ON THE FUNDAMENTAL LEMMA OF NEYMAN AND PEARSON!

By GeorGe B. DAN'I:ZIG AND ABRAHAM WALD®
Department of the Air Force and Columbia University

1. Summary and introduction. The following lemma proved by Neyman and
Pearson [1] is basic in the theory of testing statistical hypotheses:
LemMA. Let fi(x), -+, fmsar(x) be m + 1 Borel measurable functions defined

over a finite dimensional Euclidean space R such that f [fi@)|dxz < o
R

(Z=1,---,m+ 1). Let, furthermore, ¢, - - , cm be m given constants and §
the class of all Borel measurable subsets S of R for which

(L1) [ 5@ dz = G =1, ,m).
8
Let, finally, 8o be the subclass of $ conststing of all members Sy of $ for which

1.2) L fon(x) de = _/; fonr(@) dx  for all S in S,

If S is a member of 8 and if there exist m constants ky , + - - , km such that
(1.3) Jor(@) = kifa(@) + -+« + knfm(z) when z €S,
(14) fou1(@) S kifi(@) + -+« + knfm(z)  when =z ¢S,

then S is a member of S, .

The above lemma gives merely a sufficient condition for a member S of § to
be also a member of §, . Two important questions were left open by Neyman
and Pearson: (1) the question of existence, that is, the question whether §, is
non-empty whenever § is non-empty; (2) the question of necessity of their
sufficient condition (apart from the obvious weakening that (1.3) and (1.4)
may be violated on a set of measure zero).

The purpose of the present note is to answer the above two questions. It will
be shown in Section 2 that 8, is not empty whenever $ is not empty. In Section
3, a necessary and sufficient condition is given for a member of § to be also a
member of 8 . This necessary and sufficient condition coincides with the Ney-
man-Pearson sufficient condition under a mild restriction.

2. Proof that 8o is not empty whenever § is not empty. Each function fi(x)
determines a finite measure u; given by the equation

@.1) wi(S) = fs Fi@) dz G=1,2-,m+ 1)

1 The main results of this paper were obtained by the authors independently of each
other using entirely different methods.
? Research under contract with the Office of Naval Research.
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Let n be the vector measure with the components py, * -, pms1 ; i.€., for any
measurable set S the value of u(S) is the vector (ui1(S), - - - , wma1(8)). Thus, for
each S the value of u(S) can be represented by a point in the m + 1-dimensional
Euclidean space E. A point g = (g1, ** * , gm41) of E is said to belong to the range
of the vector measure p if and only if there exists a measurable subset S of R
such that u(S) = g.

It was proved by Lyapunov [2] (see also [4]) that the range M of u
is a bounded, closed and convex subset of E. Let L be the line in E which is
parallel to the (m + 1)-th axis and goes through the point (¢1, ¢z, * - , €m, 0).
Suppose that § is not empty. Then the intersection M* of L with M is not empty.
Because of Lyapunov’s theorem, M* is a finite closed interval (which may
reduce to a single point). There exists a subset S of R Such that u(S) is equal
to the upper end point of M*. Clearly, S is a member of §; .

3. Necessary and sufficientcondition thatamember of § be also a member of S;.
Let »(8) be the vector measure with the components u;(S), - - - un(S). Accord-
ing to the aforementioned theorem of Lyapunov, the range N of v is a bounded,
closed and convex subset of the m-dimensional Euclidean space.

By the dimension of a convex subset @ of a finite dimensional Euclidean space
we shall mean the dimension of the smallest dimensional hyperplane that con-
tains Q. A point ¢ of a convex set @ is said to be an interior point of @ if there
exists a sphere V with center at ¢ and positive radius such that V N II C @,
where II is the smallest dimensional hyperplane containing Q. Any point ¢ that
is not an interior point of @ will be called a boundary point. We shall now prove
the following theorem.

Tueorem 3.1. If (e, -+ - , ¢m) 18 an inierior point of N, then a necessary and
sufficient condition for a member S of S to be a member of So is that there exist m
constants ky , - - - , kn such that (1.3) and (1.4) hold for all = except perhaps on a
set of measure zero.

Proor. The Neyman-Pearson lemma cited in Section 1 states that our condi-
tion is sufficient. Thus, we merely have to prove the necessity of our condition.
Assume that (¢, -+, ¢w) s an interior point of N. Let c¢* be the largest value
for which (c1, -+, ¢m, ¢*) € M, and c** the smallest value for which

1y "+, Cm,c*™) eM.

We shall first consider the case when ¢* = ¢**. Let (&, - -+, &) be any other
interior point of N. We shall show that there exists exactly one real value ¢ such
that (&, -+, €ém, ¢) € M. For suppose that there are two different values ¢*
and ¢** such that both (¢, -, ¢m, ¢*) and (&, --- , &m , ¢**) are in M. Since
(i, "+, ¢m) and (&1, -+, Cm) are interior points of N, there exists a point
(c1, -+, cm) in N such that (¢i, -+, ¢m) lies in the interior of the segment
determined by (c1, -+ , ¢n) and (&1, - - - , &m). There exists a real value ¢’ such
that (c1, -+, cm, ¢') € M. Consider the convex set T determined by the 3
points: (&1, -+ €m, €*), (€1, -+, Cm, ¢**) and (c1, -+, cm, ). Obviously,
T C M. But T contains points (¢1, -, ¢m, k) and (c1, -, €m, A') with
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h s I/, contrary to our assumption that ¢* = ¢**. Thus, for any interior point
(€1, **+ , &m) of N there exists exactly one real value ¢ such that (¢, -++ , &, &) €
M. Smce M is closed and convex, this remains true also when (¢, ---, &) is
a boundary point of N. Thus, there exists a single valued function <p(g, y s Gm)
such that gmi1 = ¢{g1, -+, gm) holds for all points ¢ = (g1, *+* , gm, Gms1) In

M. Since M is convex, ¢ must be linear; i.e., (g1, -+, gn) = Z kig: +ko.
Since the orlgm is obviously contained in M, we have ky = 0. Thu% we have
Jmir = Z kig: for all points g in M. But then f,(z) = Z ki «(z) must hold

for all x, excepl; perhaps on a set of measure zero. Thus, tor any subset S of R,
the inequalities (1.3) and (1.4) are fulfilled for all x, except perhaps on a set. of
measure zero. This completes the proof of our theorem in the case when ¢* = ¢**.

We shall now consider the case when ¢** < c¢*. Let ¢ be any value between
¢** and c*;ie., ¢** < ¢ < ¢*. We shall show that (¢, - - -, c,,. , c) is an interior
point of M. For this purpose, consider a finite set of points ¢ = (ci, -« -, i)
in N =1, ---,n)such that ¢!, -- - , ¢" are linearly independent, the snmple.\
determined by ¢!, - -+, ¢" has the same dimension as N and contains the point
(€1, -+, cm) in its interior. Such points q" in N obviously exist. There exist
real values hi(i = 1, ---, n) such that (¢}, -, cn,h) e M =1,--- , ).
Let T be the smallest convex set containing the points (ci, -, cu, h)
G=1---,n)(, " ,tm,c¥)and (c1, -, Cm, c**). Clearly, the dimension
of T is the same as that of M and (¢, ---, ¢m, €) is an interior point of 7.
Thus, (c1, **, ¢m, €) is an interior point of M. The point (¢, - -, cm, c*) is
obviously a boundary point of M. Let ¢ = (g1, - - , gm+1) be the generic desig-
nation of a point in the m + 1-dimensional KEuclidean space E. Since
(€1, , Cm,c*) is a boundary point of M, there exists an m-dimensional hyper-
plane II through (¢, - -+, ¢m, ¢*) such that II contains only boundary points
of M and M lies entirely on one side of I Let the equation of II be given by

3.1) kmtGmit — 2 kigs = kmyrc* — 2 kici.
o] i=1
Since II contains only boundary points of M, and since (¢1, - , ¢m, €) is Dot a

boundary point when ¢** < ¢ < c¢*, the hyperplane II cannot be parallel to the
(m + 1)-th coordinate axis; i.e., kmt1 = 0. We can assume without loss of gen-

erality that kmy1 = 1. Since M lies entirely on one side of II, and
since for (g1, *** , gm, gms) = (c1, **+ , Cm, c**) the left hand member of (3.1)
is smaller than the right hand member, we must have
(3.2) Gmit — 2 kigs S ¢* — 2 ki

] =1

for all g ¢ M. Let S be a subset of R such that

3 This follows from well known results on convex bodies. See, for example, [3], p. 6.
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(3.3) (wm(S), «--, .”'m(S); um+1(8)) = (c1,***, Cm, c*).

It can easily be seen that (3.2) and (3.3) can be fulfilled simultaneously only
if S satisfies the conditions (1.3) and (1.4) for all z, except perhaps on a set of
measure zero. This completes the proof of our theorem.

It remains to investigate the case when (¢, -+ , ¢m) is a boundary point of
N. For this purpose, we shall introduce some definitions and prove some lemmas.

Let£ = (&, -+ , £m) be an m-dimensional vector with real valued components
at least one of which is not zero. We shall say that £ is maximal relative to the
point ¢ = (1, -+ , Cm) if

(3.4) é £igs = g &ic

for all points (g1, - -+, gm) iIn N.

We shall say that a set {£'}(Z = 1,2,---, r; r > 1) of vectors is maximal
relative to the point ¢ = (¢1, - - , cm) if the set {£'}(¢ = 1, -+, r — 1) is maxi-
mal relative to ¢, not all components of £ are zero and

(3.5) 2 kg S 2 Ee
J=1 =1

holds for all points (g1, <+ - , gm) of N for which

(3.6) 2 He = X e G=1-,r—1.
- =

A set of vectors {£'}(i = 1, +++, r) is said to be a complete maximal set
relative to ¢ = (c1, -, ¢m) if {£}(Z = 1,2, -+, r) is maximal relative to ¢
and no vector £ exists such that £+ is linearly independent of the sequence
@, ---,&)and (&, -+, &, &™) is maximal relative to c.

Lemma 3.1. If ¢ = (1, * - , Cm) 15 @ boundary point of N, then there exists a
posttive integer r and a set (€, -, &) of vectors that is a complete maximal set
relative to c.

Proor. Since ¢ is a boundary point of N, there exists an (m — 1)-dimensional
hyperplane II through ¢ such that N lies entirely on one side of L} Let the
equation of II be given by

: gf«ge = ?A_:IE.'C.-.

Since N lies entirely on one side of II, either Z £g: = ‘Zlfic,- for all
el -

points (g1, - , giaf in N, orZIE.g; =< le.ci for all (g1, -+, gm) in N. We
put & = —¢if Stg: = ki for all points (g1, -+, gm) in N. Otherwise, we

put £ = ¢ Clearly, ¢ is maximal relative to c. If £ is not a complete maximal
set relative to ¢, there exists a vector £ such _that £ is linearly independent of
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£ and (£, £) is maximal relative to c. If (£, £) is not a complete maximal set,
we can find a vector £ such that £ is linearly independent of (¢, &)
and (£, £, £) is a maximal set relatiye to ¢, and so on. Continuing this proce-
dure, we shall arrive at a set (£, -+, £)(r < m) that is a complete maximal
set relative to ¢. This completes the proof of Lemma 3.1.

Lemma 3.2. If (&, -+, £) is a maximal set of vectors relative to ¢ = (c1, - - ,
¢m) and if v(S) = c, then the following two conditions are fulfilled for all x (except
perhaps on a set of measure zero):

a) If « is a point in R for which D Eif;(x) = 0 fori =1,2,--- ,u — 1 and
=1

DEMix) >0 =1,2 - ,7), thenx ¢ S.
J=1

i

0 for ¢ 2,---,u — 1and

It
=
!

b) If x is a point of R for which X £if ;(x)
=1

> £ifi(x) <0, then x ¢ S.
=1

ProoF. Assume that (£, --- , £) is maximal relative to ¢. Then, ¢ is maxi-
mal relative to ¢. This implies that for all x (except perhaps on a set of measure

zero) the following condition holds: z ¢ S when 2 £if;(z) > 0 and z ¢ S when
i=1

> Eifi(x) < 0. Thus, conditions (a) and (b) of our lemma must be fulfilled
=1

for u = 1. We shall now show that if (a) and (b) hold for v = 1, --- , v then
(a) and (b) must hold also for v = v + 1. For this purpose, consider the set

R’ of all points z for which Z £ifi) = 0fors = 1, ---, 0. If R is replaced by
=1

R', then £*' is maximal relativetoc’ = (¢;, - - , ¢n) Wherec; = fs ) fi(x) dz and
S’ = SN R'. Hence, for any z in R’ (except perhaps on a set of measure zcro)

the following condition holds: 2 ¢ S when 2 &%(x) >0 and z ¢ S when
Je=1

Z; £7Y;(x) < 0. But this implies that (a) and (b) hold for » = » 4+ 1. This
=

completes the proof of our lemma.
Lemma 3.3. Let (£, -+, &) be a complete maximal set of vectors relative to
¢c=(c1, " ,Cm), and let T be the set of all points g = (g1, -+, gm) of N for

which 2 Elg; = > £ic; for i = 1,2, - ,r. Then T is a bounded, closed and
=1 =1

convex set and c is an interior point of T.

Proor. Clearly, T is a bounded, closed and convex set. Suppose that ¢ is a
boundary point of 7. Then there exists a hyperplane IT of dimension m — 1 such
that H goes through ¢, II contains only boundary points of T’ and T lies entirely
on one side of II’. Let the equation of IT be given by

_Z £i9i = Z £iciy
Jm=1 i=1
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w here Eis mdependent of &, .-+, &.Since T lies on one side of TI, we have either

Z £9; = Z&cj for all g = (g1, -+, gm) in T, or Z tig; E tic; for all

q inT. Let E'“ E,(J =1, .-+, m) in the latter case, (md E'“ = —¢;in the

former case. Then Z £, Z g for all g in T'. But then (£, - -+, &, £*)
=

is a maximal set relatnre to ¢, contrary to our assumption that (¢, ---, &) is

a complete maximal set. Thus, ¢ must be an interior point of T and our lemma is

proved.

THEOREM 3.2. If ¢ = (c1, -+ , Cm) 15 @ boundary pointof N and if (£, -+ , £)
18 a complete maximal set of vectors relative to c, then a necessary and sufficient
condition for a member S of S to be a member of Sy is that there exist m constants
Ly, -+, kn such that for all z in R’ (except perhaps on a set of measure zero)
the inequalities (1.3) and (1.4) hold, where R’ is the set of all points x for which

ifj’fi(x) =0 for i=1,2,---.r.
=

Proor. Suppose that ¢ = (¢1, -+ -, ¢w) is a boundary point of N and that
(¢, -+, £) is a complete maximal set of vectors relative to c. Let R* be the
set of all pomts x for which the followmg two conditions hold: (1)

m

Z £if(x) # O for at least one value 7; (2) Z £if;(z) > 0 where 7 is the smallest

integer for which Z £if,(x) # 0. For any member S of § let S* denote the
=1

intersection of S with R — R’. It follows from Lemma 3.2 that R* — R* N S*
and S* — R* ) S* are sets of measure zero. Thus

3.7 fs‘fi(:v) dr = L.fi(x) dx G=1---,m+1)
for all S e 8. Let

(3.8) f¥@) = fi(x) for zeR’ G=1,---,m+ 1)
and

3.9) fi@x) =0 for zeR—R (=12 --,m+1).

Let, furthermore,
(3.10) i = — f filz) dx G=1-,m)
R‘

Let u*, v*, M* N* $* and $; have the same meaning with reference to the
functlons fi@), -+, fms(x) and the point ¢* = (cf, -, cn) as u, v, M, N,
S and 8 have with reference to the functions fi(z), - - - , fm1(z) and the point
Cc = (01; oo ,cm)_
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It follows from Lemma 3.2 that for any subset S of R for which »(S) is a
point of the set 7' defined in Lemma 3.3 we have

[f@dx = [f@a+ [ r@a  G=1- m+D.

Since the range of »*(8) is equal to N* even when S is restricted to subsets S
for which »(S) e T, the set N* is obtained from the set T' by a translation. The
same translation brings the point ¢ = (c;, -+, ¢n) into ¢* = (cf, -+, cm).
It then follows from Lemma 3.3 that c¢* is an interior point of N*. Application
of Theorem 3.1 gives the following necessary and sufficient condition for a
member S of $* to be a member of S5: There exist m constants ki, -« - , kn
such that for all z (except perhaps on a set of measure zéro)

(3.11) fr@) Z kff@ + -+ + knfa(@) when zeS

and

(3.12) fha@) S kfi@) + +++ + knfu(z) when z¢8.

It follows from (3.8) and (3.9) that (3.11) and (3.12) are equivalent to

(3.13) fr1(®@) .2 kifi@) + -+ + knfn(x) when zeSN R

and

(3.14) fupi(®) £ kifi(®) + -+ + Eknfm(x) when z e (R — S) N R.
Theorem 3.2 follows from this and the fact that evefy member S of § is a

member of $* and that a member S of § is a member of 87 if and only if S is

a member of & .

It may be of interest to note that if the set R’ is of measure zero, the members
of 8 can differ from each other only by sets of measure zero; i.e., § consists essen-
tially of one element. This is an immediate consequence of Lemma 3.2.
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