ON THE ASYMPTOTIC DISTRIBUTION OF THE SUM OF POWERS
OF UNIT FREQUENCY DIFFERENCES!

By Braprorp F. KiMBALL
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1. Summary. Since the “unit” frequency differences (see (2.2) below) are
dependent, the usual methods for establishing the normal character of the
asymptotic distribution of the sum of random variables fail.

However, the essential character of the distribution is disclosed by the integral
functional relationship (3.6). From this it is possible to show that for large
samples the distribution approximates “stability” in the normal sense ([2] and
Lemma 2).

Using the condition that the third logarithmic derivative of the characteristic
function is uniformly bounded for all » on a neighborhood of ¢t = 0 one can
prove that the asymptotic distribution exists and is normal.

2. Introduction. Consider a one dimensional statistical universe characterized
by a cumulative frequency function (cdf) F(z) which is continuous. Consider
an ordered random sample z; of size N such that

(2.1) zi < Ziy1, i=1toN — 1.
Consider frequency differences u; defined by

w = F(zy), uyp = 1 — F(zx),

22) .

Ui = F(xig1) — F(2)), t=1toN — 1.
Thus
(2.3) 2w =1,

N+1

and the formal integral of the probability density function (pdf) of the u; taken
over the complete sample space of x; can be written as

2.4) N f duy dug - - dupy dungs -+ duwas = 1,

where u, is any u; which it is found convenient to omit, and the region of integra-

tion is the N-fold Euclidean space bounded by the coordinate hyperplanes
u; = 0, 1 # h, 1=1,2---N+1,

and the hyperplane

(2.5) A U+ oo A Uner + Una o+ U = L

(See [1]).

1 This is the second paper in connection with the subject announced in Abstract No. 9,
Annals of Math. Stat., Vol. 17 (1946), p. 502; and Abstract No. 331, Bull. Am. Math. Soc.,
Vol. 52 (1946), p. 827. For first paper, see [1].
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Consider a test function y;, defined by
(2.6) g = 2ub, p>0, MZN+1,
M

where p is a real positive number, M is an integer less than or equal to N + 1
and such that if M < N 4 1 the u; which are to be omitted may be arbitrarily
selected, but the subscripts indicating the order relation (2.2) are for the present
retained.

Consider the case where N is odd and M is even, and set
@7 N=2n+1, M = 2m.

Divide the set of N + 1 frequency differences u; defined by (2.2) into two
subsets such that each subset contains n + 1 differences of which exactly m are
included in the test function (2.6). Now let N become infinite over odd numbers
Ni, Ng, --- . In other words the sample size is to increase without limit. For
each sample size N; in such a sequence let M ; be an even number such that

(2.8) M;<N;+1
and such that the ratio M ;/N; is controlled for large values of N by
(2.9) lim. M ;/N; = constant c, 0<c<Ll

N=—+

As above for each step in the sequence the set of N; + 1 frequency differences
u; is divided into two subsets of n, 4+ 1 frequencies each with

(2.10) N; =2n; + 1, M= 2m;,
such that m; frequencies of each subset are included in the test function
(2.11) yu; = 2 ul.
Now we note that for a random sample of size N taken from the above universe,
the characteristic function Guy(t; ¥ ) may be defined by

(2.12) Gt yu) = N1 f I Qs dus - - duy

taken over region in Euclidean space of N dimensions as indicated for the
integral (2.4), taking index & equal to N + 1.

3. Proof of integral relationship—Lemma 1. For simplicity of notation drop
subscripts from M;, N;, n; and m;. We separate the test function y into two
parts ¥» and y.» such that

(3.1) Yy = Ym + Yo = Zu?—l— > ul, m=m" = M/2
where the m frequency differences u; in ¥ are those included in first subset and

those contained in y.- are those of the original M frequencies included in the
second subset (see (2.10) and (2.11)).
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The formal integral defining Gn(¢; y») may be written

(B2 Gy(t;ym) = T(@2n + 2 €™ duy - -+ At f €™ Qnga + - Uiy,

Ry 31

where

R; = 2n + 1 dimensional Euclidean space bounded by coordinate hyperplanes
and plane > s, u; = 1,

R, = n dimensional Euclidean space bounded by the coordinate hyperplanes
and the plane

Unig + Ungs + <+ + Usagn = 1 — w,
W= U+ Ut e o U
Now introduce the transformation to u;
G4) wl—w =wu, it=n+2n+3--,2+12n+2
Thus we have
2 ui=1,

n+1

3.3)

and the n u; involved in the integration are bounded above by the hyperplane
> au = 1. The Jacobian is (1 — w)".
Similarly under transformation

vw = u;, t=12,---,n+1,
3.5) S o= 1
n+1
Let v;,7 = 1,2, --- n and w replace the remaining variables of integration.

Thus the region of integration of these v; is v; > 0 with the hyperplane ., v; = 1
furnishing the upper bound. The Jacobian of the transformation is w".

The regions of integration of these new variables u; and v; are seen to be
independent of each other and of w. Noting effect of above transformations on
Ym and ym-, the integral (3.2) will be found to reduce to the following form:

r@n+2 [f .

(3.6) Gy(G; yu) = oD b w1 — w)" Gu(tw’; Yym)Ga (1 — w)”; y.) duw,

where
N =2n+1, M = 2m.

LemMma 1. This functional relationship holds for all values of N and M subject
to the condition that N be an odd integer and M an even integer. One may note that a
stmalar integral functional relationship will hold for any partition (ngm,) of the
N — 1 free frequency differences such that

no+n,=N—-1, me+ my = M,
with corresponding changes in the Gamma functions which precede the integral.



266 BRADFORD F. KIMBALL

In order to find out what happens when N becomes large the partially normal-
ized test function z is introduced. This is defined by
3.7) 2w = (yu — §)N + 1)’/ M,
where (cf. [1], formula (3.1))

MT(N 4+ Dr(p + 1)

3.8 ju = E =
(3.8) Ym (ym) TN + 1+ p)
I have referred to zy as a partially normalized variable since
E(zu) = 0,
3.9) . 2y _ 2 )
lim B(zu) = T@p + 1) — T'(p + 1) — opT’(p + 1),

where this limit can be shown to be greater than zero for
p#1, 0<c<l,
(3.10)
p=1, 0<e<l.

Recalling the separation of the test function into two parts (see (3.1)) we
define 4, and §.- by

mI(n + DI'(p + 1)
I'n+ 1+ p)

(3.11) Ym = Ymr =
with
' M=2m N=2n+1
From Stirling’s formula it can then be shown that
312) N+ D’gu/VM = 2°/V/2)2(n + 1)°Fn/v/m] + o(1),

where o(1) goes to zero as N and M become infinite subject to the condition
(2.9). Thus if we define 2z, and 2., by

(3.13) Zm = (Ym — Gm)(n + l)p/'\/;n-y Zmr = (Ym — Gm)(n + l)p/\/ﬁy

since

Yu = Ym + Ym
and .
N + 1°/VM = (22/V2) (0 + 1)°/vV/m,
it follows that
(3.14) zx = (2°/0/2) (@m + 2m) + 0(1).

Hence if we denote the characteristic function of the distribution of the
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partially normalized test function z, by Gy(t; 2x) and proceed to develop an
integral functional relationship similar to (3.6), one arrives at

ito I‘ 2 ! n n 4
a1y GG ¢ mf-f(:—jff)) [0t = 0 Galo(2u)?/ /3 2n]
-G 2°(1 — w)P/AN2; 2l dw
with
N =2n+1, M = 2m.

4. Resulting functional relationship when N becomes large. The second
lemma shows that the functional equation satisfied by the characteristic function
of a normal distribution is approximated when N is large. Suppose we now set

4.1) w= (1 + s)/2, 1—w=(0-5)/2, dw = ds/2.
Substituting in (3.15) we have
eito(l) F(2n + 2) +1

42 G =G |, - )" Gt + 9)"/V/2; 2ul
G.lt(1 — 8)*/\/2; zal.
Set,
4.3) H(t, s) = Galt(1 + 9)"/V/2; 2n)Galt(l — 5)°/V/2; 2a]-
Then
(4.4) H, = GuGatp(l + )" /2 — GuGrtp(1 — 5)"7H//2.
Using law of mean write
(4.5) H(t,s) = H{t, 0) + sH,[t, h(s)l, 0 <|h(s)]| <s.

Substituting in (4.2) we have
'(2n + 2)
ZnT%(n + 1)

With E(z.) = 0, from the fact that the limiting variance of z, is bounded
(see (3.9)) it follows that the first derivative of its characteristic function remains
bounded in any finite interval, for all n ([3], p. 90). Thus

€%)) | Gu(t;2m) | <A, 0<Z|t| <D, foralin.

16) e "VGy = H(, 0) + fo H.[t, k)]l — )" s ds.

For case p > 1, by virtue of condition (4.7) H, will remain bounded over
interval of integration of (4.6) as N becomes infinite. Let B denote such upper
bound of the absolute value of H, . Then, carrying out the integration

Br@n+2 1
2T n + 1) 2(n + 1)

(4.8) absolute value of integral <
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for any value of {. This quantity approaches zero as N goes to infinity uniformly
for ¢ on any finite range. For the case that 0 < p < 1 a similar argument may
be used by including the factor (1 — s)”~* which appears in H, in the integration,
and placing the upper bound on the absolute value of the factor GG .
Substituting back for H(t, 0) in (4.6) one arrives at
LemMa 2. The characteristic function G.(t; 2n) satisfies the relationship

(4.9)  Gu(@; zx) = [G2(t/V2; 2a)) + 0(1), N=2n+1 M =2m,
where o(1) goes to zero with increasing n, uniformly for t on any finite interval
(4.10) 0<|t]| <D.

The above lemma indicates that if the asymptotic pdf of z., exists, it will be a
“stable” distribution in the normal sense [2]. In order to set the stage for proving
the existence of this asymptotic distribution we shall first investigate the third
logarithmic derivative of Ga(t; 2m).

5. Investigation of third logarithmic derivative. We shall now show that the
third Yogarithmic derivative of G is uniformly bounded in some neighborhood of
t = 0. We first prove that the absolute value of the third derivative of @ is
bounded for all ¢ and n. Now the third derivative will have absolute value less
than the third absolute moment which I denote by ;. Using Liapounoff’s
inequality

(5.1) ps < uop

one asks whether the fourth moment y; remains finite as n and m become infinite.

Computation of the fourth moment about the mean appears to be somewhat
formidable. However it is not so difficult to show that it remains finite with
increasing m and n. Referring to previous paper ([1] formulas (4.8)-(4.10))
we use quasi-moment generating function go(x) such that

(5.2) d'g(0)/ds” = T(pr + 1), g(0) = 1,
and it follows that
(5.3) EQQ uf)" = dlg(0)]"/dz’T(n + 1)/T(n + 1 + pr),
and one recalls that
_ » __mI'ch + DI(p + 1)
y=2ul, 7 T T T+ 1p

with
z = [ + 1)"/+v/m]ly — 4.
The resulting fourth moment of z will be in the form of a fourth degree poly-
nomial in m whose coefficients are of the type
(n + D*T(n + 1) (n+ D¥Tn+1)
T(n+ 14 4p) ’ rn+1+3p ~  °
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combined with the first moment, with 7™ appearing as a factor. By expansion of
the Gamma function in asymptotic series in (n + 1) it is not difficult to show
that the coefficient of m' becomes asymptotic like (n + 1)%, and that the
coefficient, of m® becomes asymptotic like (n + 1)™". It follows that as n and m
go to infinity with m ~ c¢(n + 1), that this fourth moment approaches a finite
limit. Hence one concludes that the third derivative of G has bounded absolute
value for all n and ¢.

Since the absolute value of the first derivative of G is uniformly bounded for
finite ¢ and all n it follows from the properties of a characteristic function that
given a positive number K less than unity, it is possible to find a value of ¢t = ¢,
greater than zero such that

(54) 0<K<|G2)]| <1 0<5|t|<u,

for all n.

From the above double inequality and the fact that the absolute values of the
first three derivatives are uniformly bounded it follows that the thérd logarithmic
derivative of G is8 uniformly bounded for all n on the interval

(5.5) 0<|t|<t.
6. Proof that the asymptotic distribution of z exists and is normal. Since

absolute value of G is uniformly bounded away from zero on interval (5.5) one
can write the functional relation (4.9) as

(6.1) log Gu(t, 2x) = 2 log G.(t/\/2, zm) + o(1),

where 0(1) goes to zero with increasing n uniformly for ¢ on interval (5.5).
Introduce the notation:

A(n) equals variance of 2 ,
g(t, n) equals third logarithmic derivative of G.(t, zm),
R(t, N) equals remainder defined by
(6.2) log Gu(t, 2x) = —AN)E/2 + R(t, N).
Write
(63) log Gu(t/N/2, 2m) = —N®)E/4 + q(18/4/2, )¢/ (124/2), 0 <8 < 1.
Substituting (6.2) and (6.3) in (6.1)
64) R@, N) = D) — M@)#/2 + [1/v/2le(6/v/2, )¢/6 + o(1).
By (3.9)
(6.5) lim A(n) = lim A(N) = positive number \.
We have proved that there exists an upper bound U such that
(6.6) lgt,n) | S U
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for all » and for ¢ on interval
(6.7) 0<|t]|<t.

Hence from (6.4) one can reason that given a positive ¢, a number N, can be
found such that

(6.8) |RG, N) | < [1/2)U|6/6 | + e
for all t on (6.7) and for N > N,.
By (6.1)

(6.9) R, 2N + 1) = AN@2N + 1) — A@)I*/2 4 2R(t/A/2, N) + o(1).
Using (6.8)
|R(t/V2,N) | < [1/42]U | £/(12v/2) | + e
Hence for any positive number ¢ a number N, can be found such that
|R(t, N) | £ (1/2)U | £/6 | + 2¢+ &, N >N,
for all t on (6.7). After k such operations, taking ¢; = ¢
6100 RGN | LS @/2"U /61 + @ — 1) N > N,.
Thus given a positive number d one can determine k& such that
(1/2)¥*Uts/6 < d/2,
and ¢ such that

e < d/2,
and therefore a number Ny, such that
(6.11) | R(t, N) | < d, N > Nis

for all ¢ on interval (6.7).
It follows that Gx(t, zx) converges uniformly to exp. (—\t*/2) on interval (6.7).
Convergence of Gy(l, zx) for a value ¢ = {; outside the interval (6.7) may be
proved by choosing integer k& such that

(6.12) 0<|tl/(V2)* <L,

and taking
ts =t/ (\/Q)k

Recalling that the functional relation (4.9) holds for all finite ¢, this can be
applied % times, thus building up # to ¢; .

It follows from the continuity theorem that the distribution function of zm
converges to the normal distribution function.

7. Statement of theorem proved. The proof given above has involved the
restriction that N be odd and M even (see (2.7)). This restriction is required
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for the integral relationship (3.6). However, if N were even one could take
n = N/2 and n, = no — 1 and deal with, G,, and G,, in the integrand. Also
if M were odd, one could take my = (M + 1)/2, m; = my — 1, and deal with
Go(t, mo) and Gn,(t, my) in the integrand. This would of course carry with it
corresponding changes in the Gamma functions which precede the integral.
As long as we require that

N=n+m+1, M=m+ ny,
lim M/N = lim mo/ng = lim my/n; = ¢ > 0,
the arguments used in arriving at the asymptotic relations (3.15) and (4.9)
will apply. Hence the theorem:

THEOREM'. For a one dimensional statistical universe whose cdf is continuous,
consider the function of the unit frequency differences u;

(7.1) y =; u?

taken from an ordered random sample of size n (see (2.2)) where p is any real
positive number, and m s any positive integer less than or equal to n + 1. The
selection of which m unit frequencies are to be included is arbitrary. Then with

mI'(n + DT'(p + 1)

72) 7= E) = "R
consider the partially normalized variable

(7.3) z = Ot_\'l/'__gl)_‘j (y — o).

If n goes to infinity, with m becoming infinite so that

(74) lim m/n =¢ > 0,

then the asymptotic cumulative distribution of z exists and is normal, with
(7.5) lim E(") = T2p + 1) — I(p + 1) — ¢p’I*(p + 1),

except in the trivial case p = 1, m = n + 1, in which case z = 0, and in the case
p=1lc=1
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