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near ©u = 1, this resemblance may be exploited to give (after elementary but
tedious calculations)

(10) wZpm =Bn+1,3%) + e
with
0<e<2 ™+ @B/A— )"

whenever n > a/(1 — a). Here § is any number < pg. Picking § = n?e <1,
shows that the error goes to zero almost as fast as n~"'". A similar result may be
obtained by the methods of Uspensky.

From (10) we have easily

(11) ot ~ VT (n— ),

which is correct even for p = g¢.
It was pointed out by the referee that (9) and (11) are special cases of the
relation

Zpa ~ (3) V/variance

which generally holds whenever the shape of the distribution curve approaches
a limit.
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APPROXIMATION TO THE POINT BINOMIAL

By Burton H. Camr
Wesleyan University
The following approximation to the sum of the first (¢ + 1) terms of the
point binomial appears to be useful. Let this sum be denoted by S, and let
the point binomial be the expansion of (p + QV; ie., let

ka

W Sen =p" + Np"g+ - + (7) p" e
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Then S.4: is approximately equal to the probability that a unit normal deviate
will exceed x, where

1[(93— 1>( s g>1/3_9t+8]
_3L\ s Ne+1b t+ 1 s= N — 1.

(2 r = [1( s q)2/3+ 1 ]1,2 ’
s\t+1p t+ 1

This approximation is a corollary to an approximation given by Paulson [1]
to the table of the integral of Snedecor’s F (Fisher and Yates’ w = €*), and the
known facts that this integral is an incomplete Beta-function [2] of a simple
transform of F, and that S,,; is also an incomplete Beta function of suitable
arguments. Paulson’s approximation appeared to be quite close. Since it was
essentially an approximation to the incomplete Beta function we must now have
a similarly close approximation to the point binomial. Therefore two illustrations
will suffice.

Ezxample 1. (.8 + .28 Ezxample 2. (9 + .1)%
S S
t ! Error t ! Error
Approx. True Approx. True
0 .166 .168 —.002 0 .005 .005 .000
1 .505 .503 .002 1 .033 .034 —.001
2 .801 797 .004 3 .250 .250 .000
3 .943 .944 —.001 5 .617 .616 .001
5 .999 .999 .000 10 .992 .991 .001

Both these examples involve strongly skewed distributions, one with a small
value of N and the other with a fairly large value of N. Considering the amount
of computation involved this approximation is much more satisfactory than
any other in this author’s experience.
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