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1. Introduction. The adjustment of an inverse matrix arising from the change
of a single element, or of elements in a single row or column, in the original
matrix has recently been discussed by Sherman and Morrison [1, 2]. In discrimi-
nant function analysis the adjustment due to the addition of a degenerate
matrix of rank one to the original matrix has sometimes been required, and
the method used by the writer is described in this note. It will be noticed that
this case includes the cases considered by Sherman and Morrison.

2. General formula. The new square matrix can always be written in the form

@) B=A+uv,

where u is a column vector (single column matrix), and v’ a row vector (dashes
denote matrix transposes). We write formally

B! =(A+uv)? =A71 +uvA™)™
=A7(1 — uvA7 + uvATuvAT - ..0)

2) =A" - A-vVAT {1 — VAU + (VAT = -0}
= A_l _ A'lu-v’A—l
14 vA1u’

which has the same simple structure as (1) and can be determined when A™
is known. To check this formal result, we may easily verify that pre- or post-
multiplication of the expression (2) by B gives the unit matrix.

3. Numerical example in discriminant analysis. The general regression rela-
tion between two sample matrices S; and S; may be written (Bartlett [3])

(3) Sz = Cncﬁlsl + Sz.1 .

Here the n observations of any variable (measured if necessary from the general
mean) comprise one row in the appropriate matrix, S; and S; representing
respectively the dependent and independent variables. S;S is written Cy for
convenience, and similarly for Cyy, Cu ; also Cuy = S25Ss, . In discriminant
analysis in its strict sense S; stands for a single dummy variable serving to
isolate a group or other contrast between the proper random variables S\,
In that case the equation

(4) cn - c2lcl-llclz + Cn.l
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derived from (3) becomes of the form
(5) Cxn = 22’ + Cn..

The discriminant function coefficients'in Fisher’s original discussion [4] of this
type of analysis are proportional to the solution a of the equation

(6) sz,la = Z

(see Bartlett [3], p. 37), and hence are obtained as Ci21z, where Cy; is the
matrix of ‘sums of squares and products’ within groups. But in tests of sig-
nificance of a it is convenient (see, for example, Bartlett [5], §5) to make use
of the “inverted regression relation’ (first noted by Fisher [4], p. 184)

(7) Sl = Clzcz_zlsz -+ S1.2 )

giving discriminant function coefficients b = C»Co .

It is sometimes required to obtain the second (equivaient) form of solution
involving Cz; from computations already available based on the first method of
analysis involving Cz;1. For example, in Fisher’s original comparison of Iris
versicolor and Iris setosa based on 50 observations, on each species, of the variables

x; = sepal length,
x, = sepal width,
x3 = petal length,
x4 = petal width,

he gives (p. 181) for Cz1 the (symmetric positive definite) matrix

2 T2 X3 T4
x1 0.1187161
8 2 —0.0668666 0.1452736
z3 —0.0816158 +0.0334101 0.2193614
24 +0.0396350 —0.1107529 —0.2720206 0.8945506.

We take S; as a pseudo-variate with value +3% for one species and —% for the
other, so that Cy = 25, and Cy is the column vector of differences in means
multiplied by 25, and z' = Cxu/+/25. From (5) and (2) the inverse of Cy is

—1 -1
C22.12-2'Ca21

Cpy — 2247 = 222
22.1 I+ Z’Cz—zl_ll’
or from (6),
_ aa’
(9) C22]..l - m’,_z'o

Fisher actually gives the solution of (6) with z replaced by the vector of mean
differences, so that, in terms of his solution ¢, where

—0.0311511

—0.1839075
(10) c=2a/5=| 1991044 |

+0.3147370
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we find that (9) becomes
(11) 721 — 0.9146 cc’.

Hence we obtain Cy; (without haviné to re-work it from G,,) as

1 L2 Z3 X4
:c1 0.11783
(12) .  —0.07211 0.11434
T3 —0.07529 +0.07077 0.17424
Z4 -+0.04860 —0.05781 —0.33595 0.80395.

With this matrix we can complete the formal regressmn analysis of S;, giving
for b and its ‘standard errors’

—0.02847 =+ 0.03368
(13) —0.16808 =+ 0.03318
4+0.20298 =+ 0.04095
+0.28764 == 0.08798.

The solution b we know to be a multiple of the solution ¢ (as may be verified to
within 2 in the fourth decimal place), but we also see from (12) that the first
variable is not contributing to the discrimination and might be omitted. The
corresponding analysis of variance of S; (c.f. Fisher’s Table VII) gives

D.F. S.S. M.S.
between {xg O 2 3 24.0785
(14) species |z (partial).............. 1 0.0069
within species...................... 95 0.9146 0.011088
Total......coooi 99 25.0000

so that the square of the multiple correlation coefficient is only reduced from
0.96342 to0 0.96314 by the omission of z; . It should be noticed that the multiplier
0.9146 in (11) is the ‘within species’ entry in (14).

4. Theoretical example in discriminant analysis. The formula (2) is also
theoretically useful in deriving the discriminant function by ‘size and shape’
suggested by Penrose [6]. It is known that for multivariate normal variables x
with constant variance matrix V the ideal discriminant function for contrasting
two groups has coefficients d’V ™", where d is the column vector of true differences
in means of the two groups. It is now assumed that after standardization of
each variable to unit variance we can write

1 o »
p 1 »p

(15) \ = (1 — pI 4 pww/,
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where I is the unit matrix and w a column vector with unit components. Applying
formula (2), we find the inverse matrix
_ 1 % ww’

1—p 1—pl4+ppp—-1’

where p is the number of variables. Hence

(16) v

d’ (w'd)w’
d’ 1 _ _ 14
v 1—p 1—pl+ppp—1
(17) _ _ﬂ’i_{[i’i’ _ ] [ _ _PP___]}
pd—p\lwd ~ " twt 1+ —1)

IL‘, — /:| /[ 1—-0»p

* [W’d wtw L+ — 11

where the two sets of coefficients in (17), h’ and g’ (« w’), say (respectively),
are arranged to give zero correlation between g’x and h'x. This is checked by

evaluating the covariance E{w’y-h’y}, where E denotes expectation, and y the
standardized vector deviate with variance matrix E{yy’} = V. We have

B(wyty) = Elwyyh).= w¥h = W[ — ) + pww]| 2% — ]

= p(l — p) + ppw'w — (1 — pW'W — p(w'w)* = 0.
In view of this zero correlation the best discriminant function is of the form

d

d»
(18) o Y1+ = Y2,

where y; = W’x (the ‘size’ variable),
y2 = h’x (the ‘shape’ variable),

d, is the difference in means for y; and v, its variance, and similarly for y..
Penrose has shown that even if V is not exactly of the homogeneous type (15),
the above method often gives a very good discriminant function. Applying it
to the numerical data referred to in section 3 above, for example, it will be found
that we obtain estimates

Size weighting (dyw/v;) Shape weighting (dsh/v;) Final weighting

T 1.4351 —2.3353 —0.9002
(19) Z2 1.4351 —8.0664 —6.6313

Z3 1.4351 +5.9774 7.4125

T4 1.4351 +4.4243 5.8594.

It should be noted that the final weightings in (19) correspond with formula
(18), and differ slightly from those given by Penrose (Table 5), who makes
allowance for the observed correlation between y; and y. . This allowance seems
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somewhat illogical and in any case rather a refinement. Thus Penrose’s coefficients
give a squared multiple correlation coefficient of 0.96334, whereas those in (19)
give 0.96329 (compared with the maximum given in Section 3 of 0.96342).

This method is much quicker than the exact method, but of course the full
analysis, as has been indicated in Section 3, enables the most efficient yet
economical diseriminant function to be found.
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