. Anderson [1] has derived the distribution of the serial
correlation coefficient
n n 2
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where the ¢; are normally and independently distributed with mean u and
variance ¢ and where a circular definition is employed, so that e, is defined
to be equal to ¢;. However, in making a test of any series, we shall usually be
faced with a set of serial correlation coefficients, so that we shall require a joint
distribution function of 71, 72, - - - , 7w say. This distribution function is derived
below by an extension of the method used by Koopmans [2].

It should be noted that Bartlett [3] has shown that for large samples the
variances and covariances of the r; are independent of the distribution of ;
under fairly wide conditions. This means that the joint distribution function
obtained for normal e; will often give a good approximation for non-normal ¢;
and can be used as the basis for any test of the correlogram.

7

3. Conditions on the r;. It is easily seen that the r; cannot take all values
from 41 to —1 independently. For example, r, cannot take a value near —1
if r; takes a value near + 1. As a result, there will be certain necessary conditions
that the r; will have to fulfil. It is not difficult to find these conditions, since, if
yi(s = 1,2, .-+, n) are any set of variables, then

(1) ;}-:i (e4iyd)* = (Z é) TiYi1Yiei,

=

where ¢; may or may not be corrected for the mean and the double-suffix sum-
mation convention is employed.
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Thus, provided 0 < m < n/2, we will have
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as a necessary condition that the right-hand side of (1) be positive definite and
this expression will impose necessary conditions upon the joint distribution
of the r;.

Tig. 1 gives the limits of possible values of  and r; subject to (a) no restriction,
(b) rs = 0, (C) r3 =14 = 0.

4. Complex Integration in m Variables. Before finding the joint distribution
function of the r; some introductory remarks on complex integration involving m
variables will be necessary.
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We can evaluate an integral such as

f(zl, t Zm)
dzy -
L]} I1 G —a) %
o
where J(a;) = 0 and f(z1, 22, --- , 2n) is regular in the region J(z;) 2> 0, by
successive Cauchy integrations, so the integral has a value @2m)"f(ar, -, Qm).

In the same manner as for Cauchy integration, it will be possible to dlstort the
contours over which we integrate so that we can evaluate

J(z1 - 2m)
f fH(zJ—a:) day - dem,
i=1
provided that f(z: , - - - , zn) is regular in the region defined by S, and (@, -« ,am)

is enclosed in this region.
More generally, if we have an integral of the form

# H (aijz: — bj)
and we make the transformations w; = a;;2; and b; = aijci, ie. W = AZ,
C = A7'B, it is possible, in the above manner, to evaluate the integral as
(21r7,)
Suppose we now consider the integral
f f f(zl 2 - - - dom,
H (au 2, — b )

where n > m. We may select a set, g, of m equations a;;2; = b;, and let
Ai = [aij], Bi = [bj], C = Ax'Bi = [cal. Then, we may carry out the integration
as previously, in this case, summing a series of terms for various combinations
of m equations out of the possible n. The value of the integral may then be
written

™ Jew, + - cnr)
) (@) Z - | 4| H (al.rclk— i)’

where the summation occurs over the points (ci, €, -+, ca) lying in the
region defined by S, and the product term excludes the set of equations gi . The
ambiguity of sign in (3) and (4) arises from the Jacobian | 4 |™, and the sign
must be chosen which makes the transformation of dz, , - - - , dz,, yield a positive
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element. It must be noted that it is possible to obtain several expansions of the
form (4) according to the convention that is employed in defining “enclosure”
for each of the variables.

6. Integral form for the joint distribution function. We can, without loss of
generality, assume o° = 1. Suppose that

n n 2 n n 2
p=Ze§—(§e;)/n, Qz=§e;e.-+z—-(§e¢>/n,

i=1

where ¢, , &, - - - , €, are independent, so that ;, = ¢;/p. Then by a consideration
of » dimensional space, we can see that p is distributed independently of 71, - - - 7
80 that their joint distribution can be written g(p)h(ry, <+ ,rm)dpdry, - -+ ,drm.
The joint distribution of p and ¢, - - - , gm can thus be written

(5) f(pql...qm)dpdql...dqmz gl()_ﬁ)h gl’ e q;;f) dpdql...dqm,

where it is not difficult to see that

(6) ) }(n—3) —ip
9(p) = Y g 1).
2
We can now find the joint distribution of p and ¢1, - -, ¢n by inverting the

characteristic function of these variables. This is given by
1 ® ) I

LJ ,
= (—2;—)};‘[00 fexp[—e-zA—e]dq-e-de,,,

= I/IAP’
where ‘
¢ = [51;52’ tee ’en]
and
s . . 2mi
|a] =TI — 2 — 2i0;;1), Kj1 = COS -nL,
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80 that the joint distribution of p and ¢1, -+ , ¢m is

o, ¢1v - ~qm) = (ﬁ;—rl—-—)m_'_l.[w fli—l-*exp {—i(np+0jqj)}dndol...dgm
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210
1 — 2y
by region S enclosing the same set of singularities on the real hyperplane, and S
can be chosen independent of 5. Thus it will be possible to reverse the order of

where S, is the region bounded by «; = =+ . Now 8, can be replaced

integration in (7) provided that [ |1 — 2i9 [~¥*2"D gy converges, i.e. provided
n > 2m + 3. Then since

1 [  A—brtme .
51;[ (1 — 2in) 747 exp {—in(p — «ig;)} dn

(p — Kjg;)in—2m—®
_ i 1> exp {—3(p — x5¢5)} for p > xiqs,

—9m— — 2m —
2}(1. 2m- I)F n
2

=0 for p < kg,

we get
e-h’

$(n—1) am n—2m-—1
2 (2m7) I‘( 5 >

. — ) (n—2m—3)
j; f|(:11—1 &) :rdKl”'de’

IT Q= xix)
l=1

o gm) =

®

where S encloses the same singularities as S, all of which lie in the region
p > kjgq;. If we now use (5) and (6) we get

r(*3)

h(r ...rm)=
! I‘<n—2m—1)

2

9

H (1 — kjk;1)

l=1

1 — k75 $(n—2m—3)
(2—1::)7"[3-['%"_1 KiT3) :rd,“...d,(m_

In a similar manner, it is possible to derive for n > 2m + 3 the joint distribution
of serial correlation coefficients, # , -+, 7, uncorrected for the mean, in
the form

r <g) 1 /‘ . [ (1 — i 7;)tn—2m=2

(10) R(Fy - Fm) = . (n _22m> @) [1:11 . KjKjl)], diy - -+ Ak

6. Extension for variables in an autoregressive scheme. Madow [4] has shown
how to extend the distribution of the serial correlation coefficient for uncorrelated
variables to the case when the variables z; are connected by a linear Markoff
scheme, z; = pxi1 + € with a normal distribution of the error ;. It is worth
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noting that the method used by Madow can be applied to derive the joint
distribution of serial correlations of variables z; , which are connected by a linear
autoregressive scheme of order m, or less,

QT+ axia+ 0+ GnTim = €,

where €, -+, ¢, are normally and independently distributed, and eu4; = €.

Under these conditions, the expression (9) will be modified by a factor

7 $(n-1)
P

(11) = ) 2f1; 1D
e (4 + 2B;r;)

i=1

where
m
2
A= E O
k=0
m—7
B; = 2 araiys,
k=0

while (10) will be modified by a similar factor with » replacing n — 1.

7. Reduction of the distribution function integral. Using the method described
in section 4, it is now possible to reduce the integral given in (9), if we observe
that ki = kjs— and assume n odd. We then have

T (n - 1)
2 1 1 — g;r;)in—2m—3)
h(ri - orm) = e om — 1 (21":)"‘[ e f g(n_l)Kﬂ')) iy - - - dim
T (“) ’ II (= xkid)
2 1=1
(12) "2 1 I [y
T
— ( 2 ) Z r K
P<n_2m_1>0k 1 I,
2
zg'g[k ¥ K
where I = (1: 1 .-, 1): r = (7'1, Te, **° ) Tm), Kj = (Kﬂ) Tty Kml) and

K is the matrix formed from a set g of the m matrices «;; arranged in order.
The factors in the summation can most easily be determined if we put

1 é o« A(ry, *++, fma) — rn and sum over the region for which r, <
k
A(ri, -+, *ma). To demonstrate the manner in which formula (12) works, we

shall consider m = 2. From formula (2) we can see that a limit to the possible
values that r, can take is given by 7 = 2r; — 1 i.e. by the curve (cos 6, cos 26)

1 This is a sufficient condition for Znyi = Zi .
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in the (r,, r2) plane. It is not difficult to see that there are "C. possible terms in
(12) and that each of these terms is proportional to the 3(n — 2m — 3)th power
of the distance from a line in the (ry , r2) planes. These lines are the joins of the
points (cos 2xi/n, cos 4wi/n), ¢ = 1, --+ , $(n — 1) and the joins of such points
on the curve (cos 6, cos 26) give the outer limits of the possible values of r; and r; .
It can also be seen that these points correspond to the equations «;x;; = 1 (each
of these equations determines a plane in 4-dimensional complex space), while
the joins of these points correspond to the singularities defined by and terms
arising from pairs of these equations. Furthermore, since the sum of residues in
any plane is zero, the sum of contributions, taken with appropriate signs, arising
from lines through any of these points is zero, i.e. the sum of all possible terms
involving any particular «;; will disappear. This leads to several possible
expansions for A(ry, -+ , Tm).

If we consider the particular case n = 9, then each term in the expansion (12)
is proportional to the distance from one of the lines joining (cos 2¢/9 cos 4i/9),
i = 1, 2, 3, 4. These lines may be denoted by I;; . Then the contribution from
l;; is given by

KiiKij — (Kli + Klj)Tl + %(7’2 + 1)

(Klj - Kli)(Kli - Klk)(Kli - Kli)(Kli - Klk)(Klj - Kli) ’

3

where 7 > 7 and k. = cos ?.

The values of this expression are:
lip, — 1.979 4 2.938 r; — 1.563 12,
his, 0.926 — 2.106 r1 4 3.959 72,
lu, 1.053 —0.8327r — 239672,
los, — 5.012 — 3.959 r; — 6.065 7y,
by, 3.033 + 6.897 r;, + 4.5021;,
Iy, — 4.086 — 6.065 r, — 2.106 7, ,

where, for example, the contribution from I, acts in the region for which
1.563 r, < — 1.979 4+ 2.938 r, . Fig. 2 demonstrates the configuration for this
case. It is seen that the frequency surface is a tetrahedron. As particular ex-
amples of the identities mentioned above we have

e+ bs+ Ly =0,
—le + ls+ b = 0,
—ls — Iy + ly = 0.

For a general value of m, we shall find that the hyperplanes joining sets of m
points (cos 2mi/n, cos 4mi/n, -+, cos 2ami/n) will be singularities on the
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frequency hypersurface. The hyperplanes passing through sets of m successive
points will give the limits of possible values of ry, «--, r, . Furthermore, the
sum of contributions (with appropriate signs) to the frequency function from
the set of 3(n — 2m + 1) hyperplanes passing through any point will be zero.

8. Integral approximation for the distribution function. The expression (12)
is, of course, difficult to use in practice and we require an approximation similar
to that of Koopmans. For this we make use of the integral expression (10)

r2

10
4.
<4,
Atrn) = 1-05% -p-832r, - 2:396r,,
/
97929387, + /- 5637,.
Fra. 2
for the joint distribution function of 7, - - - , #» and approximate to the factor

[H 1 - KjKjl)] . This can be done without undue difficulty, but the resulting
multiple integral does not appear to be capable of easy reduction. This is hardly
surprising, since from the nature of the distribution of the r; we should expect
this approximation to involve R, raised to a suitable power, and this conjecture
is strengthened by the following considerations:

a) The distribution of 7 may be obtained by considering the two sets of
observations x; , 2, *** , Tu—1,Znand xa , T3, * - , Tn , 21 s unrelated, and using
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the distribution of the ordinary correlation coefficient corresponding to n + 3
pairs of observations. (Dixon [6] Quenouille [7]). In the same manner, the m sets
of observations ;, T2, ***, Tno1, Tn} T2, T3, *** , Ta; " Tm, Tmil, *° ",
Tm_2 , Tm-1 , Iight be considered as unrelated and the joint distribution of their
correlations, given by Garding (5), will involve R, raised to a suitable power.
b) The outer limits for the joint distribution of 7,7y, -+, rmor 1, 7-"2 y e
for large n, will be provided by the equations R, = 0, (p =1, ---,m). An
investigation of the properties of the functions, R, , Rz, -+ , Bm might therefore
be expected to throw light upon the joint distribution of r,, 72, -+, 7w or
Tl, 72, e ,7-'m-

c) R, 1s a quadratlc in r, and may be put equal to Rps(ry — 75)(rp — s,
where 7, and 7'y are functions of vy, 2, « -+, rp1 giving the limits of the values
that r, can take for any partlcular values of Ti, *++, Tp. Let Q,, = R,./R,,_l ,
then Q, is likewise a quadratic in r,, taking all values between r, and ', and

f’ Q% dr, = p_zf (rp — 1) (rp — ) dry
TP

p—l

Bot Ly (o)
Qo ' 2 ‘

But by expanding R, as a bordered determinant, it is not difficult to show that
ry, — ry = 2Qp-1, so that

i 8 P(S + 1) } s+1
f,; Gdn =ty "
In particular, if

I‘(%n + 1) ( m —m+ 2) _1_ 1 (n—2m+1)
T+ T —m+p ==

(13) f(rl. . .rm) =
and if we integrate with respect to 7m , *m—1, *++ 72 in turn, we get

" "m . _ TGn+1) 2y} (n—1)
‘/;; "/;:” f(Tl Tm)d'r,,, dr‘z—m (1—'7') y

which is the approximate distribution of the first serial correlation coefficient,
uncorrected for the mean, as given by Dixon [6].

The importance of this lies in the fact that the integral corresponding to that
of Koopman’s for the joint distribution is

0

1 I |An—m-—
- x(z;) ;,

I'(3n) f er‘ "' . | d
I‘(2n—m) o Y 1-1 sin nx; p dxy Az,
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where ' = [ry, -+, ],

COSTy COSTy -+ COS Tm
X — | cos 2r; oS 2rp -+ COS 2Tm
- ’
| cos mx; cOSmMIz - COS Mm _|

I =[171,"'1]7

...............................................

| cos (m — 1)y cos (m — Dze -+ cos (m — 1)xm

«’(8) = [cos 8, cos 20, --- , cos md],

11

and S is the region given by ‘ . X > 0. This suggests, by analogy, that the

joint distribution function is a polynomial in r,, of degree 2(3n — m — 1) + 3 =
n — 2m + 1 which vanishes only when R, = 0. The equation satisfies these
conditions, and in addition, it reduces to the known form when m = 1 and can
be integrated to give this same form. Thus there is a strong suggestion that (13)
gives an approximate distribution of r;, 72, + -+, 7w , uncorrected for the mean.

An alternative form for the constant factor in (13) may be obtained if we

note that
P(%n—m+2)= 1 T(n — 2m + 3)
TGn —m+ b 20 [[Gn = m + DF

d) Now r, and r, can be written in the forms (Sp,-1 + R,-1)/R,— and
(Szhl - Rp..l)/Rp_z , where

T o . T3 0
1 1 Te Tp—1
1
Spa = (—1) n 1 n Tp—2
Tp—2 Tp-3 Tp4 "

Thus

_ Sp—l + Rp—l _ )( _ Sp—l - Rp—l)
R, = R, (“‘—"““—Rp_2 s J\ "o ——_‘_‘—Rp_2
B (g5

Rp—2 Rp—l
Q= Qp(l — rippm..)

where Mpt1.28e. = Tpa/Bp,
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and
T, T1 T2 Tp1
Tp1 1 1 Tp—2
Tp._l = | Tp-2 7 1 Tp—3
1 Tp—2 Tp—3 =°°-* 1
Therefore, if we make a change of variable to 1 p1.23..., T1,p.23..., *** T132, 71,

we find that the new variables which correspond exactly to partial correlation
coefficients are, in fact, independently distributed as such, with 3 degrees of
freedom more than in the case where the sets of variables are distinct observa-
tions.

While the above properties do not prove that the r; or #; may be tested
using partial or multiple correlation coefficients, this conjecture has been verified
elsewhere and it has been shown [8] that, with certain adjustments, a test can be
derived which is applicable to fairly short series.
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