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out to me in personal correspondence, this is actually not the case. However,
the theorems and their proofs remain completely valid in their present form if
the observations are drawn from a stqchastic process satisfying condition (5) of
the paper. This chain condition states that the process be such that
Prob(X,<z|Xi<z,Xo<2,-+,Xp1<2) =Prob (X, <z|Xpnu <2
is satisfied for all z and for all posmve‘ integers n.

i
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1. Cost Functions for Sample Surveys. (Preliminary Report). GARNET E. Mc-
CrEARY, University of Manitoba and Iowa State College.

Assume: (1) one travels in a rectangular (grid) fashion rather than straight line (air-
line) path, (2) #n random points have a uniform distribution over the region or stratum.
Moderate changes in shape of regions have a minor effect on expected distance. Mean air-
line distance can be prediced from mean grid distance fairly accurately. The following for-
mulas are derived: (1) expected minimum grid distance for » = 3 in a square, (2) an upper
bound to expected minimum grid distance for all n, (3) expested grid distance for a strati-
fied and unstratified sample, if the path among the points does not reverse a certain direc-
tion, (4) expected distance of a random point from (a) the center of the arc of the circle,
semicircle or quadrant, (b) any fixed point, inside or outside the rectangular region, (5)
mean square distance between any pair of points adjacent in a clockwise direction (6.7 to
9.5 per cent biased upwards over corresponding mean airline distance). Certain conclusions
are drawn regarding the most efficient design with respect to total distance. Detailed mile-
age records of three Iowa farm surveys were compared with theoretical estimates. If the
cost is balanced against the losses resulting from errors in estimate, for a particular design,
the problem of determining sample size is broached by using Wald’s minimax principle.

2. On a Preliminary Test for Pooling Mean Squares in the Analysis of Variance.
A. E. PauLL, Abitibi Power and Paper Company, Limited, Toronto, Canada.

The consequences of performing a preliminary F-test in the anaiysis of variance is
described. The use of the 5%, or 259, significance level for the preliminary test results in dis-
turbances that are frequently large enough to lead to incorrect inferences in the final test.
A more stable procedure is recommended for performing the preliminary test, in which the
two mean squares are pooled only if their ratio is less than twice the 50% point.

3. Estimation for Sub-Sampling Designs Employing the County as a Primary
Sampling Unit. Emir. H. JeBE, Iowa State College and North Carolina State

College.

This paper summarizes a study of the application of various two-stage designs including
the estimation procedures for providing state estimates of agricultural items in North
Carolina. Among the principal objectives of the investigation were (1) the comparison of the
efficiency of selection of the primary units with equal and with unequal probabilities, and
(2) assessment of the relative contributions of the between primary sampling unit and
within primary sampling unit error components to the total sampling error. Examination
of several linear and ratio estimates indicates a number of advantages for a particular
ratio estimate.
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4. The Probability Distribution of the Number of Isolates in a Social Group.
Leo Karz, Michigan State College.

Each of the N members of a well-defined social group is asked to name d others with whom
he would prefer to be associated in some specified activity. Under the null hypothesis, his
choices are randomly distributed. An isolate is an individual who is not chosen by any of
the other members of the group. The probability of exactly ¢ isolates in the group is then
given by .

Py = TS (—1)HCG, DCWVDICW — i, DFCW — 1 = 4, DIV (CW ~ 1, 1Y,
where C(N,n) = yC» , the binomial coefficient. This expression for P; is somewhat unwieldy.
It is further shown that this probability function is asymptotically a binomial p.f., P! =
C(n, 1)p*(1 — p)**, where

p=NIN—-1—-d)/N =D¥ 11— (N =DV —1-d)/N = DIV -2 - d)/N - 2)|¥-2
and np = N[(N — 1 — d)/(N — 1)I¥"L. The approximation is very good even for mod-

erately small values of N.

5. Estimating Population Size Using Sequential Sampling Tagging Methods.
Leo A. GoopmaN, University of Chicago.

Let [n:] be a sequence of positive integers and let S(L, n;) denote the procedure where-
by (1) n: elements are drawn at random from a population P, then tagged to distinguish
them from the remaining elements, and replaced in P, (2) n: elements are drawn from P,
the number of tagged elements appearing is observed, the 7, elements are then tagged and
replaced in P, (3) --- , this process is halted when at least L > 0 tagged elements have
appeared. Given S(L, n;), there exists a minimum variance unbiased estimator (m.v.u.e.)
of the number N of elements in P which may be determined as the quotient of two deter-
minants and simplified, by combinatorial methods, in special cases. If [n;] is bounded, as N
approaches infinity, the limiting distribution of #*/N, where ¢ is the total number of elements
drawn before the procedure ceases, is x? with 2L degrees of freedom. Hence the asymptotic
m.v.u.e. of N, confidence intervals and tests of hypotheses for N may be obtained as well
as the approximate fiducial distribution of N. Similar results may be obtained for the more
general cases where (a) information concerning size of some subclasses in P is used and (b)
where taggings may or may not be differentiated. The S(L, n:) compares favorably with
other procedures considered.

6. Application of the Distribution of a Linear Form in Chi-square Variates.
ArTHUR GrAD AND HERBERT SoLomoN, Office of Naval Research, Washing-
ton, D. C.

The probability of hitting a target depends both on the accuracy with which the position
of the target is known and the dispersion of the weapon about the point of aim. Under the
assumption that each of these errors has a bivariate Gaussian distribution with known co-
variance matrix, || o(p) || for position prediction error and || ¢(a) || for aiming error, about
the point of aim (predicted position), the probability, P, of hitting the target with a weapon
having a radius of effectiveness R is shown to be P = Pr[k:x: + kyzy < R?/C?), where
K} = [ou(p) + ou(@)]1/Ct, ky = lon(p) + o2(a))/C% C? = ou(®) + on(p) + ou(@) + on(a),
and :c_:; is a chi-square variate with 1 degree of freedom. When ¢12(p) = o12(¢) = 0, then the
cl’xi-zsqual;e ;/ariag,eg are 2inzdependent',,. If nzot, azlineaxz' transfzormati?n exists such that z =
kiz: + koz = Ly, + ly. , where I; + I, = k; + k, and y; and y, are independently dis-



136 ABSTRACTS

tributed chi-square variates each having one degree of freedom. It is then demonstrated
¢

that P = 2kik, f e~Io[z(1 — 4k3k3)Y] dz, where ¢ = R?/4C%ik; , when the chi-square
]

variates are independent; in case of dependence, k; should be replaced by I; . A table was

constructed which covers the entire range of the parameters.

7. A Large Sample t-statistic which Is Insensitive to Nonrandomness. Joun E.
WairsH. The Rand Corporation.

Most of the well known significance tests and confidence intervals for the population
mean are based on the assumption of a random sample. This paper considers how the sig-
nificance levels and confidence coefficients of the commonly used class of tests and intervals
based on the standard Student ¢-statistic are changed when the random sample requirement
is violated and the number of observations is large. It is found that even a slight deviation
from the random sample situation can result in a substantial significance level and con-
fidence coefficient change. Thus this class of tests and confidence intervals would seem to
be of questionable practical value for large sets of observations. Large sample tests and
confidence intervals for the mean which are not sensitive to the random sample requirement
are obtained for a situation of practical interest by development of a special type of ¢-statis-
tic. These results are as efficient (asymptotically) as those based on the standard ¢-statistic
for the case of a random sample.

8. Conditional Expectation and Convex Functions. E. W. Barankin, Univer-
sity of California, Berkeley.

The inequality Ey(E(f | -)) < Ey(f), (where the conditional expectation is taken with
respect to a function ¢) with f a real- (or complex-) valued function on the fundamental
space, was shown by Blackwell to hold in the case ¢ (z) = | z |2, and by the present author
to hold in the case y(2) = |z |°, s 2 1 (Annals of Math. Stat., Vol. 18 (1947), pp. 105-110,
and Vol. 21 (1950), pp. 280-284, respectively). More recently Hodges and Lehmann (Annals
of Math. Stat., Vol. 21 (1950), pp. 182-197) proved the inequality in the case of f a function
to &F (Euchdean k-space) andy afinite, convex, real-valued function on &t . Now, both Black-
well and this author exhibited the above inequality, in their cases, as (obvious) conse-
quences of the more fundamental relation: ¢ (E(f | 7)) = EW(f) | 7) for almost all points
7 in the range of t. The work of Hodges and Lehmann, however, leaves open the question
whether or not the latter inequality holds in the more general case. In the present note this
almost-everywhere inequality is established for f to & and ¢ convex. The first inequality
then obtains by integration.

9. Transformation Parameters. MELVIN P. PeisaxorF, The Rand Corporation.

Location, scale, and location-scale parameters are examples of transformation parameters.
Transformation parameters are defined by: (1) the parameter space is a group, (2) the
sample space can be factored into the same group and an arbitrary space, (3) the random
variable associated with each parameter point, 8, can be generated by drawing from the
population associated with the unit of the parameter space and left multiplying the group
component of the sample by 8. Decision function theory is investigated when the decision
space and the cost function are of a special intuitively appealing form. The formulation is
broad enough to include sequential analysis. Minimax decision functions are found. Also
investigated is testing and confidence region theory, using extensively the results on decision
functions. Both simple and composite hypotheses are treated. Finally, (Fisher) information
theory is examined. It is shown that modifications are necessary if information theory is
to be useful in estimation problems. One modification is suggested. This modification en-
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larges the class of standard estimators to include each estimator which is minimax with
respect to a certain risk function determined by the estimator itself. The approach is gen-
eralized to include inequalities for the mean square error other than the information in-
equality.

10. A Generalization of the Neyman-Pearson Fundamental Lemma. HExryY
ScuEFFE, Columbia University.

Given m + n real integrable functions fi(z), - - , fu(2), hi(z), +-+ , ha(x) of a point z
in a Euclidean space R, a real function ¢(y1 , - -+ , ¥») of n real variables, and m constants
€1, '+, Cm , the problem is to consider the existence of, and to find necessary conditions

and sufficient conditions on, a set S maximizing ¢ f hdzx, -, f hn dx) subject to the
8 8

m side conditions f fidz = ¢; . In some applications the values of the vector

8
([ o)
S S

‘may also be restricted to a given set. A statistical example in which o(y1, -+, ¥n) = II y;
i=1

arose in an unpublished paper of Isaacson. The methods of the present paper are sug-
gested by those of an unpublished paper of Dantzig and Wald. Under certain regularity
condltlons the inequalities appearing in the Neyman-Pearson lemma are replaced by

E ashi(z) — E kifi(x) > 0 (a.e.in S), < 0 (a.e. in B — S). Here a; and k; are constants
with a‘? = 8¢/dy; evaluated at (y1, -+- , yn) = (f hidz, -+, f hoy, d:c) .
8 8

11. Nonparametric Estimation V, Sequentially Determined Statistically Equiv-
alent Blocks. D. A. S. Fraser, University of Toronto.

In 1943 Wald gave a method for constructing tolerance regions for continuous multi-
variate distributions. Tukey generalized Wald’s procedure and then interpreted the results
for discontinuous distributions. In this paper a further generalization of the method is
given by which statistically equivalent blocks can be determined sequentially; that is,
the particular function used to cut off a block may depend on the shape or structure of
previously selected blocks. The results are also extended to the case of discontinuous dis-
tributions. Possible advantages for the practitioner are discussed.

12. A Bayes Approach to a Quality Control Model. M. A. GirsHIiCK AND HER-
MAN RuBIN, Stanford University.

A machine producing items of quality characteristic  can be in one of four states. In
state ¢ = 1, 2 the machine is in production and is characterized by a density f;(x). In state

= 3, 4 the machine is in repair having come from state j = 2. When the machine is in
state 1 there is a probability g that in the next time unit it enters state 2, remaining in
state 2 until brought to repair by some rule R based on observations. The income from
items of quality z is V(z); repair cost per unit time in state j = 3, 4is ¢;. A rule R* is
Bayes if it maximizes lim Iy as N — « where Iy is the expected income per unit time in
N time units. It is proved that for 100%, inspection, R* states that sampling is to continue
as long as Z, < a and sampling is to terminate and the machine placed in repair when
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Z. > a, where Z, = yo(1 + Z._1), Zo = 0 and ¥, = fa(:) /(1 — g)f1(2.). R* is also obtained
in case inspection costs are taken into account. It is shown that the above Markoff process
approaches a stable distribution and the required integral equations are derived.

e

13. On the Translation Parameter Problem for Discrete Variables. Davip
BrackwEeLL, Stanford University.

Let z = (z,, --- , 7n) be a vector chance variable, let y =  + he, where e = (1, --- , 1)
and k is an unknown constant, and let ¢ = ¢{(y) be any function of y, considered as an esti-
mate for h when y is observed. Let f(d) be any function of a real variable d, considered as
the loss to the statistician when the error of estimate is d, so that the risk from an esti-
mate ¢ is Ri(h) = Ef[h — t(z + ¢h)]. Extending the work of Pitman, Girshick and Savage
have exhibited an estimate t* for which R.*(h) = R independent of k, and have shown that
t* is minimax. It is shown here that if z assumes only a finite number of values
v; = (ni1, -+ , niy) and each n; is an integer, and if f(d) is strictly convex and assumes its
minimum value, then ¢* is admissible and is in fact the unique minimax estimate. Two ex-
amples in which t* is not admissible are given. A closely related fact is that if Sis a closed
bounded strictly convex subset of n-space intersecting the line z; = --- = z. at the single
point (w, - -- , w), then the only sequence {z,}, — © < m < «, for which P, = (Zmgry =
Zmsn) € S for all m is 2z, = w for all m.

14. On Ratios of Certain Algebraic Forms. RoBerT V. HocGa, State University
of Towa.

Let z and y be random variables having a continuous cumulative distribution func-
tion, and let M (u, t) = Elexp (uz + ty)] exist in the neighborhood of the origin of the u, ¢
plane. Subject to certain conditions a necessary and sufficient condition for the stochastic
independence of y and z/y is (9%/0u¥)M (0, t) = Kx(8*/8t))M (0, t)(k = 0, 1, 2, -+ ), where
K is evaluated by setting ¢ = 0. This result is used in the study of certain ratios of quad-
ratic and linear forms. In dealing with the quadratic forms, the sample arises from a nor-
mal population with mean zero. A necessary and sufficient condition is determmed for
the stochastlc mdependence of Q. and @:/Q: , where essentially @, = ule + -0 4 aaz,
and Q: = blan1 + o+ b,.a: In the linear case however, the distribution is unspeclﬁed
Then it is found that the requirement of the stochastic independence of L; and L/L; im-
plies that the sample arose from a gamma type distribution. Here Ly = a1 + -+ + @aZa
and Ly = 21 + -+ + T .

15. The Economics of Sampling. NormaN Rupy, Sacramento State College.

An optimum single sampling plan for acceptance inspection of attributes is developed
by the method of minimizing the maximum risk. The first application is to warehouse or
surveillance inspection, in which the value of a good item, g, and the cost of a bad item, b,
define a breakeven quality, po . It is shown that under these conditions, and with sampling
cost a linear function of sample size, s, tn, the optimum sample size is approximately equal
to [(.085 lot size)/t]¥* (bg)'3, the optimum acceptance number is approximately equal to
npo , and the min,,. max, of the risk is approximately equal to s + .58 (tbg)13 (lot size)?s.
The more general case, where the breakeven quality po is determined by trade practice or

contract, is also worked out, but cannot be presented in completely analytic
form. A simple table involving the quotient of the normal integral and the normal density
is required. Given this and the cost parameters of the situation, then the sample size and
the scceptance number which minimize the maximum risk are determined from relatively
simple expressions.
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16. Exact Tests of Serial Correlation Using Noncircular Statistics. G. S. War-
soN, University of Cambridge, ANp J. DurBIN, London School of Economics.

The paper shows how noncircular statistics for testing hypotheses of serial independ-
ence may be constructed for which exact® distributions can be obtained using results
given by R. L. Anderson (‘“Distribution of the serial correlation coefficient,”” Annals of
Math. Stat., Vol. 13 (1942), pp. 1-13). The statistics are derived by throwing away a small
amount of relevant information. As an example the statistic

e = (T1Z2 + *** + Tm1Zm + Tms1ZTmiz + -0 + Tom_1Tom) / 3

may be used for testing independence in a series of 2m observations whose mean is known
to be zero. The quadratic form in the numerator of ¢; is based on a matrix whose roots are
pair-wise equal, so that the distribution of ¢: when the z’s are normal with the same vari-
ance is known from the results of R. L. Anderson. Tests of the errors in certain regression
models may be made by fitting separate regressions to the two halves of the series and
substituting the residuals in expressions similar to ¢, . Exact tests can be obtained in this
way for polynomial regressions, one-way, two-way etc. classifications, and periodic regres-
sions. The statistics appear to have power comparable with that of the related circular
statistics against alternative hypotheses specified by a stationary Markoff process. In
many cases occurring in practice, however, serial correlation of the errors will be due to
systematic behaviour arising from the inadequacy of the theoretical model to represent
the true relationship. The statistics proposed will often be prefcrable to circular statistics
in such cases.

17. Stochastic Difference Equations with a Continuous Time Parameter. (Pre-
liminary Report). S. G. GHURYE, University of North Carolina.

Given a discrete sequence of observations ordered equidistantly in time, it is often
assumed that this discrete process is explained by a stochastic difference equation with a
purely random ‘‘disturbance’’. However, this observed discrete process might be the result
of observations on a stochastic process X (¢) in which ¢ is not discrete, but continuous. Is
it possible to have a process X (t), defined for ¢ real, such that given any real { and any
real h > 0, the sequence {X (to &= jh)},7 = 0,1, --- , satisfies the equation

Xto+ G+ ph) + (WXl + [+ p—1R) + - + ap(R)X (b + jh) = 8(t + jh),

8 being a linear function of mutually independent random variables having a common
c.d.f. which is independent of h? The cases p = 1 and p = 2 are dealt with in detail, and
the possible forms of such processes derived; the further problem for any p, as also for a
system of equations, is being considered. It is also proposed to tackle the problems of
estimation and testing which arise in this connection.

18. Nonsequential Problems in the Case of k Hypotheses. (Preliminary Report).
HerMAN CHERNOFF, University of Illinois.

Suppose that there are k possible simple hypotheses H,, H;, --- , Hi and a possibly
infinite set of actions may be taken. To a decision function there corresponds a vector

= (p1,p2, "+ ,pr) where p; is the risk if H; is true. The closure of the range of p is con-
vex in the nonatomic case and in the randomized case. In the randomized case the closure
of the range of p is the convex hull of the closure of the range of p in the nonrandomized
case. (The randomized case is that one where a number is selected at random from the
unit interval before an action is taken.) The range of p is closed under suitable closure
conditions on the range of the weight function.
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19. The Moments of a Multinormal Distribution after One-sided Truncation of
Some or All Coordinates. Z. W. BIrNBAUM AND PAauL L. MEYER, University
of Washington.

Let X = (X1, X», -+, Xp) be a multinormal random variable with given first and
second moments and the probability density f(X;, X:, -+, Xp). The random variable
Y= (Y.,Y,:, -, Y, is said to be obtained from X by truncation to the set X; > =;,
1=1,2, ..., p,if its probability density is g(Y1, Yo, -+, ¥Yp) = Cf(Y1, Yo, .-+, ¥V}p)
forYi>7mn,Y22>70, -, Yp>1p,andg(¥Y1,Ys, -, ¥Y,) = 0 elsewhere. The prob-

lem considered is to determine the mathematical expectations E(Y7 Y?). Explicit formulae
are obtained for the first and second moments E(Y;) and E(Y;Y;), and recursion formulae
are given for the general case. (Research done under the sponsorship of the Office of Naval
Research.)

20. An Algorithm for the Determination of all Solutions of a Two-Person Zero
Sum Game with a Finite Number of Strategies. H. Rairra, G. L. THOMP-
soN, AND R. M. TurarLL, University of Michigan.

Consider a zero-sum two-person game in which each player has a finite number of strat-
egies. A computational procedure is given for finding the value of the game and all opti-
mal basic strategies for each player. The basic computations required are evaluation of
linear forms and solution of linear equations in ‘one unknown. This method, based on
geometric reasoning, is a step by step process with no more stages than the total number
of strategies for the two players.

21. A Note on the Convolution of Uniform Distributions. Epwin G. Oups,
Carnegie Institute of Technology.

Let X; be independent random variables with probakbility density functions [e(X:) —
e«(X; — a;)l/a: , where e(x — ¢) is unity for z > ¢ and zero elsewhere. This paper gives a
simple proof that the probability density function for S = Z7 z; is

[8n—1e(S) — E'; (8 — a;)" (S — ai) + Zici (8 — ai — a))* 'e(S — a: — a;j)
— oo + (=D(S — Za))" (S — Zai)]/(n — l)!ﬂ’; a; .

A sufficient condition for the asymptotic normality of S is 0 < « < a; < B (finite). For
the special case where a;.1 = ra; the necessary and sufficient condition for asymptotic
normality is 7 = 1. For 0 < r < 0.5 or r > 2 the probability that S will be outside the
interval pug & 3og is zero. From the Edgeworth Series for the distribution function for the
standardized sum it follows that F(—3) = 0.00135 — 0.004[Za;/(Za’)?] where the bracketed
expression takes its minimum value n~! when all of the a.’s are equal. These results are
useful in connection with the problem of random assembly.

22. On the Consistency of Certain Estimates of the Linear Structural Relation.
EvizaserH L. Scort, University of California, Berkeley.
Let {z:, y;} denote n independent pairs of observations on z, y where z = ¢ + w and

¥ = a + Bt + v with £, u and » random variables with finite variances, E(x) = E@@) = 0
and ¢ independent of the pair u, v. Procedure (1): Fix a £ b such that

P{z = a} >0, P{z > b} > 0.

”

Let X1, Y, stand for the arithmetic mean of the z;’s and y;’s, respectively, for z; £ a and
X., Y. for those for which z; > b. As an estimate of B, consider, say, b =
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(Y. — Y1)/(X: — X)). Procedure (2): Let X, Y, denote arithmetic mean of z;’s and y.’s,
respectively, for which z; is one of the r smallest of the z;’s and X , Y, for those for which
z; is one of the s largest, with r, s preassigned, r < n — s + 1. The corresponding esti-
mate of B is, say, b: defined as above. Let (u, ») denote the shortest interval
such that P{u < w < »} = 1. THEOREM 1! In order that b, preserve the property of being a
consistent estimate of B irrespective of the value of B, —» < B < », it i3 n.a.s.
that Pla — v < t=a—pu} = Plb—v< £=2b—pu} =0.Nowlet r = pin, s = pan and
m, M be the corresponding percentile points such that P{{ < m} = p, and P{t > M} =
P2 . THEOREM 2. If n — « while p; and p. are held constant, the n.a.s. condition that b, pre-
serve the property of being a consistent estimate of B irrespective of the value of B, —o <f < =,
isthat Plm — v < § S m — pu} = P{M — v < £ £ M — u} = 0. Similar estimates were
considered, for p1 = p. = %, u and v independent, by A. Wald (Annals of Math. Stat., Vol.
11 (1940), pp. 295-297) who showed sufficiency.

23. A 3-decision Problem Concerning the Mean of a Normal Population. R. R.
BAHADUR, University of Chicago.

Given n independent observations z; , 22, -+ , £, from a normal population having an
unknown mean 6o and unknown variance o2, suppose that the statistician is asked to say
whether the unknown mean is >c¢ or <c where c is a given constant (which is supposed
henceforth to be zero), or to say that he would rather reserve judgement on the matter.
In the present problem (which was suggested by Professor R. C. Bose as a modification
of the problems considered in “The Problem of the Greater Mean,”” [R. R. BAHADUR AND
H. RoBBINS, Annals of Math. Stat., Vol. 21 (1950), pp. 469-487]), reserving judgement is
considered to be undesirable, and the possibility of doing so is admitted only for the pur-
pose of reducing the probability of the statistician making an incorrect assertion. For
any procedure d which associates each sample with one of the three decisions ‘‘assert
0 > 07, “agsert 8 < 0”’, and ‘‘reserve judgement’’, let a(d | s, ¢) = Pr.(‘“incorrect as-
sertion’’ using d | o,0), b(d | 80, ¢) = Pr.(“‘reserve judgement’’ using d | 6o, o), and set
a(d|6) = sup, {[a(d ] b0,0) + a(d | — b0,0)]/2},

B(d | 0) = sup, {[b(d | be, o) + b(d | — 60, 0)]/2}.

The class of procedures {d3} is defined as follows: for any 7,0 < 7 < =, d¥ = “assert § >
0if Z > s, assert § < 0if £ < —rs, and reserve judgement otherwise’’, where & = n~13'z;
and s? = n~12}(z; — £)2. One of the results obtained concerning the class {d7} is as follows.
Corresponding to any d there exisis a dr such that a(dy | 0) < a(d | 0) and 8(d7 | 6) < B(d | )
for all 9. In particular, given p, (0 < p < }), there (evidently) exists a r(p),
(0 < 7(p) <), such that sups {a(d7() | 8)} = p, and if d is any other procedure such that
supe {a(d |8)} < p, then B(d|6) > B(d7( | 6) for all 6. These results provide a justification
of the manner in which the two-sided ¢ test of a normal mean is sometimes used in practice.

24. Consistent Estimate of the Slope of a Linear Structural Relation. J. NEy-
MaN, University of California, Berkeley, anp CuarLEs M. StEIN, University
of Chicago.

Let Z, denote the system of 8n independent pairs of measurements (X, Yi), for 7 =
1,2,---,nand k = 1,2, --., 8, of two nonobservable random variables £ and 7 = «
cosecB — &, cotB, where a and B are constants. Variable £ is nonnormal. It is assumed
that any nonnormal components of the errors of measurement X;r — & and Yix — 5: are
mutually independent, independent of £ and of the normal components of the errors. The
normal components of errors may be correlated but as a pair are independent of £ . For
every n = 4, let m(n) be the greatest integer not exceeding v/n. Let A(n) = =/(m(n) — 1)
and b,.; = —7/2+ (G — 1)A(n), forj = 1,2, .-+ , m(n). Forevery b, | b | £ =/2 and for
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1=1,2,--- ,nlet A; = exp {—3[(X01 — Xi2 + Xis — Xi)cos b+ (Yiuu — Yiu + Y

— YY) sin b — 3(Xa1 — X2 + Xis — X)?, Bi = exp {—4(Yaa — Yo + Yo — Yis)?}

Ci=-exp {—3(Yis — Y + Yie — Yir)*}, D; = exp {—3(Yis — Y + Y5 — Yi)?}, and
finally, G(b, Z.) = [Zi_; Ai(Bi — 2C; ++D,)]/n. Let g(Z,) be the smallest of the m(n)
values of the function G(b, Z,) computed for b1 , bn2, *** , bumm and let T(Z,) denote
the smallest of the b,; for which G(b.; , Z,) = g(Z,). THEOREM. As n — =, the function
T(Z.) thus defined is a consistent estimate of 8. The present problem grew out of the prob-
lem of identifiability of g studied by Olav Reiersgl (Econometrica, Vol. 18 (1950), pp.
375-389). The results obtained here represent a generalization of the previous results of
one of the authors presented at the I.M.S. meeting in Boulder, Colorado, as the Second
Rietz Memorial Lecture, September, 1949.

25. A Remark on Almost Sure Convergence. MicHEL Lo#ve, University of
California, Berkeley. .

A criterion for almost sure convergence is given. It contains criteria of Kolmogorov,
Marcinkiewicz, and P. Lévy.

26. A Significance Test for Differences Among Ranked Treatments in an An-
alysis of Variance. D. B. Duncan, Virginia Polytechnic Institute.

Given a set of n treatment means (or totals) z;, z2, -+, &, , it is often desired to
decide whether each of the differences z; — z; is significant, that is, whether each of the
hypotheses Hip; > pi, ¢, =1,2,--, m, 7 5 j can be accepted. A test is obtained for
this purpose under the conditions which usually apply or are taken to apply in many analy-
ses of variance, namely that z, , 22 , -+ - , z, is a random sample from » normal populations
with means u; , p2, *++ , ua , respectively, and a common unknown variance o for which
the common form of independent estimate s? based on n. degrees of freedom is available.
In approaching the problem the complete Wald multiple decision function form of analysis
is found to be too unwieldy for a general case and is waived in favor of a simpler set of
requirements. These state that an « level test should provide likelihood ratio tests as
closely as possible for each of the ,C, hypotheses that any combination of r of the treat-
ment means are equal. Also satisfactory upper limits should be placed on the significance
level of the whole test with respect to each of these particular ,C, hypotheses. The test
obtained satisfies the given requirements better than other currently available procedures.
It consists of a fairly simple sequence of range-like tests followed by variance tests which
are presented in detail together with examples.

27. On Information and Sufficiency. S. KurLBack, George Washington Uni-
versity, AND R. A. LEIBLER, Washington, D. C.

For probability spaces (X, S, ui), ¢ = 1, 2, and probability measures A, u1 , p2 absolutely
continuous with respect to each other in pairs, f; , 7 = 1, 2, is defined by

wi(E) = f fi(z) d\(z) forall EeS.
E

Then I, .2(E) = [llul(E)]/ fi(x)[log fi(x) — log f2(x)] dr(x) for mi(E) > 0, and I1.2(E) =
E

0 for w1 (E) = 0, is defined as the mean information for discrimination between H; and H,
per observation from E e S for u1 , where H; is the hypothesis that z is selected from the
population with probability measure p; . J12(E), the divergence between the populations
in E, is defined as I1.2(E) + I:.1(E) or

Ji(E) = f 1(@)/m(E) — fa(@)ua(E)]llog fr(z) — log f2(2)] dA(z).
E
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Properties of I and J are considered and the relations of I to the information notions of
Fisher, Shannon and Wiener and J to Mahalanobis’ generalized distance are noted. In
particular it is proved that a transformation T never increases I;:2(X) and a necessary and
sufficient condition that T leave I1.2(X) unchtanged is that T be a sufficient statistic.

28. Asymptotic Theory of Certain ‘“Goodness of Fit”’ Criteria Based on Stochas-
tic Processes. T. W. ANDERSON, Columbia University, ANp D. A. DARLING,
University of Michigan.

The statistical problem treated is that of testing the hypothesis that a sample of n
independent, identically distributed random variables have the common continuous dis-
tribution function F(z). If F,(x) is the empirical cumulative distribution function and
¥(z) is some nonnegative weight function (0 < 2z < 1), we consider

Kn = ' sup_ac,<a {| F(2) — Fa(@) | YHF (@)])
and W2 = n / [F(z) — F.(x)]%[F(z)] dF (x). For suitable choices of ¥ these tests have

been considered by Kolmogorov, Cramér, von Mises, Smirnov, and others. A unified method
for calculating the limiting distributions of K, and W2 is developed by reducing them
to corresponding problems in stochastic processes, which in turn lead to more or less classi-
cal eigen-value and boundary value problems for special classes of differential equations.
For certain weight functions we give explicit limiting distributions. For ¢ = 1 we obtain,
e.g., the Kolmogorov distribution and the «? distribution of Smirnov and von Mises for
K, and W2 , respectively. By courtesy of the numerical analysis section of the Rand Cor-
poration a tabulation of the «? distribution has been prepared. (This work was supported
by the Rand Corporation.)

29. The Effect of Preliminary Tests of Significance on the Size and Power of
Certain Tests of Univariate Linear Hypotheses with Special Reference to
the Analysis of Variance. (Preliminary Report). RoBErRT E. BECHHOFER,
Columbia University.

Let X, -+, X, ; Yl ,*+,Y.3Z,--+, Z, be normally and independently distrib-
uted with means 0, , 05, ¢, pr; ¥1, -+, vs, respectively, and variance o2. The
null hypothesns is Ho vy = --- = yy, = 0. The standard test (T) of Hois an F-test involv-
ing =x_ 1Z,,/2,_1 If BL= = pr= 0, a more powerful test (T2) of H, is an F-test

involving =;_, Z:/(E, L X + E,,l Y ). However, if E, 1 nf/«r" should be large, T'» would
have low power. When the statlstlclan believes (based on past experience) that the u’s
equal zero, but wishes to protect himself against the possibility that they do not, he can
use & prehmmary F-test (T), i.e., he pools (uses T'2) or does not pool (uses T) accordingly
as E, L Y’ /2)1,,I f is less than or greater than some preassigned constant. The power of
the comp031te test [T = (T plus T, or T:)] depends on g, 7, s; the levels of significance
ag , a1, as associated vuth Ty, T, T2, respectively; and A\, = E,,l #,/20’ (the nuisance
parameter) and \; = Z;_; uz/2¢rz Formulae are derived for the size (Type I error) and
power of T. The behavior of the size and power as a function of \; and \; is characterized.
It is shown that certain choices of @ , a1 , @2 yield tests T which have desirable properties.
(Part of this work was carried out under the sponsorship of the Office of Naval Research.)

30. The Exact Distribution of the Extremal Quotient. E. J. GumBEL, New York,
anDp L. H. HerBacH, Columbia University.
The distribution of the extremal quotient ¢ (the ratio of the largest value =z,

to the smallest z; of n independent observations taken from the same distribution), is
obtained in four stages, three special cases: (1) 2, 2 0,2, 20,92 1. 2) 2, £ 0,2, £ 0,
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0=¢=1.@®)z1=0,2, 20,¢ =0, culminating in the general case: (4) —w; < 2, < 7, <
w2, —wz/w1 £ ¢ < . The common procedure in the first three cases is to integrate out
the extreme from the joint distribution of one extreme and the extremal quotient. Geo-
metric considerations give the appropriate regions of integration. The general case is
obtained by a composition of cases (3), (2), and (1). For symmetrical initial distributions
there exist only two branches which join at ¢ = 1, and the probability function may be
written in a symmetrical form. When n = 2, the distribution of ¢ for a symmetrical dis-
tribution is symmetrical about zero and invariant under a reciprocal transformation, and
if the initial distribution possesses no moments and does not vanish at z = 0, the dznsity
of probability becomes infinite at ¢ = 0. The distribution of ¢ is not affected by changes
in scale but is very sensitive to changes in origin. For a uniform distribution, the extremal
quotient of a nonnegative variate has just the opposite qualities of the extremal quotient
of a nonpositive variate. For variates changing sign, the extremal -quotient is asymp-
totically negative. .

31. The Distributions of the t and F Statistics for a Class of Nonnormal Popu-
lations. RaLpH A. BrADLEY, Virginia Polytechnic Institute.

Series expansions of the cumulative distribution functions of ¢ and of F in powers of
{1 and F~! are obtained. The general method of derivation presented is valid for popula-
tions with density functions, f(u), such that f(u) > 0, f(u) is continuous, and has con-
tinuous derivatives for all values, —« < u < ». The coefficients of terms in these expan-
sions are reduced from integrals, of multiplicity equal to the sample size, to products of
coefficients, common to all populations of the class defined above, and integrals of no
greater multiplicity than the number of groups of observations in the sample. Selected
values of the common coefficients are given as well as illustrative examples for the Cauchy
and ‘‘squared hyperbolic secant’’ population.

32. Note on the Behavior of the Characteristic Function of a Random Variable
at Zero. M. RosEnBraTT, University of Chicago.

Let X be a random variable with characteristic function ¢(z). Let X, = X when | X | <
nY* and let X, = 0 when | X | > n'=. The following theorems are proved: (1) 1 — ¢(z) =
0(]2]9,0 < a <1 atz=0if and only if n-Pr(| X | > nle) = 0(1). () 1 — ¢(z) =
o(|2]9,1 <a<2atz=0ifand only if n-Pr(| X | > n¥e) = o(1) and E(X,) = o(l).
The results are obtained by making use of W. Feller’s necessary and sufficient conditions
for the weak law of large numbers (see W. FELLER, Acla Univ. Szeged, Vol. 8 (1937), pp.

191-201).

—

NEWS AND NOTICES
Readers are z'nvz"ted to submit to the Secretary of the Institute news items of interest.

Personal Items

Dr. R. R. Bahadur; who received his Ph.D. in mathematical statistics from
the University of North Carolina in June, 1950, is now an instructor in the Com-
mittee on Statistics of the University of Chicago.

Dr..T. A. Bancroft, Associate Professor of Statistics, Iowa State College, has
been appointed Head of the Department of Statistics and Director of the Statis-

tical Laboratory at Iowa State College.



