RATIOS INVOLVING EXTREME VALUES!
By W- J. DixonN

University of Oregon

1. Summary. Ratios of the form (z» — Z.—;)/(x» — x:) for small values of
iand jand n = 3, ---, 30 are discussed. The variables concerned are order
statistics, i.e., sample values such that 1 < z» < -+ < .. Analytic results
are obtained for the distributions of these ratios for several small values of n and
percentage values are tabled for these distributions for samples of size n = 30.

9. Introduction. There has been interest in the problem of gross errors in
data since Chauvenet presented his solution for the problem about 1850. His
hypothesis was essentially that in some samples a small portion of the observa-
tions were from a population with a different mean value. There has been re-
gearch from that time up to the present on procedures suitable for treating
such data. ’

If it is assumed that a certain percentage of “gross errors” may occur, then
there are two general procedures for treating such data:

(1) A statistical treatment may be given to the data which gives very little

weight to such aberrant values as may occur.

(2) A statistical test may be constructed which will indicate such values so

that they may be rejected.

The functions to be discussed here were designed for testing the consistency
of suspected values with the sample as a whole. Investigation of the performance
of these criteria is given in another paper.

8. Critical values for 7o . The first statistic to be considered is

T = @n — Ta1)/(@a — T0),
where the subscripts on the z’s indicate ordered values such that =, <
2y < -+ < %, . The density function for 21 , Za1, Z. is

Tn—1 n—3
(1) 3),f(x1) dr, ( / 1@ dt> F(@ne1) @Tny F(Zn) ditn.

(n

Setting v = Tn — %1, ™ = Tn — Tn1, T = &, and integrating = and v over
their range of definition we have the density function of 71 for a sample of size n.
(The subscripts on the 7’s will be dropped when there is no ambiguity.) This
function appears as

@ o [ ([T 0a) e - st = reen ivds.

1 The work presented in this paper was done under contract N6-onr-218/IV with the
Office of Naval Research.
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EXTREME VALUES 69

There will be no loss in generality by considering the values z; to have been
drawn from a distribution with zero mean and unit variance, since the statistic
is the ratio of two differences. It should also be noted that for symmetric popu-
lations, the distribution of (x» — %n-1)/(z» — 1) Will be the same as that of
(xs — 21)/(x. — 7). For the rectangular distribution the density function is

3) n —2)A — )" 0 <rm <1,
and the cdf is

4) 1—(@1—Ro)"™

If we set this expression equal to 1 — « we obtain critical values of Ry

5) Roa=1-a"%

For the more interesting case of the normal distribution, the operations in-
dicated above are much more arduous.

n = 3, Normal population. The integral in (2) above can be evaluated to obtain
the density function of ry for the assumption of normality

3V3 1
2r r2P—r+1°

(6) gs(ro) =
The integration of this density results in the cdf

@) 3 arc tan —z (Bw — 3) + 3
7 5 re an\/:; 0w — 1) + %

Upon setting this last expression equal to 1 — «, we obtain

V3
2

n = 4, Normal population. The density function in this case becomes

(8) Ry = % + tan g (% - a).

© g = 3 2 [ 1—2r r—2 ]
9 = o ek 1|Var — 4r +3 V3 —dr 4]
If we now set the cdf equal to 1 — « we obtain
6T - 1,
5 — - | arc tan/4R? — 4R + 3 -1—&.rcta.n1—€\/3R2 — 4R + 4
(10) "
=1-aq,
which may be written as follows by taking the tangent of both sides of this
equation:

\/4R2—4R+3+}%\/3__R2—4R+4 .
=tané(a+4).

a1

1— Rl-\/(w IR T 30GR — 4R+ 9
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The integration of g4(riw) was performed for the first term by substituting r =
1 4+ (1/A/2)V/7* = 1. The second term of gi(ry0) is identical with the first if
one substitutes s = 1/r.
n = 5, Normal population. For thls case it can be shown that the density
function has the following form

2 e = 15 [h(r) +h (:)]

w2 —-r41)

where
2 — 7 e V5@ — 4r + 4
V3t —4r+ 4 3rr—3r3} 4

The cdf for » = 5 has not been obtained in a comparable form to those obtained
for n = 3, 4. No such expressions were obtained for larger values of n. Various
percentage values were computed from the above distributions and are pre-
sented in Table I. The percentage values were also obtained by numerical
integrations for n = 5, 7, 10, 15, 20, 25, 30. Values for other values of n were
obtained by interpolation. These percentage values can be obtained by a double
quadrature since

G(Ry) = fk fw f” g(r, z, v) dv dx drip =

1 —nn-—1) f f f (fz_rmf(t) dt)n—zf(x)f(:v — v) dv dx dry.

This integral was evaluated for all combinations of the values of n indicated
above and for Ry = 0, .06, .10, .16, .21, .26, .30, .34, .40, .44, 48, .53, .56, .60,
.80, .90. These values are not regularly spaced since several computations were
made before it was possible to select the particular values of R which would be
most useful for evaluating G(Ry). The values of the integral in (13) were used
as the base for computations for all the tables included in this paper.

4. Distribution of other ratios. It can be suggested that a ratio to test whether
x, is significantly far from z,.; should avoid x;. Let us consider ry =
(@n — Tn-1)/(@n — 22). Its cdf is

a [ [ ot [0 ( [ ds) 1z — 0)f(@) dv do.

For the rectangular distribution we obtain the density function

(15) (n — 3)(1 — )"

For the rectangular distribution we can write down the density function of
Tk = (xn — Tn)/(@n — k) as

(16) (n—k—1DQA = rp)"™7,

wherek = 0,1, -+ ,n — 2.

h(r) =

(13)
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n = 4, Normal populalion. When we assume the normal distribution for our
J(x) and consider k£ = 2, the first sample size of interest is n = 4, here ry =
(x4 — x3)/(xs — ). The density fupction may be obtained for this ratio by
the procedures used above for 7. The helpful substitution here is r; =
(\/ 2/2 +\Vut — l)_l/ % The resulting expression is

17) o) = =D [1 LBV (7gupran 3r2)"2]

and the cdf is
- [am tan 7= @R — 1) + arc tan = (4 — 4R + 3R2)"’] -2
™ —\/3 R R .

If we now set this function equal to 1 — «, we may solve for the various per-
centage values for this distribution.

n = 5, Normal population. The distribution of the similar ratio for samples
of size five, rn = (x5 — x4)/(xs — ) is integrable into an expression similar to
the distribution of 70 for n = 5. The percentage values for the distribution of
rn for n = 4, ---, 30 are in Table II. The distribution of r; for samples of

size 5 is

B ( a8 -1 i) g -1 i’_]
a [\/5 tan V5 2 tan V5 6 (8 + v) tan V5|
where the symbols in this expression and those to follow are

am o, s=@-nm, b= G-/

a=V4i—4r+32, p=+1r/q, & = (3 —21/q.,
& =+/3 =4 ¥ 4, v=Q0-=-21/g, n=0%1)/g,
B=V3—2+32 +=0+20/0, 7 =@-1/g,

7" = (8r — 1)/gs.

The percentage values of the distribution of the ratio 7 = (% — 1)/ (xn — 3)
are in Table ITI. The general expiession for the cdf is

.[: f.n z—(ﬁﬁ;"m ( : @ d‘>2 (f:xf ®) d8>”—4 & = 0)f(@) dv da.

The smallest sample size for which this ratio will have meaning is n = 5. The
density function for n = 5 is

al| T =
‘2[@'“’“‘

1 28 -1 B B8 ]
—— + — tan @ —= — — |.
V15 /3 V5 V3
Percentage values have been computed in a similar manner for 7y =
@0 — Tn2)/(@n - T1), T = (Tn — Tns)/(@n — T2), 12 = (Tn — Tn9)/(@n — %)
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and are presented in Tables IV, V, and VI. Here again analytic expressions

can be obtained for the distribution of a particular ratio for small values of n.
We have the distribution of 7y for n = 4 since for this sample size r9 4 70 = 1

Xy — X1

Tn — Ty

For n = 5 the density function of ry is

-1 -1 6,)

[\/3 (tan \/5 4+ tan V3
v -1 _ - Y -1 5’_

+\/§(tan 5 2 tan V3 tan \/5>

if we consider r;p =

Forn = 5 the density function of 7y is

[\/3 (tan + tan 1\/’~) - \—/7—?7 (g—- tan™ \—/6—,5:>

The distribution for the ratio 71 = (&, — %;)/(@, — x:) is

[f(z—nl(n_J.T,_l);(] 1).(_[ f(t)dt) fl@ — )

<‘ ) dt)"-f-"—‘ & — m)f(@) ( f £ dt) dv dz.

—V

5. Final remarks.

5.1. Accuracy of tables. The goal with respect to accuracy was to obtain three
places of accuracy in the percentage values. It is believed that the values in
Tables I, II, III are in error by not more than one or two in the third place,
while the values in Tables IV, V, and VI are believed to be accurate to within
three or four units in the third place.

6.2. Investigation of the performance of the raitos. It is important to know
something about the performance of these ratios for various purposes. Refer-
ence is made to another paper [1] evaluating the performance of these criteria

as well as a number of others.

REFERENCE

[1] W. J. DixoN, “Analysis of extreme values,” Annals of Math. Stat., Vol. 21 (1950), pp.
488-506.
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TABLE I
Pr(rio > R) = «

N /
n\ a .005 01 .02 05 19 .20 .30 40 .50 .60 70 .80 90 .95 a/n
AN ;

3 .994 .988 .976 .941 .886 .781 .684 .591 .500 .409 .316 .219 .114 .059 3
4 .926 .889 .846 .765 .679 .560 .471 .394 .324 .257 .193 .130 .065 .033 4
5 .821 .780 .729 .642 .557 .451 .373 .308 .250 .196 .146 .097 .048 .023 5
6 .740 .698 .644 .560 .482 .386 .318 .261 .210 .164 .‘121 .079 .038 .018 6
7 .680 .637 .586 .507 .434 .344 .281 .230 .184 .143 .105 .068 .032 .016 7
8 .634 .590 .543 .468 .399 .314 .255 .208 .166 .128 .094 .060 .029 .014 8
9 .598 .555 .510 .437 .370 .290 .234 .191 .152 .118 .086 .055 .026 .013 9
10 .568 .527 .483 .412 .349 .273 .219 .178 .142 .110 .080 .051 .025 .012 10
11 .542 502 .460 .392 .332 .259 .208 .168 .133 .103 .074 .048 .023 .011 11
12 .522 .482 .441 .376 .318 .247 .197 .160 .126 .097 .070 .045 .022 .011 12
13 .503 .465 .425 .361 .305 .237 .188 .153 .120 .092 .067 .043 .021 .010 13
14 .488 .450 .411 .349 .294 .228 .181 .147 .115 .088 .064 .041 .020 .010 14
15 475 438 .399 .338 .285 .220 .175 .141 .111 .085 .062 .040 .019 .010 15
16 463 .426 .388 .329 .277 .213 .169 .136 .107 .082 .060 .039 .019 .009 16
17 .452 .416 .379 .320 .269 .207 .165 .132 .104 .080 .058 .038 .018 .009 17
18 .442 .407 .370 .313 .263 .202 .160 .128 .101 .078 .056 .036 .018 .009 18
19 .433 .398 .363 .306 .258 .197 .157 .125 .098 .076 .055 .036 .017 .008 19
20 .425 .391 .356 .300 .252 .193 .133 .122 .096 .074 .053 .035 .017 .008 20
21 .418 .384 .350 .295 .247 .189 .150 .119 .094 .072 .052 .03+ .016 .008 21
22 411 .378 .344 .290 .242 .185 .147 .117 .092 .071 .051 .033 .016 .008 22
23 .404 .372 .338 .285 .238 .182 .144 .115 .090 .069 .050 .033 .016 .008 23
24 .399 .367 .333 .281 .234 .179 .142 .113 .089 .068 .049 .032 .016 .008 24
25 .393 .362 .329 .277 .230 .176 .139 .111 .088 .067 .048 .032 .015 .008 25
26 .388 .357 .324 .273 .227 .173 .137 .109 .086 .066 .047 .031 .015 .007 26
27 .384 .353 .320 .269 .224 .171 .135 .108 .085 .065 .047 .031 .015 .007 27
28 .380 .349 .316 .266 .220 .168 .133 .106 .084 .06+ .046 .030 .015 .007 28
29 .376 .345 .312 .263 .218 .166 .131 .105 .083 .063 .046 .030 .014 .007 29
30 .372 .341 .309 .260 .215 .164 .130 .103 .082 .062 .045 .029 .01+ .007 30
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TABLE II

PT(T‘u > R) =«

8

EVRIE SRBYR

005

.01

02

.10

.20

.995
.937

.839
782
725 .
.677
.639

.606
.580
.558
.539
.522

.508
.495
.484
.473
.464

.455

.991
.916

.805
740

.635
.597

.566
.541
.520
.502
.486 .

472
.460
.449
.439 .
.430

.421
.414
.407

.394

.389
.383
.378
374
.369

.981
.876

.763
.689
.631
.587
.551

.521
.498 .
477
.460

.432
.420 .
.410 .

.392

.384 .
377 .
371 .
.365 .
.359 .

.354 .
.349 .
.344 .
.340 .
.336 .

.955
.807

.689
.610
554
.512
477

.450

.410 .
.336 .
.323

.395
.381

.369

.334 .

.910
728

.609
.530
.479
.441
.409

.385
.367 .

313 .
.236

822 .
.615 .

.502
.432
.385
352 .
.325

.305

.253

.218

.213
.208

.197

.193
.190
.188
.185
.182

420 .
.359 .
.318 .

.265 .

.248 .
.234 .
275 .
212 .
.203 .

196 .
.190 .

179 .
174

.170
.166 .
.163 .
.160 .
.156 .

154 .
151 .
.149
.146
.144

.136

.369 .

.288 .
.241
.210
.189
173

.161
.150
142
135
.129

124
119
.116
112
.110

.107
.104
.102

.098

.096
.095
118 .
.116
115

.092
.090

189 .
164 .
.148 .
134 .

124
.116 .
.109
.104
.099

.095 .
.092 .
.089 .
.087 .
.084 .

.082 .
.081 .
.079 .
077 .
.076 .

.074 .
.073 .
072 .
.070 .
.069 .

.090

.079
075 .
.072

151 .
113 .

.079 .
.070 .
.063

.058
.055
052 .
.024
.047 .

.045
.044
.042
.041
.040

.039
.038
.037
.036
.036

.035
.034
.034
.033
.032

.030

.028
.026

.022
.021
.020
.020
.019

019 .
.018
.018
.018
.017

.017
017 .
.016
.016 .
.016

. .039

.028
.022
.019
.016
.014

.013
.012
.012
.011
.011

.011
.010
.010
.010
.010

.009
.009
.009
.009
.008
.008

.008

21

23
24
25

EIBIY
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TABLE III
PT(T[g > R) = a
N\ /
n& 005 .01 .02 .05 .10 .20 30 40 .50 .60 70 .80 90 95 ¢// n
5 .996 .992 .984 .960 .919 .838 .755 .669 .579 .483 .381 .268 .143 .074 5
6 .951 .925 .891 .824 .745 .635 .545 .465 .390 .316 .240 .165 .088 .049 6
7 .875 .836 .791 .712 .636 .528 .445 .374 .307 .245 .183 .123 .064 .031 7
8 .797 .760 .708 .632 .557 .456 .382 .317 .258 .203 .152 .101 .056 .025 8
9 .739 .701 .656 .580 .504 .409 .339 .270 .227 .177 .130 .086 .044 .021 9
10 .694 .655 .610 .537 .454 .373 .308 .258 .204 .158 .116 .075 .038 .019 10
11 .658 .619 .575 .502 .431 .345 .283 .232 .187 .145 .106 .069 .035 .017 11
12 .629 .590 .546 .473 .406 .324 .265 .217 .174 .135 .098 .063 .032 .016 12
13 .612 .554 .521 .451 .387 .307 .250 .204 .163 .126 .092 .059 .030 .015 13
14 .580 .542 .501 .432 .369 .292 .237 .193 .153 .118 .086 .055 .028 .014 14
15 .560 .523 .482 .416 .354 .280 .226 .184 .146 .112 .082 .053 .026 .013 15
16 .544 .508 .467 .401 .341 .269 .217 .177 .139 .107 .078 .050 .025 .013 16
17 .529 .493 .453 .388 .330 .259 .209 .170 .134 .103 .075 .048 .024 .012 17
18 .516 .480 .440 .377 .320 .251 .202 .163 .129 .099 .072 .047 .023 .012 18
19 .504 .469 .429 .367 .311 .243 .196 .157 .125 .096 .069 .045 .022 .011 19
20 .493 .458 .419 .358 .303 .237 .191 .153 .121 .093 .067 .044 .022 .011 20
21 .483 .449 .410 .349 .296 .231 .186 .148 .118 .090 .065 .042 .021 .010 21
22 .474 .440 .402 .342 .290 .225 .181 .145 .114 .088 .063 .041 .020 .010 22
23 .465 .432 .394 .336 .284 .220 .176 .141 .112 .086 .062 .040 .020 .010 23
24 .457 .423 .387 .330 .278 .216 .173 .138 .109 .084 .060 .039 .019 .010 24
25 .450 .417 .381 .324 .273 .212 .169 .135 .107 .082 .059 .038 .019 .009 25
26 .443 .411 .375 .319 .268 .208 .166 .132 .105 .080 .058 .037 .019 .009 26
27 .437 .405 .370 .314 .263 .204 .163 .130 .103 .079 .057 .037 .018 .009 27
28 .431 .399 .365 .309 .259 .201 .160 .128 .101 .077 .056 .036 .018 .009 28
29 .426 .394 .360 .305 .255 .197 .157 .126 .099 .076 .055 .035 .017 .009 29
30 .420 .389 .355 .301 .251 .194 .154 .124 .098 .075 .054 .035 .017 .009 30
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TABLE IV
Pr(reso > R) = a
7/
n a .005 .01 .02 .05 10 .20 .30 .40 .50 .60 .70 .80 90 95 a // ”
/
4 .996 .992 .987 .967 .935 .871 .807 .743 .676 .606 .529 .440 .321 .235 4
5 .950 .929 .901 .845 .782 .694 .623 .560 .500 .440 .377 .306 .218 .155 5
6 .865 .836 .800 .736 .670 .585 .520 .463 .411 .358 .305° .245 .172 .126 6
7 .814 .778 .732 .661 .596 .516 .454 .402 .355 .306 .261 .208 .144 .099 7
8 .746 .710 .670 .607 .545 .468 .410 .361 .317 .274 .230 .184 .125 .085 8
9 .700 .667 .627 .565 .505 .432 .378 .331 .288 .250 .208 .166 .114 .077 9
10 .664 .632 .592 .531 .474 .404 .354 .307 .268 .231 .192 .153 .104 .070 10
11 .627 .603 .564 .504 .449 .381 .334 .290 .253 .217 .181 .143 .097 .065 11
12 .612 .579 .540 .481 .429 .362 .316 .274 .239 .205 .172 .136 .091 .060 12
13 .590 .557 .520 .461 .411 .345 .301 .261 .227 .195 .164 .129 .086 .057 13
14 571 .538 .502 .445 .395 .332 .288 .250 .217 .187 .157 .123 .082 .054 14
15 .554 .522 .486 .430 .382 .320 .277 .241 .209 .179 .150 .118 .079 .052 15
16 .539 .508 .472 .418 .370 .310 .268 .233 .202 .173 .144 .113 .076 .050 16
17 .526 .495 .460 .406 .359 .301 .260 .226 .195 .167 .139 .109 .074 .049 17
18 514 .484 .449 .397 .350 .293 .252 .219 .189 .162 .134 .105 .0T1 .048 18
19 .503 .473 .439 .379 .341 .286 .246 .213 .184 .157 .130 .101 .069 .047 19
20 .494 .464 .430 .372 .333 .279 .240 .208 .179 .152 .126 .098 .067 .046 | 20
21 .485 .455 .422 .365 .326 .273 .235 .203 .175 .148 .123 .096 .065 .045 | 21
22 JATT 447 414 358 .320 .267 .230 .199 .171 .145 .120 .004 .064 .044 | 22
23 469 .440 .407 .352 .314 .262 .225 .195 .167 .142 .117 .092 .062 .043 23
24 .462 .434 .401 .347 .309 .258 .221 .192 .164 .139 .114 .090 .061 .042 | 24
25 .456 .428 .395 .343 .304 .254 .217 .189 .161 .136 .112 .089 .060 .041 25
26 .450 .422 .390 .338 .300 .250 .214 .186 .158 .134 .110 .087 .059 .041 26
27 .444 417 .385 .334 .206 .246 .211 .183 .156 .132 .109 .086 .058 .040 | 27
28 .439 .412 .381 .330 .292 .243 .208 .180 .154 .130 .107 .085 .058 .040 | 28
29 .434 .407 .376 .326 .288 .239 .205 .177 .151 .128 .106 .083 .057 .039 29
30 .428 .402 .372 .322 .285 .236 .202 .175 .149 .126 .104 .082 .056 .039 | 30
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TABLE V
Pr(ra > R) = «

.005

01

05

.10

«20

30

40

.50

10

90

.998
.970
919 .
.868
.816
.760

713
.675
.649

.607

.589
.573
.559
547
.536 .

.526
.517

.501
.493

.486
.479
472
.466
.460

.995
.951

.829
776
.726

.679
.642
.615

574

.557
.542
.529
517

.496
.487
.479
471
.464

.457
.450
.444
.438
.433

.990
.924
.842
.780
725
.678

.638
.605
.578
.593 .
537

.521
.507
.494
.482
472

.462
.453
.445
.438
431

424
.418
412
.406
.401

.976
872
780
710
.657
.612

.576
.546
521
.501
.483

467
453
440
428
419

.410
.402
.395
.388
.382

.376
.370
.365
.360
.355

.952
.821
725
.650
594
.551

517
.490
.467
A48
431

.416
.403
.391
.380
371

.363
.356
.349
.343
.337

331
.325
.320
.316
.312

.902
745
.637
.570
.516
474

.442
419
.399
.381
.366

.353
341
.331
.322
314

.306
.299
.293

.282

277
273 .
.269 .
.265 .
.261 .

.850
.680
.575
.509
.458
.420

.391
.370
.351
.334
.319

307
1206
287
279
271

.264
.258
.252
.287 .
242

.795
.621
517
454
.407
.374

.348
.326
.308
.293
.280

.269
.259
.250
.243
.236

.229
.223
.218
.214
.210

.206

.197
194

735
.563
.462
.402
.360
.329 .

.305
.285
.269
.256
.245

.235
.225
.218
211
.205

.199
194
.189
.185
.181

178
175
172
.170
.167

.669
.504
.408
.352
.313

.265
247 .
.232
.219
.208

.199
192
.186
.180
174

170 .
.165
.161
.158
154

.151
.149
.146
144
.142

.594
.439
.350 .
.298
.265
.240

221

194
.184
175

.167
.161
.155
.150
145

141

137
.133
.130
127

125
123 .
121
119
117

.501
.364 .
198 .
.166 .
146 .
.130 .

.240
212
.189

173
.161
.152
144
.138

132 .
127 .
22,
17 .
.113 .

110 .
107 .
.105 .
.103 .
100 .

.098 .
.094 .

.092 .
.091 .

374

118 .
.110 .
104 .
.099 .
.094 .

21
22

24
25

26
27
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TABLE VI

Pr(ree > R) = a

O W >

sy

1

13
14
15

16
17

19
20

EVBIB Beuye

005

01

02

05

.10

+20

30

«40

50

60

70

90

.998
.970
.922
873
826

.781
.740
.705
.674
.647

.624
.605
.589
575

.562

.551
.541
.532

.516

.501
.495
.489
.483

.995
.945
.890
.840 .
.791

745
704
.670
.641
.616

.595
577
.561
.547
.535

.524
.514
.505
.497
.489

.486
475
.469
.463
.457

.992
919
.857

749

.703
.661
.628
.602
.579

.559
.542
.527
514
.502

.491
.481
472
.484
457

.450
.443
.437
.431
.425

.983
.881
.803
737
.682

.637
.600 .
.570
.546
.525

.507
.490
475 .
.462
.450

.440
.430 .
.421
.413
.406

.399
.393 .
.387
.381
.376

.965
.850
745
.676
.620

.578
.515

.492
472

454 .
373 .
.361 .
.350 .
.340 .

.438

.412
.401

.391

.354 .

.342
337 .
.332 .

374 .
.367 .
.360 .

.930
.780
.664
.592
.543

.503 .
470 .
.443 .
.421 .
.402

.331 .

.880
.730
.602
.530
.483

.353

.257
.252
.247
.243
.239

.830
.670
.546
.478
.433

.397
.370
.347

312

.208
.286
.276-
.268
.260

.252
.245
.239
.232
.227

.222
.218
215 .
211
.208

.780
.610
.490
.425
.384

.351
.325
.304

.273

.261
.250
241 .
.233
.226

.220
.213
.207
.201
.196

.192
.189

.183
.180

.720
.540
.434
373
.335

.305
.282
.263

.234

.223
.214

.199
.193

.187
.182
177
172
.168

.164
.161
.158
.155
.153

.640
.470
.375
.320
.285

.258
.238
.222
.208
.196

.186
.178
171
.165
.160

.155
.150
.146
.142
.138

.135
132
.130
.128
.126

.540

.390 .
*.309

.261
.231

.208
.190

148 .
142 .
135 .
.130 .
125 .

120 .
116 .
13 .
JA11 .
.108 .

.106 .
104 .
102 .
.100 .
.098 .

.410 .
270 .
.218 .
186 .
.150 .

.142
130 .
A77
.166 .
.156 .

075

.071
.067
.063
.060
.057

.054
.051
.049
.047

.044
.043
.042
.041
.041




