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THE DISTRIBUTION OF THE MAXIMUM DEVIATION BETWEEN TWO
SAMPLE CUMULATIVE STEP FUNCTIONS

By Frank J. Massey, Jr.

Unaversity of Oregon

1. Summary. Let 11 < 2. < --- < z, and 41 < 9 < :++ < Yn be the or-
dered results of two random samples from populations having continuous cumula-
tive distribution functions F(x) and G(x) respectively. Let S,(x) = k/n when k
is the number of observed values of X which are less than or equal to z, and
similarly let S,',,(y) = j/m where j is the number of observed values of Y which
are less than or equal to y. .

The statistic d = max | 8,(z) — Sn(z) | can be used to test the hypothesis
F(z) = G(z), where the hypothesis would be rejected if the observed d is sig-
nificantly large. The limiting distribution of d 1/ ﬁ% has been derived [1]
and [4], and tabled [5]. In this paper a method of obtaining the exact distribu-
tion of d for small samples is described, and a short table for equal size samples
is included. The general technique is that used by the author for the single
sample case [2]. There is a lower bound to the power of the test against any
specified alternative, [3]. This lower bound approaches one as » and m approach
infinity proving that the test is consistent.

2. Distribution of d. Denote by a1 the number of observed values of ¥ which
arelessthan z; , by a; the number of values of ¥ which are between z;and z, , - - -,
by 41 the number of values of ¥ which are greater than z, . It is known that,
if the hypothesis F(z) = G(z) is true, the probability of the occurrence of any
set of ay, *++ , anq 18 nlm!/(m 4 n)! Thus the probability that d < a can be
found by counting the number of sets of a;, - -+, a.41 Which give values of
d < a and multiply this number by n!m!/(m + n)! The method of counting is
illustrated here for n = m, and some results are given in Table 1. If n = m
then S.(z) and S»(y) can only differ by multiples of 1/n. (If n 5 m they can
only differ by multiples of 1/mn.) For integer k we count the number of sets
of oy, *++ , anpa such that d < k/n.

Denote by Ui(j),j = 1,2,-++,n,72=0,1,2,---, 2k — 1, the number of
sets of possible @y , az, - -+ , aj such that S,(z;) = (j + 5 — k)/n and such that
| Sa(z) — S »(@) | has been less than or equal to k/n for z < z; . It is easily seen
that these X,(j) satisfy the following difference equations. !

Uo(j + 1) = Uo(j) + Ul(j)’
UG+ 1 = Uoi) + Ui(3) + Ua(3),

Un—(G + 1) = Us(p) + -+ + Una(y),
Una(G+ 1) = Us() + -+ 4+ Una(®).
1 Research under contract N6-onr-218/IV with the Office of Naval Research.
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TABLE 1
Probability of d < k/n
n=m k=1 k=2 k=3 k=4 k=5 k=6

1 .000000

2 .666667 | 1.000000

3 .400000 .900000 | 1.000000

4 .228571 .771429 .971429 .000000

5 . 126984 .642857 .920635 .992063 .000000

6 .069264 .525974 .857143 .974026 .997835 .000000

7 .037206 | .424825 | .787879 | .946970.] .991841 | .999417

8 .019891 | .339860 | .717327 | .912976 | .981352 | .997514

9 .010537 | .269889 | .648293 | .874126 | .966434 | .993706
10 .005542 .213070 .582476 .832179 .947552 .987659
11 .002903 .167412 .520850 .788524 .925339 .979261
12 .001515 .131018 .463902 .'744225 .900453 .968564
13 .000788 .102194 .411804 .700080 .873512 .955728
14 .000408 .079484 .364515 .656680 .845065 .940970
15 .000211 .061669 .321862 .614453 .815584 .924536
16 .000109 | .047744 | .283588 | .573707 | .785465 | .906674
17 .000056 .036893 .249393 .534647 .755041 .887623
18 .000029 | .028460 | .218952 | .497410 | .724582 | .867606
19 .0*148 .021922 .191938 .462071 | .694311 .846827
20 .0%761 .016863 .168030 .428664 .664409 .825467
21 .0%390 .012956 .146921 .397187 .635020 .803688
22 .0%199 .009943 | .128321 | .367614 | .606260 | .781632
23 .0%102 .007623 .111963 .339899 .578218 .759422
24 .0%52 .005839 .097600 .313983 .550963 .737166
25 .0%27 .004468 | .085007 | .289796 | .524546 | .714958
26 .0%14 .003417 .073980 .267263 .499005 .692877
27 .0769 .002611 | .064338 | .246303 | .474362 | .670992
28 .0'35 .001994 | .055914 | .226833 | .450633 | .649362
29 .0"18 .001522 .048563 .208772 .427823 .628036
30 .0891 .001161 .042154 .192037 .405929 .607055
31 L0846 .000885 .036570 .176546 .384946 .586455
32 .0%23 .000674 .031710 .162223 .364861 .566264
33 L0812 .000513 .027483 .148989 .345657 .546505
34 .0%0 .000391 | .023808 | .136773 | .327316 | .527198
35 .0%31 .000297 | .020616 | .125505 | .309816 | .508355
36 .0°16 .000226 | .017845 | .115120 | .293133 | .489989
37 .0179 .000172 .015440 .105553 .277243 .472107
38 .0140 .000131 .013355 .096747 .262121 .454713
39 .01920 .000099 | .011547 | .088645 | .247738 | .437811
40 .0110 .000075 | .009981 | .081195 ! .234069 l .421400
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n=m k=17 k=28 =9 k=10 k=11 k=12

) .

2

3

4

5

6

7 .000000

8 .999845 | 1.000000

9 .999260 | .999959 | 1.000000

10 .997943 | .999783 | .999989 | 1.000000

11 .995634 | .999345 | .999938 | .999997 | 1.000000

12 .992141 | .998503 | .999796 | .999982 | .999999 | 1.000000
13 987351 | .997125 | .999500 | .999938 | .999995 | 1.000000
14 .081218 | .995100 | .998979 | .999837 | .999981 | .999999
15 973752 | .992344 | .998163 | .999647 | .999948 | .999994
16 .965002 | .988801 | .996985 | .999330 | .999880 | .999983
17 955047 | .984439 | .995389 | .998847 | .999762 | .999960
18 943982 | .979252 | .993331 | .998160 | .999571 | .999917
19 .931911 | .973251 | .990776 | .997233 | .999286 | .999844
20 .918942 | .966458 | .987701 | .996033 | .998884 | .999729
21 .905183 | .958911 | .984095 | .99453 .99834 .99956
22 .890738 | .950653 | .979953 | .99271 .99764 .99933
23 .875705 | .941731 | .975280 | .99055 .99676 .99901
24 .860177 | .932197 | .970087 | .98803 .99568 .99860
25 .844240 | .922101 | .964389 | .98516 .99438 .99808
26 .827971 | .911498 | .958206 | .98193 .99287 .99744
27 .811443 | .900437 | .951562 | .97833 .99111 .99667
28 794722 | .888969 | .944481 | .97438 .98911 .99576
29 777865 | .877140 | .936989 | .97007 .98686 .99469
30 .760927 | .864996 | .929113 | .96542 .98436 .99346
31 .743955 | .852580 | .920880 | .96044 .98160 .9921
32 .726992 | .839930 | .912319 | .95514 .97859 .9905
33 .710076 | .827086 | .903455 | .94953 .97533 .9888
34 .693242 | .814080 | .894315 | .94363 .97182 .9868
35 .676519 | .800946 | .884924 | .93745 .96807 .9847
36 .659934 | .787713 | .875307 | .93101 .96407 .9824
37 .643512 | .774409 | .865487 | .92432 .95985 L9799
38 .627273 | .761059 | .855487 | .91740 .95540 .9773
39 .611234 | .747687 | .845327 | .91027 .95074 L9744
40 .595413 | .734313 | .835029 | .90293 .94587 L9714
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For small n these equations can be solved by iteration, which was done in
constructing Table 1. Initial conditions an Ux(0) = 1, U;,(0) = O for 7 = k.
It might be noted that the U.(j + 1) gre subtotals of the U;(j) so that the itera-
tion proceeds very rapidly on an adding machine. The probability that d < k/n is
[Us(n) + Ui(n) + Uz(n) --- 4+ Ur(n)nin!/(2n)!.
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A NOTE ON THE SURPRISE INDEX

By R. M. REDHEFFER
Harvard University

Let pm(m = 0, 1,2, -+ ) be a set of probabilities of events E,, , and suppose
that the event E;, with probability p;, actually occurred. Is the fact that E;
occurred to be regarded as surprising? In a recent article [1] this question is
answered by introducing the surprise index S;,

(1) 8; = (Zpm)/pi,
which gives a comparison between the probability expected and that actually
observed.! The event is to be regarded as surprising when S; is large.

The author remarks on the difficulty of computing (1) for the Poisson and
binomial distribution. The problem consists in evaluating the numerator, which
we shall express here in terms of tabulated functions. The Poisson case leads
to Bessel functions, the binomial case to Legendre or hypergeometric functions,

and the asymptotic behavior involves square roots only.
1. The Poisson case. For the Poisson case we have p, = \"¢™/m! so that the

generating function is

2) e e = Zpma™.

Let z = €”, then ¢ *; multiply; integrate from 0 to 2r; and simplify slightly to
obtain

®) Zph = @) [ o

1 Cf. also [6].




