ESTIMATORS OF THE PROBABILITY OF THE ZERO CLASS IN POISSON
AND CERTAIN RELATED POPULATIONS

By N. L. JounsoN

University College, London

1. Summary and conclusions. Two estimators of the probability of falling
into the zero class are compared, for a family of populations related to Poisson
populations. The first estimator, ¢ , is based on the observed proportion in the
zero class; the second, e, would be the maximum likelihood estimator if the
underlying distribution were Poisson. .

From a practical point of view each estimator possesses its own peculiar
advantages. ¢ has the advantage that the detailed distribution among the
non-zero classes need not be examined. e has the advantage that only the
mean of the observations is needed, the distribution among the various classes
not being required. The relative importance of these advantages will naturally
vary according to the situations in which the estimators are to be used.

An arbitrary measure of relative accuracy, the mean square error ratio, is
used. On this basis e is superior to ¢ for all sample sizes (greater than one)
if the population distribution is Poisson. Provided the sample size is not too
large e, may still be superior to & when the population distribution deviates to a
moderate extent from Poisson form.

A third estimator e , which is a modification of e and is unbiased, provided
the population is Poisson, may be preferred to e unless p exceeds about 0.45. Its
properties vis-d-vis & probably differ little from those of e .

2. The problem. The following investigation was suggested by a problem
which arose frequently in connection with the study of weapon lethality in the
course of wartime operational and development research. When a fragmenting
shell or bomb bursts at a given distance from a target, the density of strikes will
vary according to the angular direction with regard to the equatorial plane of
the shell. Within the main fragment belt, however, the density may be regarded
as varying locally in a random way about an average value. The practical
requirement is to determine the chance, say ¢, that at least one potentially
lethal or effective fragment will strike an area of given size which we may call
the ‘unit area’. Alternatively we can estimate p = 1 — g, the chance that no
such fragment will strike the unit area.

If it is assumed that the distribution of effective hits follows the Poisson law,
and in certain cases evidence indicated that this was justifiable, theng = 1 — ¢ ™
and p = ¢ ", where m is the expected value of the number of strikes on the
unit. area. It was therefore customary to estimate m from the observed average
number of effective hits, 7 say, per unit area, derived from a series of experi-
mental firings. Then ¢ was estimated by the formula 1 — ¢™". If the distribution
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departs from the Poisson form, the procedure is clearly incorrect in theory,
but in practice the data were often inadequate to establish any alternative
form of the distribution law and the estimator 1 — ¢~ was still used. In the
discussion below we shall be concerned with the relative accuracy of two alterna-
tive estimators of p(= 1 — ¢) (one of the estimators being e,

(a) when the distribution follows the Poisson law;

(b} when it departs from this law, but can be represented by a positive or
negative binomial.

3. Properties of the two estimators. The problem may be stated formally as
follows: vy, 2, *-+, v, are independent discrete random variables. If n, be
the number of zero values out of the n values then

1 €@ = no/n

may be used as an estimator of p, the probability of the zero class. ¢ is, in fact,
the usual form of estimator for the proportion of individuals falling into a given
class, and is of general application.

The estimator of p described in section 2 is

(2) € =¢ ,

n
where # = n* Y, v; . This estimator is based on the assumption of a common
=1

Poisson distribution for the #’s.

It will be noted that, while the evaluation of the estimator e; does not require a
knowledge of the values of the separate v’s (provided their total or average is
known), € requires only a knowledge of the number of »’s which are zero. In
the case described in section 2, e is often appropriate as the separate values of
the v’s are not known though their total is known. On the other hand, if, for
example, v1, v2, -+, v, represent the number of cells developing in a given
time in a number of cultures, it may be possible to observe only 7, , the number
of cases where no development has occurred. In such cases Fisher [1] has con-
sidered the inverse problem of estimating m from ne by the formula —log e .
This problem will not be considered in the present paper.

We shall now compare the estimators ¢ and e in the case when the »’s do,
in fact, each follow a Poisson distribution with expected value m, so that

r

3) Priv=r} = % e (r=0,1,2,--).
The probability of the zero class is
4) p=Prfv=0} =¢"

Since 7, is a binomial variable with probability p and index », the moments
and moment-ratios of ¢ are easily determined. In regard to e, it can be shown

that

®) pale) = ",
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where
©6) fs,n) =1 — ¢/

& is an unbiased estimator of p whilé e is biased. Numerical calculation shows
that this bias is negligible for most practical purposes (the maximum absolute
bias is in the range p = 0.3-0.4 and is approximately +0.18/n). For all values
of p the relation .

@ lim &(e) = p

holds.

4. Comparison of the estimators. Since e, is a biased estimator of p, the com-
parison of ¢ and e certainly cannot be based simply om their variances. One
method of comparison, which does make some allowance for biases, is to use the

TABLE I
Ratio of mean square error of e to mean square error of e (Poisson populalion)

\ »
10 20 30 60 ©

0.1 0.337 0.296 0.282 0.269 0.256
0.2 0.475 0.439 0.427 0.416 0.402
0.3 0.570 0.544 0.535 0.527 0.516
0.4 0.644 0.628 0.623 0.619 0.611
0.5 0.704 0.700 0.698 0.696 0.693
0.6 0.756 0.762 0.763 0.767 0.766
0.7 0.800 |  0.816 0.822 0.829 0.832
0.8 0.839 |  0.866 0.875 0.886 0.893
0.9 0.874 l 0.911 0.923 0.938 0.948

mean square errors of the estimators [2]. The mean square error of e is &[(e; — )
= ¢*(&) + [6(ez) — pI’, while the mean square error of ¢ is &[(e, — p)Y] = o’(e1)
since ¢ is an unbiased estimator of p. The ratio of mean square errors will be
used as an index of comparison of estimators in the present paper, although it is
clearly arbitrary, and other criteria could be preferable in certain circumstances.

Table I gives values of the mean square error ratio for various values of n
and p. According to this criterion the second estimator (e:) is more accurate
than the first (&) for all cases shown in this table.

It can be shown that this ratio of mean squares must always be less than one,
except in the trivial case n = 1. The relative advantage of e increases as p
diminishes and does not vary greatly with n.

The correlation between the two estimators is

(8) e, @) = mp)'(l — p)Hp @™ — 1) {pVO" — 117,
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whence

©) lim p(e, &) = {—p(1 — p)7" log p}".

o(e1, ) approaches this limit rapidly as n increases. We note that

(10) lim P(€1,, @) = ilj'.?o (0(e2)/a(er)),

n—x

as is to be expected since e, is the maximum likelihood estimator of p [3].

5. A third estimator of p. The superiority of e; as an estimator of p is to be
expected, since 7 is a sufficient statistic for p. Using the method described in 4],
we obtain the minimum variance unbiased estimator'

(11) a=(1—-n""

which may be regarded as a modified, and perhaps improved, form of e, .

The variance of ¢ is p"’(p—” " — 1). This differs but little from the mean
square error of e, as is to be expected since (1 — n™")" = ¢ . It appears that
for sufficiently large values of n the mean square error of ¢ will be slightly less
than that of e for p < 0.45, while for p > 0.45 the mean square error of e
will be slightly the smaller. The performance of e; compared with ¢ will be
practically identical with that of e, .

6. Non-Poisson populations. It is quite possible that e; (or ;) may be used as
an estimator of p even when v is not in fact a Poisson variable. It may be that
it has been incorrectly assumed that the distribution is Poisson in form or,
perhaps, departure from Poisson, though admitted, has been considered of
insufficient magnitude to affect the usefulness of e, .

It is of interest to investigate the effect of deviations from the Poisson distribu-
tion on the properties of ¢ and e . In order to do this it is first necessary to
specify the nature of these deviations. Many forms of modification of the Poisson
distribution have been suggested ([5]-[9]). We shall deal only with the simple
form of deviation from Poisson wherein the distribution is defined by successive
terms in the expansion of

(12) 14+ o) — w]_m/"', —1<w<0or0 < w.

The expected value of this distribution is m, whatever be the value of w. If
—1 < w < 0, then puttingw = —P,1 + v = @, NP = m we have the binomial

distribution
(13) Priv = r} = (]Z)P'QN_'.

1T am indebted to the referce for suggesting the use of this estimator.
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If 0 < w we have the negative binomial distribution. Putting w = 20%, m = fo*
we have

_TeH3) @Y
rTG)) | @+ D

a form of the Pélya-Eggenberger [10] distribution previously obtained by
Greenwood & Yule [11], which can be considered to arise from a mixture of
Poisson distributions with expected values distributed proportionately to x’c*
with f degrees of freedom. As w — 0, the distribution tends to the Poisson form
whether w is moving through positive or negative values.

Whether w is positive or negative, the probability of the zero class is

(15) p= (14 w)™

The moments and moment-ratios of ¢ are the same functions of p as in the
Poisson case. It can be shown that

(16) pee) = [1 4+ wf(s, n)] ™™,
where f(s, n) = 1 — ¢~*/* as in (6), and that the correlation between the two
estimators is
pler, &) = mp)'(L — p) {1 + of (L, )™ — 1}
AL+ @@, I+ of @, )P - 137

For any value of p, ¢ is still an unbiased estimator of p, and has the same
variance as when the distribution of v is Poisson. ¢, is still a biased estimator of p,
but the amount of bias and the variance of e; are not the same as when the

distribution of v is Poisson. Furthermore (7) no longer holds. In fact, putting
s = 1in (16)

(14) Priv = r}

(17)

8(e) = [1 + w(l — e M ™e
lim &(e) = pwl log(1+a) _ p.

n-—>00

(18)

7. Approximations. Since the formulae in (16)-and (17) are tedious to com-
pute, it seemed worth while investigating whether any simple approximations
were possible. The following expansions in powers of " up to the term in n™*
were found to give generally good results for n > 30.

(19.1) &(e) = ¢ ™1 + Im(1l 4+ w)n™Y,
(19.2) (&) = e "m(l + w)n,
(193) VBi(e) = Inm + o) Bm(l + ) — (1 + 20)),
(19.4) Ba(es) = 3 + 16[nm(l + w)] ' [m*(1l + )’ — 12m(1 + w)
- (14 20) + 1 4 60 + 6],
(19.5) pler, @) = (—wp log p)[(1 + w)(1 — p) log (1 + )]
- [1 4 (Gm + fo — tmo)n™].
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The values of &(e;) and ¢*(e;) obtained from the exact formula (16) and from
(19) are compared in Tables II and III respectively.

It should be noted that some of the values of w shown do not correspond to
real distributions. These cases are indicated by parentheses enclosing the corre-
sponding figures. The values of w chosen exhibit the trend of mathematical

TABLE II
Ezxpected valie of e

(Note: The exact values and (19.1) agree to three decimal places for all cases
included in this table.)

? w n = 30 ”n = 60 ”n= o
0.1 —0.50 (0.193) (0.191) (0.190)
—0.25 (0.139) (0.137) (0.135)
0.00 0.104 0.102 0.100
1.00 0.040 0.038 0.036
0.5 —0.25 (0.552) (0.550) (0.548)
0.00 0.506 0.503 0.500
1.00 0.380 0.374 0.368
0.9 0.00 0.902 0.901 0.900
1.00 0.863 0.861 0.859
TABLE III
Approximate and exact values of 100 o2(ez)
n =30 n = 60
? w
Approx. Exact Approx. Exact
0.1 —0.50 (0.100) (0.104) (0.050) (0.051)
—0.25 (0.091) (0.097) (0.046) (0.047)
0.00 0.077 0.083 0.038 0.040
1.00 0.029 0.036 0.014 0.016
0.5 —0.25 (0.451) (0.454) (0.226) (0.226)
0.00 0.578 0.578 0.289 0.289
1.00 0.901 0.910 0.451 0.451
0.9 0.00 0.284 0.277 0.142 0.140
1.00 0.748 0.689 0.374 0.359

functions of w which do give the moments of ¢ for real distributions when w
takes certain special values, different for different p. The functions are simple
continuous functions of w and the method of presentation should not prove
misleading.

Close agreement was also obtained between values given by (19.3)-(19.5)
and the corresponding exact values. The approximation to+/B:(e;) was generally
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correct to two decimal places and that to p(e , e2) was generally correct to three
places for the values of n, w and p in Tables II and III. B:(e;) Was correct to
two decimal places for w negative, while for positive w the error did not exceed
0.04 except for p = 0.1 and w = 1.0 (5.09 (approx.) against 5.46).

TABLE IV
Values of n(w,p)

Nl —0.2 —0.1 ! +0.1 +0.2
0.1 80 400 ! 620 190
0.5 70 270 ’ 250 60
0.9 270 680 ! * *
* Formula (21) gives negative values in these cases.
TABLE V
? S-2(p) J-1(P) fo(d)
0.1 5.0528 10.8992 7.5954
0.2 3.6916 6.4732 5.1006
0.3 3.1164 3.9314 3.8761
0.4 2.7809 1.6529 2.7640
0.5 2.5547 — 0.9192 1.4261
0.6 2.3889 — 4.3392 — 0.4658
0.7 2.2606 — 9.6654 — 3.5511
0.8 2.1574 —19.9286 — 9.6719
0.9 2.0722 —50.1476 —28.0060

8. A critical sample size. Using the approximate formulae (19) we see that
the mean square error of ¢ will be less than that of e provided

20) p(l —pm < (€™ — )’ + md+ W) — p) + e nT
This can be rewritten n > n(w, p), where
@21)  n(w,p) = [p(l — p) — m(l + w)e "R — Pl — p)7

Provided the value of n(w, p) given by (21) is sufficiently large for the approxi-
mation in (19) to be good, it can be said that & will be a better estimator of p
than e (according to the mean square error criterion) if the sample size is bigger
than n(w, p). For smaller sample sizes it is likely that e, will still be the superior
estimator as in the Poisson case.

When | w | is small the expansion
22) n(,p) = o fap) + o fa@) + folp) + -+
where

(23.1)  f-o(p) = 4(p log p)~’[p(1 — p) + P’ log p],



(23.2)

(23.3)
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fa(p) = 4(plog p) [} — % log P)p(1 — p) + (% + log p>p" log p],
=[5 ¢ | 1
fo(p) = 4(p log p) [{@ (log p)* — 15 logp — E}

o e M gy 4 B 5] 2
p(1 — p) +{48 (log p) +3logp+ 6}10 logp:l,

is useful. The values of n(w, p) given by the series (22) taken as far as fo(p)
agree (to the nearest ten) with those in Table IV, which were calculated from (21).
Values of f_s(p), f-1(p) and fo(p) for p = 0.1 — (0.1) — 0.9 are given in Table V.
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