ON THE FUNDAMENTAL LEMMA OF NEYMAN AND PEARSON1

By George B. Dantzig and Abraham Wald²
Department of the Air Force and Columbia University

1. Summary and introduction. The following lemma proved by Neyman and Pearson [1] is basic in the theory of testing statistical hypotheses:

LEMMA. Let $f_1(x)$, \cdots , $f_{m+1}(x)$ be m+1 Borel measurable functions defined over a finite dimensional Euclidean space R such that $\int_R |f_i(x)| dx < \infty$ $(i=1,\cdots,m+1)$. Let, furthermore, c_1,\cdots,c_m be m given constants and s the class of all Borel measurable subsets S of R for which

(1.1)
$$\int_{\mathcal{S}} f_i(x) \ dx = c_i \qquad (i = 1, \dots, m).$$

Let, finally, So be the subclass of S consisting of all members So of S for which

(1.2)
$$\int_{S_0} f_{m+1}(x) \ dx \ge \int_{S} f_{m+1}(x) \ dx \quad \text{for all } S \text{ in } S_{\bullet}$$

If S is a member of S and if there exist m constants k_1, \dots, k_m such that

$$(1.3) f_{m+1}(x) \ge k_1 f_1(x) + \cdots + k_m f_m(x) when x \in S,$$

(1.4)
$$f_{m+1}(x) \leq k_1 f_1(x) + \cdots + k_m f_m(x)$$
 when $x \notin S$,

then S is a member of S_0 .

The above lemma gives merely a sufficient condition for a member S of S to be also a member of S_0 . Two important questions were left open by Neyman and Pearson: (1) the question of existence, that is, the question whether S_0 is non-empty whenever S is non-empty; (2) the question of necessity of their sufficient condition (apart from the obvious weakening that (1.3) and (1.4) may be violated on a set of measure zero).

The purpose of the present note is to answer the above two questions. It will be shown in Section 2 that S_0 is not empty whenever S is not empty. In Section 3, a necessary and sufficient condition is given for a member of S to be also a member of S_0 . This necessary and sufficient condition coincides with the Neyman-Pearson sufficient condition under a mild restriction.

2. Proof that S_0 is not empty whenever S is not empty. Each function $f_i(x)$ determines a finite measure μ_i given by the equation

(2.1)
$$\mu_i(S) = \int_S f_i(x) \ dx \qquad (i = 1, 2, \dots, m+1).$$

¹ The main results of this paper were obtained by the authors independently of each other using entirely different methods.

² Research under contract with the Office of Naval Research.

Let μ be the vector measure with the components μ_1, \dots, μ_{m+1} ; i.e., for any measurable set S the value of $\mu(S)$ is the vector $(\mu_1(S), \dots, \mu_{m+1}(S))$. Thus, for each S the value of $\mu(S)$ can be represented by a point in the m+1-dimensional Euclidean space E. A point $g=(g_1, \dots, g_{m+1})$ of E is said to belong to the range of the vector measure μ if and only if there exists a measurable subset S of R such that $\mu(S)=g$.

It was proved by Lyapunov [2] (see also [4]) that the range M of μ is a bounded, closed and convex subset of E. Let L be the line in E which is parallel to the (m+1)-th axis and goes through the point $(c_1, c_2, \dots, c_m, 0)$. Suppose that S is not empty. Then the intersection M^* of L with M is not empty. Because of Lyapunov's theorem, M^* is a finite closed interval (which may reduce to a single point). There exists a subset S of R such that $\mu(S)$ is equal to the upper end point of M^* . Clearly, S is a member of S_0 .

3. Necessary and sufficient condition that a member of S be also a member of S_0 . Let $\nu(S)$ be the vector measure with the components $\mu_1(S)$, $\cdots \mu_m(S)$. According to the aforementioned theorem of Lyapunov, the range N of ν is a bounded, closed and convex subset of the m-dimensional Euclidean space.

By the dimension of a convex subset Q of a finite dimensional Euclidean space we shall mean the dimension of the smallest dimensional hyperplane that contains Q. A point q of a convex set Q is said to be an interior point of Q if there exists a sphere V with center at q and positive radius such that $V \cap \Pi \subset Q$, where Π is the smallest dimensional hyperplane containing Q. Any point q that is not an interior point of Q will be called a boundary point. We shall now prove the following theorem.

THEOREM 3.1. If (c_1, \dots, c_m) is an interior point of N, then a necessary and sufficient condition for a member S of S to be a member of S_0 is that there exist m constants k_1, \dots, k_m such that (1.3) and (1.4) hold for all x except perhaps on a set of measure zero.

PROOF. The Neyman-Pearson lemma cited in Section 1 states that our condition is sufficient. Thus, we merely have to prove the necessity of our condition. Assume that (c_1, \dots, c_m) is an interior point of N. Let c^* be the largest value for which $(c_1, \dots, c_m, c^*) \in M$, and c^{**} the smallest value for which

$$(c_1, \cdots, c_m, c^{**}) \in M.$$

We shall first consider the case when $c^* = c^{**}$. Let $(\bar{c}_1, \dots, \bar{c}_m)$ be any other interior point of N. We shall show that there exists exactly one real value \bar{c} such that $(\bar{c}_1, \dots, \bar{c}_m, \bar{c}) \in M$. For suppose that there are two different values \bar{c}^* and \bar{c}^{**} such that both $(\bar{c}_1, \dots, \bar{c}_m, \bar{c}^*)$ and $(\bar{c}_1, \dots, \bar{c}_m, \bar{c}^{**})$ are in M. Since (c_1, \dots, c_m) and $(\bar{c}_1, \dots, \bar{c}_m)$ are interior points of N, there exists a point (c'_1, \dots, c'_m) in N such that (c_1, \dots, c_m) lies in the interior of the segment determined by (c'_1, \dots, c'_m) and $(\bar{c}_1, \dots, \bar{c}_m)$. There exists a real value c' such that $(c'_1, \dots, c'_m, c') \in M$. Consider the convex set T determined by the 3 points: $(\bar{c}_1, \dots, \bar{c}_m, \bar{c}^*)$, $(\bar{c}_1, \dots, \bar{c}_m, \bar{c}^{**})$ and (c'_1, \dots, c'_m, c') . Obviously, $T \subset M$. But T contains points (c_1, \dots, c_m, h) and (c_1, \dots, c_m, h') with

 $h \neq h'$, contrary to our assumption that $c^* = c^{**}$. Thus, for any interior point $(\bar{c}_1, \cdots, \bar{c}_m)$ of N there exists exactly one real value \bar{c} such that $(\bar{c}_1, \cdots, \bar{c}_m, \bar{c}) \in M$. Since M is closed and convex, this remains true also when $(\bar{c}_1, \cdots, \bar{c}_m)$ is a boundary point of N. Thus, there exists a single valued function $\varphi(g_1, \cdots, g_m)$ such that $g_{m+1} = \varphi(g_1, \cdots, g_m)$ holds for all points $g = (g_1, \cdots, g_m, g_{m+1})$ in M. Since M is convex, φ must be linear; i.e., $\varphi(g_1, \cdots, g_m) = \sum_{i=1}^m k_i g_i + k_0$. Since the origin is obviously contained in M, we have $k_0 = 0$. Thus, we have $g_{m+1} = \sum_{i=1}^m k_i g_i$ for all points g in M. But then $f_{m+1}(x) = \sum_{i=1}^m k_i f_i(x)$ must hold for all x, except perhaps on a set of measure zero. Thus, for any subset S of R, the inequalities (1.3) and (1.4) are fulfilled for all x, except perhaps on a set of measure zero. This completes the proof of our theorem in the case when $c^* = c^{**}$.

We shall now consider the case when $c^{**} < c^*$. Let c be any value between c^{**} and c^{*} ; i.e., $c^{**} < c < c^{*}$. We shall show that (c_1, \dots, c_m, c) is an interior point of M. For this purpose, consider a finite set of points $c^i = (c_1^i, \dots, c_m^i)$ in $N(i = 1, \dots, n)$ such that c^1, \dots, c^n are linearly independent, the simplex determined by c^1, \dots, c^n has the same dimension as N and contains the point (c_1, \dots, c_m) in its interior. Such points c^i in N obviously exist. There exist real values $h_i(i = 1, \dots, n)$ such that $(c_1^i, \dots, c_m^i, h_i) \in M$ $(i = 1, \dots, n)$. Let T be the smallest convex set containing the points $(c_1^i, \dots, c_m^i, h_i)$ $(i = 1, \dots, n), (c_1, \dots, c_m, c^*)$ and $(c_1, \dots, c_m, c^{**})$. Clearly, the dimension of T is the same as that of M and (c_1, \dots, c_m, c) is an interior point of T. Thus, (c_1, \dots, c_m, c) is an interior point of M. The point (c_1, \dots, c_m, c^*) is obviously a boundary point of M. Let $g = (g_1, \dots, g_{m+1})$ be the generic designation of a point in the m+1-dimensional Euclidean space E. Since (c_1, \dots, c_m, c^*) is a boundary point of M, there exists an m-dimensional hyperplane Π through (c_1, \dots, c_m, c^*) such that Π contains only boundary points of M and M lies entirely on one side of Π . Let the equation of Π be given by

(3.1)
$$k_{m+1}g_{m+1} - \sum_{i=1}^{m} k_i g_i = k_{m+1}c^* - \sum_{i=1}^{m} k_i c_i.$$

Since II contains only boundary points of M, and since (c_1, \dots, c_m, c) is not a boundary point when $c^{**} < c < c^*$, the hyperplane II cannot be parallel to the (m+1)-th coordinate axis; i.e., $k_{m+1} \neq 0$. We can assume without loss of generality that $k_{m+1} = 1$. Since M lies entirely on one side of II, and since for $(g_1, \dots, g_m, g_{m+1}) = (c_1, \dots, c_m, c^{**})$ the left hand member of (3.1) is smaller than the right hand member, we must have

(3.2)
$$g_{m+1} - \sum_{i=1}^{m} k_i g_i \le c^* - \sum_{i=1}^{m} k_i c_i$$

for all $q \in M$. Let S be a subset of R such that

This follows from well known results on convex bodies. See, for example, [3], p. 6.

$$(3.3) (\mu_1(S), \cdots, \mu_m(S), \mu_{m+1}(S)) = (c_1, \cdots, c_m, c^*).$$

It can easily be seen that (3.2) and (3.3) can be fulfilled simultaneously only if S satisfies the conditions (1.3) and (1.4) for all x, except perhaps on a set of measure zero. This completes the proof of our theorem.

It remains to investigate the case when (c_1, \dots, c_m) is a boundary point of N. For this purpose, we shall introduce some definitions and prove some lemmas.

Let $\xi = (\xi_1, \dots, \xi_m)$ be an *m*-dimensional vector with real valued components at least one of which is not zero. We shall say that ξ is maximal relative to the point $c = (c_1, \dots, c_m)$ if

$$(3.4) \qquad \qquad \sum_{i=1}^{m} \xi_i g_i \leq \sum_{i=1}^{m} \xi_i c_i$$

for all points (g_1, \dots, g_m) in N.

We shall say that a set $\{\xi^i\}(i=1,2,\cdots,r;r>1)$ of vectors is maximal relative to the point $c=(c_1,\cdots,c_m)$ if the set $\{\xi^i\}(i=1,\cdots,r-1)$ is maximal relative to c, not all components of ξ^r are zero and

(3.5)
$$\sum_{i=1}^{m} \xi_{i}^{r} g_{i} \leq \sum_{i=1}^{m} \xi_{i}^{r} c_{i}$$

holds for all points (g_1, \dots, g_m) of N for which

(3.6)
$$\sum_{i=1}^{m} \xi_{j}^{i} g_{j} = \sum_{i=1}^{m} \xi_{i}^{i} c_{j} \qquad (i = 1, \dots, r-1).$$

A set of vectors $\{\xi^i\}(i=1,\dots,r)$ is said to be a complete maximal set relative to $c=(c_1,\dots,c_m)$ if $\{\xi^i\}(i=1,2,\dots,r)$ is maximal relative to c and no vector ξ^{r+1} exists such that ξ^{r+1} is linearly independent of the sequence (ξ^1,\dots,ξ^r) and $(\xi^1,\dots,\xi^r,\xi^{r+1})$ is maximal relative to c.

LEMMA 3.1. If $c = (c_1, \dots, c_m)$ is a boundary point of N, then there exists a positive integer r and a set $\{\xi^1, \dots, \xi^r\}$ of vectors that is a complete maximal set relative to c.

PROOF. Since c is a boundary point of N, there exists an (m-1)-dimensional hyperplane Π through c such that N lies entirely on one side of Π . Let the equation of Π be given by

$$\sum_{i=1}^{m} \xi_{i} g_{i} = \sum_{i=1}^{m} \xi_{i} c_{i}.$$

Since N lies entirely on one side of Π , either $\sum_{i=1}^{m} \xi_i g_i \geq \sum_{i=1}^{m} \xi_i c_i$ for all points (g_1, \dots, g_m) in N, or $\sum_{i=1}^{m} \xi_i g_i \leq \sum_{i=1}^{m} \xi_i c_i$ for all (g_1, \dots, g_m) in N. We put $\xi^1 = -\xi$ if $\Sigma \xi_i g_i \geq \Sigma \xi_i c_i$ for all points (g_1, \dots, g_m) in N. Otherwise, we put $\xi^1 = \xi$. Clearly, ξ^1 is maximal relative to c. If ξ^1 is not a complete maximal set relative to c, there exists a vector ξ^2 such that ξ^2 is linearly independent of

 ξ^1 and (ξ^1, ξ^2) is maximal relative to c. If (ξ^1, ξ^2) is not a complete maximal set, we can find a vector ξ^3 such that ξ^3 is linearly independent of (ξ^1, ξ^2) and (ξ^1, ξ^2, ξ^3) is a maximal set relative to c, and so on. Continuing this procedure, we shall arrive at a set $(\xi^1, \dots, \xi^r)(r \le m)$ that is a complete maximal set relative to c. This completes the proof of Lemma 3.1.

LEMMA 3.2. If (ξ^1, \dots, ξ^r) is a maximal set of vectors relative to $c = (c_1, \dots, c_m)$ and if $\nu(S) = c$, then the following two conditions are fulfilled for all x (except perhaps on a set of measure zero):

- a) If x is a point in R for which $\sum_{j=1}^{m} \xi_{j}^{i} f_{j}(x) = 0$ for $i = 1, 2, \dots, u-1$ and $\sum_{j=1}^{m} \xi_{j}^{u} f_{j}(x) > 0$ $(u = 1, 2, \dots, r)$, then $x \in S$.
- b) If x is a point of R for which $\sum_{j=1}^{m} \xi_{j}^{i} f_{j}(x) = 0$ for $i = 1, 2, \dots, u-1$ and $\sum_{j=1}^{m} \xi_{j}^{u} f_{j}(x) < 0$, then $x \in S$.

Proof. Assume that (ξ^1, \dots, ξ^r) is maximal relative to c. Then, ξ^1 is maximal relative to c. This implies that for all x (except perhaps on a set of measure zero) the following condition holds: $x \in S$ when $\sum_{j=1}^m \xi_j^1 f_j(x) > 0$ and $x \notin S$ when

 $\sum_{j=1}^{m} \xi_{j}^{1} f_{j}(x) < 0.$ Thus, conditions (a) and (b) of our lemma must be fulfilled for u = 1. We shall now show that if (a) and (b) hold for $u = 1, \dots, v$ then (a) and (b) must hold also for u = v + 1. For this purpose, consider the set R' of all points x for which $\sum_{j=1}^{m} \xi_{j}^{i} f_{j}(x) = 0$ for $i = 1, \dots, v$. If R is replaced by

R', then ξ^{v+1} is maximal relative to $c' = (c'_1, \dots, c'_m)$ where $c'_i = \int_{S'} f_i(x) dx$ and $S' = S \cap R'$. Hence, for any x in R' (except perhaps on a set of measure zero) the following condition holds: $x \in S$ when $\sum_{j=1}^m \xi_j^{v+1} f_j(x) > 0$ and $x \notin S$ when

 $\sum_{j=1}^{m} \xi_{j}^{v+1} f_{j}(x) < 0.$ But this implies that (a) and (b) hold for u = v + 1. This completes the proof of our lemma.

LEMMA 3.3. Let (ξ^1, \dots, ξ^r) be a complete maximal set of vectors relative to $c = (c_1, \dots, c_m)$, and let T be the set of all points $g = (g_1, \dots, g_m)$ of N for which $\sum_{j=1}^m \xi_j^i g_j = \sum_{j=1}^m \xi_j^i c_j$ for $i = 1, 2, \dots, r$. Then T is a bounded, closed and convex set and c is an interior point of T.

PROOF. Clearly, T is a bounded, closed and convex set. Suppose that c is a boundary point of T. Then there exists a hyperplane Π of dimension m-1 such that Π goes through c, Π contains only boundary points of T and T lies entirely on one side of Π^3 . Let the equation of Π be given by

$$\sum_{j=1}^{m} \xi_{j} g_{j} = \sum_{j=1}^{m} \xi_{j} c_{j},$$

where ξ is independent of ξ^1, \dots, ξ^r . Since T lies on one side of Π , we have either $\sum_{j=1}^m \xi_j g_j \ge \sum_{j=1}^m \xi_j c_j$ for all $g = (g_1, \dots, g_m)$ in T, or $\sum_{j=1}^m \xi_j g_j \le \sum_{j=1}^m \xi_j c_j$ for all g in T. Let $\xi_j^{r+1} = \xi_j (j = 1, \dots, m)$ in the latter case, and $\xi_j^{r+1} = -\xi_j$ in the former case. Then $\sum_{j=1}^m \xi_j^{r+1} g_j \le \sum_{j=1}^m \xi_j^{r+1} c_j$ for all g in T. But then $(\xi^1, \dots, \xi^r, \xi^{r+1})$ is a maximal set relative to c, contrary to our assumption that (ξ^1, \dots, ξ^r) is a complete maximal set. Thus, c must be an interior point of T and our lemma is proved.

THEOREM 3.2. If $c = (c_1, \dots, c_m)$ is a boundary point of N and if (ξ^1, \dots, ξ^r) is a complete maximal set of vectors relative to c, then a necessary and sufficient condition for a member S of S to be a member of S_0 is that there exist m constants k_1, \dots, k_m such that for all x in R' (except perhaps on a set of measure zero) the inequalities (1.3) and (1.4) hold, where R' is the set of all points x for which

$$\sum_{i=1}^{m} \xi_{i}^{i} f_{i}(x) = 0 \quad \text{for} \quad i = 1, 2, \dots, r.$$

Proof. Suppose that $c=(c_1,\cdots,c_m)$ is a boundary point of N and that (ξ^1,\cdots,ξ') is a complete maximal set of vectors relative to c. Let R^* be the set of all points x for which the following two conditions hold: (1) $\sum_{j=1}^m \xi^i_j f_j(x) \neq 0 \text{ for at least one value } i; (2) \sum_{j=1}^m \xi^i_j f_j(x) > 0 \text{ where } i \text{ is the smallest}$ integer for which $\sum_{j=1}^m \xi^i_j f_j(x) \neq 0.$ For any member S of S let S^* denote the intersection of S with R-R'. It follows from Lemma 3.2 that $R^*-R^* \cap S^*$ and $S^*-R^* \cap S^*$ are sets of measure zero. Thus

(3.7)
$$\int_{S^*} f_i(x) \ dx = \int_{R^*} f_i(x) \ dx \qquad (i = 1, \dots, m+1)$$

for all $S \in S$. Let

(3.8)
$$f_i^*(x) = f_i(x)$$
 for $x \in R'$ $(i = 1, \dots, m+1)$

and

(3.9)
$$f_{i}^{*}(x) = 0 \quad \text{for} \quad x \in R - R' \quad (i = 1, 2, \dots, m+1).$$

Let, furthermore,

(3.10)
$$c_i^* = c_i - \int_{\mathbb{R}^*} f_i(x) \ dx \qquad (i = 1, \dots, m)$$

Let μ^* , ν^* , M^* , N^* , S^* and S_0^* have the same meaning with reference to the functions $f_1^*(x), \dots, f_{m+1}^*(x)$ and the point $c^* = (c_1^*, \dots, c_m^*)$ as μ , ν , M, N, S and S_0 have with reference to the functions $f_1(x), \dots, f_{m+1}(x)$ and the point $c = (c_1, \dots, c_m)$.

It follows from Lemma 3.2 that for any subset S of R for which $\nu(S)$ is a point of the set T defined in Lemma 3.3 we have

$$\int_{S} f_{i}(x) \ dx = \int_{S} f_{i}^{*}(x) \ dx + \int_{R^{*}} f_{i}(x) \ dx \qquad (i = 1, \dots, m+1).$$

Since the range of $\nu^*(S)$ is equal to N^* even when S is restricted to subsets S for which $\nu(S) \in T$, the set N^* is obtained from the set T by a translation. The same translation brings the point $c = (c_1, \dots, c_m)$ into $c^* = (c_1^*, \dots, c_m^*)$. It then follows from Lemma 3.3 that c^* is an interior point of N^* . Application of Theorem 3.1 gives the following necessary and sufficient condition for a member S of S^* to be a member of S_0^* : There exist m constants k_1, \dots, k_m such that for all x (except perhaps on a set of measure zero)

(3.11)
$$f_{m+1}^*(x) \ge k_1 f_1^*(x) + \cdots + k_m f_m^*(x)$$
 when $x \in S$

and

$$(3.12) f_{m+1}^*(x) \le k_1 f_1^*(x) + \dots + k_m f_m^*(x) \text{ when } x \notin S.$$

It follows from (3.8) and (3.9) that (3.11) and (3.12) are equivalent to

$$(3.13) f_{m+1}(x) \geq k_1 f_1(x) + \cdots + k_m f_m(x) \text{when} x \in S \cap R'$$

and

$$(3.14) f_{m+1}(x) \le k_1 f_1(x) + \cdots + k_m f_m(x) \text{ when } x \in (R - S) \cap R'.$$

Theorem 3.2 follows from this and the fact that every member S of S is a member of S^* and that a member S of S is a member of S^* if and only if S is a member of S_0 .

It may be of interest to note that if the set R' is of measure zero, the members of S can differ from each other only by sets of measure zero; i.e., S consists essentially of one element. This is an immediate consequence of Lemma 3.2.

REFERENCES

- J. NEYMAN AND E. S. PEARSON, "Contributions to the theory of testing statistical hypotheses," Stat. Res. Memoirs, Vol. 1 (1936), pp. 1-37.
- [2] A. LYAPUNOV, "Sur les fonctions-vecteurs complètement additives," Izvestiya Akad. Nauk SSSR. Ser. Mat., Vol. 4 (1940), pp. 465-78.
- [3] T. Bonnesen and W. Fenchel, Theorie der Konvexen Körper, Chelsea Publishing Company, New York, 1948.
- [4] P. R. Halmos, "The range of a vector measure," Bull. Am. Math. Soc., Vol. 54 (1948), pp. 416-421.