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A NOTE ON THE TEST OF SERIAL CORRELATION COEFFICIENTS
’ By Masami OGAWARA

Meteorological Research I nstitute, Tokyo

1. Summary. In this note the author points out that in the case of stationary
Gaussian Markov process, i.e., autoregressive stochastic process, we can test
the serial correlation coefficients by a method based on normal regression theory.
Particularly, in the case of simple Markov process, we can find the confidence
limits for its autocorrelation coefficient.

In this method, so far as random variables are concerned, not all the informa-
tion in the original data is used, with a consequent reduction of degrees of
freedom. However, the other part of information is introduced as parameters
in the distribution functions of random variables and in the statistic useful

for tests.

2. Introduction. For the test of the serial correlation coefficient, a method
based on its distribution may be orthodox. Up to the present, however, many
investigations along this line, e.g. R. L. Anderson [1], M. H. Quenouille [2],
P. A. P. Moran [3], T. W. Anderson [4] and others seem to be confined in at
least one of the following restrictions:

(1) circular definition,

(2) significance test, i.e., testing the uncorrelatedness of the process,

« (3) approximate distribution.

In this paper, we do not use the distribution of a serial correlation coefficient
itself, but normal regression theory, and will give the general testing method for
an autoregressive stochastic process. .

3. Fundamental theorems. The following theorems are fundamental in our
method.

Taeorem 1. Let z,(t = ---, —1,0, 1, 2, ---) be a stmple Markov process.
If the values of zy—1(k = 1,2, -+, n + 1) are fixzed, the random variables s
(k =1,2, -+, n) are mutually independent.'

This theorem is easily proved from the following facts:

(1) When the value of x,is given, z; , -« + , Z, are independent of z_; ,z_p, « - - .

(2) When z, is given, the stochastic sequence z;, ., - -, is also a simple
Markov process for the inversely directed time scale.

Similarly, the following general theorem holds:

TaroreEm 2. Letx, (t = ---, —1,0,1,2, ---) be a Markov process of order h.
Then, if the values of Trhyn—h, *** 5 Tuhsn-1, Tkr+D+1s ** 5 Tepsn+n (B =
1,2, - -+, n) are given, the random variables zrpsry (b = 1,2, « - - , n) are mutually
independent.

1 This fact has been used by U. V. Linnik (without proof) in his pronf of the central
limit theorem for simple Markov process. Izvestiya Akad. Nauk. USSR., Ser. Mat., Vol. 13

(1949).
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Trarorem 3.2 Letz, t = ---, —1,0, 1, - - -) be a stationary Gaussian process.
A necessary and sufficient condition that x. should be a non-singular Markov
process of order h is that its autocorrelation coefficients p. satisfy the finite difference
equation
(1) pr+ Gipr1 + ¢+ + anprn = 0, r=12 ;a5 X0,
where the a’s are such that every root of the equation
2+ ad+ - taazta=0

lies within the unit circle.
4. The case of a stationary Gaussian simple Markov process. Let m, ¢* and

p-(=p") be the mean, variance and autocorrelation coefficient, respectively,
of a stationary Gaussian simple Markov process z; with discrete parameter {.

According to Theorem 1, when the values of xy_1(k = 1,2, -+, n + 1) are
fixed, zax(k = 1, 2, ---, n) are mutually independent and, in this case, their
conditional probability densities are given by

1 1 ,
f(@an | Toke1, Tonpa) = ~or o0 P [—ﬁ {xar — (a + bxx) }2]

k=127--+,n),
where
a =m(l = p)’/(L + o).
b = 2p/(1+ pY),
o = o’(1 — p)/(1 + o),
2r = @1 + Tu4a)/2.

Considering z; as the fixed variates and applying normal regression theory
[6], the maximum likelihood estimates of the parameter a, b, and o are given by

@)

d = iz - f},,
@®) b=3 @~ -2 [T @ - 2,
& = 2 (zm — 4 — bxi)/n,
Fomnl
where

& = Zl‘, Tu/n, & = ; zp/n = (&1 + %:)/2

2 M. Ogawara [5].
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with
n n
L = 21: Tora/M, Ty = ; To41/70.

We can rewrite b as follows:

@) b =2n/Q + r),

where

%{ Z (23%—1 — Z) (xzk — %) + - Z (xzk — Z) (x2k+1 - xs)}

" = ’
5 {;& ; (T — 30)° + - ; (241 —~ &) }
(5) L
- ; (ok1 — Z1) (x2k+1 7))
Te =
%{ Z (o1 — ) + = Z (@or41 — 173)}
Because :
a(ay b’ 0%) _ 2(1 - P)2(1 - P2)2
amate - A+ o0 ferlel=D
the maximum likelihood estimates of m, ¢* and p are given by
h = d/(1 — b),
® & =8V B,

p =01 =1t
Since, as the function of random variables z ,

G -5 Gl — &) —2
) F = 1

> (e — 4 — bap)’
1
has the F-distribution with 1 and n — 2 degrees of freedom, we can test the

hypotheses p = pyorb = by = 2p0/(1 + p5). Asthefunctionp = (1 —/1 — b2)/b
is monotone increasing, we can also find confidence limits for p from those for b.

6. The case of a stationary Gaussian Markov process of order h. Let, as
before, m, o® and p, be the mean, variance and autocorrelation coefficient of our
process z; respectively. From Theorem 2, the random variables zipin(k =

1,2, --- ,n) are independent of each other, under the condition that the variables
Tr(h+1)—p 5 Tk(h+1)+p =142 --,k=12---, n) are fixed, a'nd) in the
present, case, their conditional probability densities are given by

F@asn | Trpin—p , Trpin+p ;2 = 1,2, - -+, B)

8) 1 1 h )2
= \/———5; ag exp —2—0‘(2) Trht)—p — p;o bpxpk (lc = 1, 2’ e, n),
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where x;k = (a:k(;.+1)_,, + xk(h+1)+p)/2 (p = 1, 2, ceey, h), x;p, = 1, and where

h
bo=m(l—~2ch), bp=2¢,(p=1,2,---,h),

p=1
( —

Ch ( 1 ** Ph-1 Phyr P2 ! ( Ph

Ch—1 . : . . Ph—1
)] a = lppa 1 P2 ph| c | m

G Pht1 P2 1 *e Ph—1 P1L

Ch poh ** pryr Pr—r 1 P )
and

1 a e a,

(10) ol = + aip + + anpn K]

1+d+ - +a

where the a’s are the coefficients of equation (1).

Considering the relations (1) and (9), the hypotheses concerning p; , * - , ps°
is equivalent to the hypotheses concerning ¢;, -+, ¢s or by, ---, by. Thus
normal regression theory is applicable.

Moreover, we can estimate the order of the Markov process as follows. 'The
above stated theory holds whenever the essential order ko of the process is not
greater than h. Hence, we may select as its order such a value ho that the hy-
potheses by, = br,q1= -+ = bx = 0 is rejected but the hypotheses b 41 =
brgy2 = -+ = by = 0 is not rejected.
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